#include "region_layer.h"
|
#include "activations.h"
|
#include "softmax_layer.h"
|
#include "blas.h"
|
#include "box.h"
|
#include "cuda.h"
|
#include "utils.h"
|
#include <stdio.h>
|
#include <assert.h>
|
#include <string.h>
|
#include <stdlib.h>
|
|
region_layer make_region_layer(int batch, int inputs, int n, int side, int classes, int coords, int rescore)
|
{
|
region_layer l = {0};
|
l.type = REGION;
|
|
l.n = n;
|
l.batch = batch;
|
l.inputs = inputs;
|
l.classes = classes;
|
l.coords = coords;
|
l.rescore = rescore;
|
l.side = side;
|
assert(side*side*((1 + l.coords)*l.n + l.classes) == inputs);
|
l.cost = calloc(1, sizeof(float));
|
l.outputs = l.inputs;
|
l.truths = l.side*l.side*(1+l.coords+l.classes);
|
l.output = calloc(batch*l.outputs, sizeof(float));
|
l.delta = calloc(batch*l.outputs, sizeof(float));
|
#ifdef GPU
|
l.output_gpu = cuda_make_array(l.output, batch*l.outputs);
|
l.delta_gpu = cuda_make_array(l.delta, batch*l.outputs);
|
#endif
|
|
fprintf(stderr, "Region Layer\n");
|
srand(0);
|
|
return l;
|
}
|
|
void forward_region_layer(const region_layer l, network_state state)
|
{
|
int locations = l.side*l.side;
|
int i,j;
|
memcpy(l.output, state.input, l.outputs*l.batch*sizeof(float));
|
for(i = 0; i < l.batch*locations; ++i){
|
int index = i*((1+l.coords)*l.n + l.classes);
|
if(l.softmax){
|
activate_array(l.output + index, l.n*(1+l.coords), LOGISTIC);
|
int offset = l.n*(1+l.coords);
|
softmax_array(l.output + index + offset, l.classes,
|
l.output + index + offset);
|
}
|
}
|
if(state.train){
|
float avg_iou = 0;
|
float avg_cat = 0;
|
float avg_obj = 0;
|
float avg_anyobj = 0;
|
int count = 0;
|
*(l.cost) = 0;
|
int size = l.inputs * l.batch;
|
memset(l.delta, 0, size * sizeof(float));
|
for (i = 0; i < l.batch*locations; ++i) {
|
int index = i*((1+l.coords)*l.n + l.classes);
|
for(j = 0; j < l.n; ++j){
|
int prob_index = index + j*(1 + l.coords);
|
l.delta[prob_index] = (1./l.n)*(0-l.output[prob_index]);
|
if(l.softmax){
|
l.delta[prob_index] = 1./(l.n*l.side)*(0-l.output[prob_index]);
|
}
|
*(l.cost) += (1./l.n)*pow(l.output[prob_index], 2);
|
//printf("%f\n", l.output[prob_index]);
|
avg_anyobj += l.output[prob_index];
|
}
|
|
int truth_index = i*(1 + l.coords + l.classes);
|
int best_index = -1;
|
float best_iou = 0;
|
float best_rmse = 4;
|
|
int bg = !state.truth[truth_index];
|
if(bg) {
|
continue;
|
}
|
|
int class_index = index + l.n*(1+l.coords);
|
for(j = 0; j < l.classes; ++j) {
|
l.delta[class_index+j] = state.truth[truth_index+1+j] - l.output[class_index+j];
|
*(l.cost) += pow(state.truth[truth_index+1+j] - l.output[class_index+j], 2);
|
if(state.truth[truth_index + 1 + j]) avg_cat += l.output[class_index+j];
|
}
|
truth_index += l.classes + 1;
|
box truth = {state.truth[truth_index+0], state.truth[truth_index+1], state.truth[truth_index+2], state.truth[truth_index+3]};
|
truth.x /= l.side;
|
truth.y /= l.side;
|
|
