Joseph Redmon
2015-09-16 c53e03348c65462bcba33f6352087dd6b9268e8f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
#include "region_layer.h"
#include "activations.h"
#include "softmax_layer.h"
#include "blas.h"
#include "box.h"
#include "cuda.h"
#include "utils.h"
#include <stdio.h>
#include <assert.h>
#include <string.h>
#include <stdlib.h>
 
region_layer make_region_layer(int batch, int inputs, int n, int side, int classes, int coords, int rescore)
{
    region_layer l = {0};
    l.type = REGION;
 
    l.n = n;
    l.batch = batch;
    l.inputs = inputs;
    l.classes = classes;
    l.coords = coords;
    l.rescore = rescore;
    l.side = side;
    assert(side*side*((1 + l.coords)*l.n + l.classes) == inputs);
    l.cost = calloc(1, sizeof(float));
    l.outputs = l.inputs;
    l.truths = l.side*l.side*(1+l.coords+l.classes);
    l.output = calloc(batch*l.outputs, sizeof(float));
    l.delta = calloc(batch*l.outputs, sizeof(float));
#ifdef GPU
    l.output_gpu = cuda_make_array(l.output, batch*l.outputs);
    l.delta_gpu = cuda_make_array(l.delta, batch*l.outputs);
#endif
 
    fprintf(stderr, "Region Layer\n");
    srand(0);
 
    return l;
}
 
void forward_region_layer(const region_layer l, network_state state)
{
    int locations = l.side*l.side;
    int i,j;
    memcpy(l.output, state.input, l.outputs*l.batch*sizeof(float));
    for(i = 0; i < l.batch*locations; ++i){
        int index = i*((1+l.coords)*l.n + l.classes);
        if(l.softmax){
            activate_array(l.output + index, l.n*(1+l.coords), LOGISTIC);
            int offset = l.n*(1+l.coords);
            softmax_array(l.output + index + offset, l.classes,
                    l.output + index + offset);
        }
    }
    if(state.train){
        float avg_iou = 0;
        float avg_cat = 0;
        float avg_obj = 0;
        float avg_anyobj = 0;
        int count = 0;
        *(l.cost) = 0;
        int size = l.inputs * l.batch;
        memset(l.delta, 0, size * sizeof(float));
        for (i = 0; i < l.batch*locations; ++i) {
            int index = i*((1+l.coords)*l.n + l.classes);
            for(j = 0; j < l.n; ++j){
                int prob_index = index + j*(1 + l.coords);
                l.delta[prob_index] = (1./l.n)*(0-l.output[prob_index]);
                if(l.softmax){
                    l.delta[prob_index] = 1./(l.n*l.side)*(0-l.output[prob_index]);
                }
                *(l.cost) += (1./l.n)*pow(l.output[prob_index], 2);
                //printf("%f\n", l.output[prob_index]);
                avg_anyobj += l.output[prob_index];
            }
 
            int truth_index = i*(1 + l.coords + l.classes);
            int best_index = -1;
            float best_iou = 0;
            float best_rmse = 4;
 
            int bg = !state.truth[truth_index];
            if(bg) {
                continue;
            }
 
            int class_index = index + l.n*(1+l.coords);
            for(j = 0; j < l.classes; ++j) {
                l.delta[class_index+j] = state.truth[truth_index+1+j] - l.output[class_index+j];
                *(l.cost) += pow(state.truth[truth_index+1+j] - l.output[class_index+j], 2);
                if(state.truth[truth_index + 1 + j]) avg_cat += l.output[class_index+j];
            }
            truth_index += l.classes + 1;
            box truth = {state.truth[truth_index+0], state.truth[truth_index+1], state.truth[truth_index+2], state.truth[truth_index+3]};
            truth.x /= l.side;
            truth.y /= l.side;
 
