Joseph Redmon
2016-05-12 054e2b1954aafb15b0e983180dda309cfd5d831f
src/convolutional_layer.c
@@ -1,5 +1,6 @@
#include "convolutional_layer.h"
#include "utils.h"
#include "batchnorm_layer.h"
#include "im2col.h"
#include "col2im.h"
#include "blas.h"
@@ -7,6 +8,52 @@
#include <stdio.h>
#include <time.h>
void swap_binary(convolutional_layer *l)
{
    float *swap = l->filters;
    l->filters = l->binary_filters;
    l->binary_filters = swap;
    #ifdef GPU
    swap = l->filters_gpu;
    l->filters_gpu = l->binary_filters_gpu;
    l->binary_filters_gpu = swap;
    #endif
}
void binarize_filters2(float *filters, int n, int size, char *binary, float *scales)
{
    int i, k, f;
    for(f = 0; f < n; ++f){
        float mean = 0;
        for(i = 0; i < size; ++i){
            mean += fabs(filters[f*size + i]);
        }
        mean = mean / size;
        scales[f] = mean;
        for(i = 0; i < size/8; ++i){
            binary[f*size + i] = (filters[f*size + i] > 0) ? 1 : 0;
            for(k = 0; k < 8; ++k){
            }
        }
    }
}
void binarize_filters(float *filters, int n, int size, float *binary)
{
    int i, f;
    for(f = 0; f < n; ++f){
        float mean = 0;
        for(i = 0; i < size; ++i){
            mean += fabs(filters[f*size + i]);
        }
        mean = mean / size;
        for(i = 0; i < size; ++i){
            binary[f*size + i] = (filters[f*size + i] > 0) ? mean : -mean;
        }
    }
}
int convolutional_out_height(convolutional_layer l)
{
    int h = l.h;
@@ -41,7 +88,7 @@
    return float_to_image(w,h,c,l.delta);
}
convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation, int batch_normalize)
convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation, int batch_normalize, int binary, int xnor)
{
    int i;
    convolutional_layer l = {0};
@@ -51,6 +98,7 @@
    l.w = w;
    l.c = c;
    l.n = n;
    l.binary = binary;
    l.batch = batch;
    l.stride = stride;
    l.size = size;
@@ -78,6 +126,12 @@
    l.output = calloc(l.batch*out_h * out_w * n, sizeof(float));
    l.delta  = calloc(l.batch*out_h * out_w * n, sizeof(float));
    if(binary){
        l.binary_filters = calloc(c*n*size*size, sizeof(float));
        l.cfilters = calloc(c*n*size*size, sizeof(char));
        l.scales = calloc(n, sizeof(float));
    }
    if(batch_normalize){
        l.scales = calloc(n, sizeof(float));
        l.scale_updates = calloc(n, sizeof(float));
@@ -106,6 +160,15 @@
    l.delta_gpu = cuda_make_array(l.delta, l.batch*out_h*out_w*n);
    l.output_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
    if(binary){
        l.binary_filters_gpu = cuda_make_array(l.filters, c*n*size*size);
    }
    if(xnor){
        l.binary_filters_gpu = cuda_make_array(l.filters, c*n*size*size);
        l.binary_input_gpu = cuda_make_array(0, l.inputs*l.batch);
    }
    l.xnor = xnor;
    if(batch_normalize){
        l.mean_gpu = cuda_make_array(l.mean, n);
        l.variance_gpu = cuda_make_array(l.variance, n);
@@ -141,7 +204,7 @@
void test_convolutional_layer()
{
    convolutional_layer l = make_convolutional_layer(1, 5, 5, 3, 2, 5, 2, 1, LEAKY, 1);
    convolutional_layer l = make_convolutional_layer(1, 5, 5, 3, 2, 5, 2, 1, LEAKY, 1, 0, 0);
    l.batch_normalize = 1;
    float data[] = {1,1,1,1,1,
        1,1,1,1,1,
@@ -228,13 +291,42 @@
    }
}
void forward_convolutional_layer(const convolutional_layer l, network_state state)
void forward_convolutional_layer(convolutional_layer l, network_state state)
{
    int out_h = convolutional_out_height(l);
    int out_w = convolutional_out_width(l);
    int i;
    fill_cpu(l.outputs*l.batch, 0, l.output, 1);
    /*
    if(l.binary){
        binarize_filters(l.filters, l.n, l.c*l.size*l.size, l.binary_filters);
        binarize_filters2(l.filters, l.n, l.c*l.size*l.size, l.cfilters, l.scales);
        swap_binary(&l);
    }
    */
    if(l.binary){
        int m = l.n;
        int k = l.size*l.size*l.c;
        int n = out_h*out_w;
        char  *a = l.cfilters;
        float *b = l.col_image;
        float *c = l.output;
        for(i = 0; i < l.batch; ++i){
            im2col_cpu(state.input, l.c, l.h, l.w,
                    l.size, l.stride, l.pad, b);
            gemm_bin(m,n,k,1,a,k,b,n,c,n);
            c += n*m;
            state.input += l.c*l.h*l.w;
        }
        scale_bias(l.output, l.scales, l.batch, l.n, out_h*out_w);
        add_bias(l.output, l.biases, l.batch, l.n, out_h*out_w);
        activate_array(l.output, m*n*l.batch, l.activation);
        return;
    }
    int m = l.n;
    int k = l.size*l.size*l.c;
@@ -253,14 +345,7 @@
    }
    if(l.batch_normalize){
        if(state.train){
            mean_cpu(l.output, l.batch, l.n, l.out_h*l.out_w, l.mean);
            variance_cpu(l.output, l.mean, l.batch, l.n, l.out_h*l.out_w, l.variance);
            normalize_cpu(l.output, l.mean, l.variance, l.batch, l.n, l.out_h*l.out_w);
        } else {
            normalize_cpu(l.output, l.rolling_mean, l.rolling_variance, l.batch, l.n, l.out_h*l.out_w);
        }
        scale_bias(l.output, l.scales, l.batch, l.n, out_h*out_w);
        forward_batchnorm_layer(l, state);
    }
    add_bias(l.output, l.biases, l.batch, l.n, out_h*out_w);