for(j = 0; j < l.n; ++j){
|
int out_index = index + j*(1+l.coords);
|
box out = {l.output[out_index+1], l.output[out_index+2], l.output[out_index+3], l.output[out_index+4]};
|
|
out.x /= l.side;
|
out.y /= l.side;
|
if (l.sqrt){
|
out.w = out.w*out.w;
|
out.h = out.h*out.h;
|
}
|
|
float iou = box_iou(out, truth);
|
float rmse = box_rmse(out, truth);
|
if(best_iou > 0 || iou > 0){
|
if(iou > best_iou){
|
best_iou = iou;
|
best_index = j;
|
}
|
}else{
|
if(rmse < best_rmse){
|
best_rmse = rmse;
|
best_index = j;
|
}
|
}
|
}
|
//printf("%d", best_index);
|
int in_index = index + best_index*(1+l.coords);
|
*(l.cost) -= pow(l.output[in_index], 2);
|
*(l.cost) += pow(1-l.output[in_index], 2);
|
avg_obj += l.output[in_index];
|
l.delta[in_index+0] = (1.-l.output[in_index]);
|
if(l.softmax){
|
l.delta[in_index+0] = 5*(1.-l.output[in_index]);
|
}
|
//printf("%f\n", l.output[in_index]);
|
|
l.delta[in_index+1] = 5*(state.truth[truth_index+0] - l.output[in_index+1]);
|
l.delta[in_index+2] = 5*(state.truth[truth_index+1] - l.output[in_index+2]);
|
if(l.sqrt){
|
l.delta[in_index+3] = 5*(sqrt(state.truth[truth_index+2]) - l.output[in_index+3]);
|
l.delta[in_index+4] = 5*(sqrt(state.truth[truth_index+3]) - l.output[in_index+4]);
|
}else{
|
l.delta[in_index+3] = 5*(state.truth[truth_index+2] - l.output[in_index+3]);
|
l.delta[in_index+4] = 5*(state.truth[truth_index+3] - l.output[in_index+4]);
|
}
|
|
*(l.cost) += pow(1-best_iou, 2);
|
avg_iou += best_iou;
|
++count;
|
if(l.softmax){
|
gradient_array(l.output + index, l.n*(1+l.coords), LOGISTIC, l.delta + index);
|
}
|
}
|
printf("Avg IOU: %f, Avg Cat Pred: %f, Avg Obj: %f, Avg Any: %f, count: %d\n", avg_iou/count, avg_cat/count, avg_obj/count, avg_anyobj/(l.batch*locations*l.n), count);
|
}
|
}
|
|
void backward_region_layer(const region_layer l, network_state state)
|
{
|
axpy_cpu(l.batch*l.inputs, 1, l.delta, 1, state.delta, 1);
|
}
|
|
#ifdef GPU
|
|
void forward_region_layer_gpu(const region_layer l, network_state state)
|
{
|
float *in_cpu = calloc(l.batch*l.inputs, sizeof(float));
|
float *truth_cpu = 0;
|
if(state.truth){
|
int num_truth = l.batch*l.side*l.side*(1+l.coords+l.classes);
|
truth_cpu = calloc(num_truth, sizeof(float));
|
cuda_pull_array(state.truth, truth_cpu, num_truth);
|
}
|
cuda_pull_array(state.input, in_cpu, l.batch*l.inputs);
|
network_state cpu_state;
|
cpu_state.train = state.train;
|
cpu_state.truth = truth_cpu;
|
cpu_state.input = in_cpu;
|
forward_region_layer(l, cpu_state);
|
cuda_push_array(l.output_gpu, l.output, l.batch*l.outputs);
|
cuda_push_array(l.delta_gpu, l.delta, l.batch*l.inputs);
|
free(cpu_state.input);
|
if(cpu_state.truth) free(cpu_state.truth);
|
}
|
|
void backward_region_layer_gpu(region_layer l, network_state state)
|
{
|
axpy_ongpu(l.batch*l.inputs, 1, l.delta_gpu, 1, state.delta, 1);
|
//copy_ongpu(l.batch*l.inputs, l.delta_gpu, 1, state.delta, 1);
|
}
|
#endif
|