            for(j = 0; j < l.n; ++j){
                int out_index = index + j*(1+l.coords);
                box out = {l.output[out_index+1], l.output[out_index+2], l.output[out_index+3], l.output[out_index+4]};
 
                out.x /= l.side;
                out.y /= l.side;
                if (l.sqrt){
                    out.w = out.w*out.w;
                    out.h = out.h*out.h;
                }
 
                float iou  = box_iou(out, truth);
                float rmse = box_rmse(out, truth);
                if(best_iou > 0 || iou > 0){
                    if(iou > best_iou){
                        best_iou = iou;
                        best_index = j;
                    }
                }else{
                    if(rmse < best_rmse){
                        best_rmse = rmse;
                        best_index = j;
                    }
                }
            }
            //printf("%d", best_index);
            int in_index = index + best_index*(1+l.coords);
            *(l.cost) -= pow(l.output[in_index], 2);
            *(l.cost) += pow(1-l.output[in_index], 2);
            avg_obj += l.output[in_index];
            l.delta[in_index+0] = (1.-l.output[in_index]);
            if(l.softmax){
                l.delta[in_index+0] = 5*(1.-l.output[in_index]);
            }
            //printf("%f\n", l.output[in_index]);
 
            l.delta[in_index+1] = 5*(state.truth[truth_index+0] - l.output[in_index+1]);
            l.delta[in_index+2] = 5*(state.truth[truth_index+1] - l.output[in_index+2]);
            if(l.sqrt){
                l.delta[in_index+3] = 5*(sqrt(state.truth[truth_index+2]) - l.output[in_index+3]);
                l.delta[in_index+4] = 5*(sqrt(state.truth[truth_index+3]) - l.output[in_index+4]);
            }else{
                l.delta[in_index+3] = 5*(state.truth[truth_index+2] - l.output[in_index+3]);
                l.delta[in_index+4] = 5*(state.truth[truth_index+3] - l.output[in_index+4]);
            }
 
            *(l.cost) += pow(1-best_iou, 2);
            avg_iou += best_iou;
            ++count;
            if(l.softmax){
                gradient_array(l.output + index, l.n*(1+l.coords), LOGISTIC, l.delta + index);
            }
        }
        printf("Avg IOU: %f, Avg Cat Pred: %f, Avg Obj: %f, Avg Any: %f, count: %d\n", avg_iou/count, avg_cat/count, avg_obj/count, avg_anyobj/(l.batch*locations*l.n), count);
    }
}
 
void backward_region_layer(const region_layer l, network_state state)
{
    axpy_cpu(l.batch*l.inputs, 1, l.delta, 1, state.delta, 1);
}
 
#ifdef GPU
 
void forward_region_layer_gpu(const region_layer l, network_state state)
{
    float *in_cpu = calloc(l.batch*l.inputs, sizeof(float));
    float *truth_cpu = 0;
    if(state.truth){
        int num_truth = l.batch*l.side*l.side*(1+l.coords+l.classes);
        truth_cpu = calloc(num_truth, sizeof(float));
        cuda_pull_array(state.truth, truth_cpu, num_truth);
    }
    cuda_pull_array(state.input, in_cpu, l.batch*l.inputs);
    network_state cpu_state;
    cpu_state.train = state.train;
    cpu_state.truth = truth_cpu;
    cpu_state.input = in_cpu;
    forward_region_layer(l, cpu_state);
    cuda_push_array(l.output_gpu, l.output, l.batch*l.outputs);
    cuda_push_array(l.delta_gpu, l.delta, l.batch*l.inputs);
    free(cpu_state.input);
    if(cpu_state.truth) free(cpu_state.truth);
}
 
void backward_region_layer_gpu(region_layer l, network_state state)
{
    axpy_ongpu(l.batch*l.inputs, 1, l.delta_gpu, 1, state.delta, 1);
    //copy_ongpu(l.batch*l.inputs, l.delta_gpu, 1, state.delta, 1);
}
#endif