| | |
| | | } |
| | | |
| | | |
| | | void train_detection_net() |
| | | void train_detection_net(char *cfgfile) |
| | | { |
| | | float avg_loss = 1; |
| | | //network net = parse_network_cfg("/home/pjreddie/imagenet_backup/alexnet_1270.cfg"); |
| | | network net = parse_network_cfg("cfg/detnet.cfg"); |
| | | network net = parse_network_cfg(cfgfile); |
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | int imgs = 1024; |
| | | srand(time(0)); |
| | |
| | | list *plist = get_paths("/home/pjreddie/data/imagenet/horse.txt"); |
| | | char **paths = (char **)list_to_array(plist); |
| | | printf("%d\n", plist->size); |
| | | data train, buffer; |
| | | pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, 256, 256, 7, 7, 256, &buffer); |
| | | clock_t time; |
| | | while(1){ |
| | | i += 1; |
| | | time=clock(); |
| | | data train = load_data_detection_jitter_random(imgs, paths, plist->size, 256, 256, 7, 7, 256); |
| | | pthread_join(load_thread, 0); |
| | | train = buffer; |
| | | load_thread = load_data_detection_thread(imgs, paths, plist->size, 256, 256, 7, 7, 256, &buffer); |
| | | //data train = load_data_detection_random(imgs, paths, plist->size, 224, 224, 7, 7, 256); |
| | | |
| | | /* |
| | |
| | | time=clock(); |
| | | float loss = train_network(net, train); |
| | | avg_loss = avg_loss*.9 + loss*.1; |
| | | printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs*net.batch); |
| | | if(i%10==0){ |
| | | printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs); |
| | | if(i%100==0){ |
| | | char buff[256]; |
| | | sprintf(buff, "/home/pjreddie/imagenet_backup/detnet_%d.cfg", i); |
| | | save_network(net, buff); |
| | |
| | | } |
| | | } |
| | | |
| | | void validate_detection_net(char *cfgfile) |
| | | { |
| | | network net = parse_network_cfg(cfgfile); |
| | | fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | srand(time(0)); |
| | | |
| | | list *plist = get_paths("/home/pjreddie/data/imagenet/detection.val"); |
| | | char **paths = (char **)list_to_array(plist); |
| | | |
| | | int m = plist->size; |
| | | int i = 0; |
| | | int splits = 50; |
| | | int num = (i+1)*m/splits - i*m/splits; |
| | | |
| | | fprintf(stderr, "%d\n", m); |
| | | data val, buffer; |
| | | pthread_t load_thread = load_data_thread(paths, num, 0, 0, 245, 224, 224, &buffer); |
| | | clock_t time; |
| | | for(i = 1; i <= splits; ++i){ |
| | | time=clock(); |
| | | pthread_join(load_thread, 0); |
| | | val = buffer; |
| | | normalize_data_rows(val); |
| | | |
| | | num = (i+1)*m/splits - i*m/splits; |
| | | char **part = paths+(i*m/splits); |
| | | if(i != splits) load_thread = load_data_thread(part, num, 0, 0, 245, 224, 224, &buffer); |
| | | |
| | | fprintf(stderr, "Loaded: %lf seconds\n", sec(clock()-time)); |
| | | matrix pred = network_predict_data(net, val); |
| | | int j, k; |
| | | for(j = 0; j < pred.rows; ++j){ |
| | | for(k = 0; k < pred.cols; k += 5){ |
| | | if (pred.vals[j][k] > .005){ |
| | | int index = k/5; |
| | | int r = index/7; |
| | | int c = index%7; |
| | | float y = (32.*(r + pred.vals[j][k+1]))/224.; |
| | | float x = (32.*(c + pred.vals[j][k+2]))/224.; |
| | | float h = (256.*(pred.vals[j][k+3]))/224.; |
| | | float w = (256.*(pred.vals[j][k+4]))/224.; |
| | | printf("%d %f %f %f %f %f\n", (i-1)*m/splits + j + 1, pred.vals[j][k], y, x, h, w); |
| | | } |
| | | } |
| | | } |
| | | |
| | | time=clock(); |
| | | free_data(val); |
| | | } |
| | | } |
| | | |
| | | void train_imagenet_distributed(char *address) |
| | | { |
| | | float avg_loss = 1; |
| | |
| | | //network net = parse_network_cfg("/home/pjreddie/imagenet_backup/alexnet_1270.cfg"); |
| | | srand(time(0)); |
| | | network net = parse_network_cfg(cfgfile); |
| | | set_learning_network(&net, net.learning_rate/10., .5, .0005); |
| | | set_learning_network(&net, net.learning_rate, 0, net.decay); |
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | int imgs = 1024; |
| | | int i = 44700; |
| | | int i = 0; |
| | | char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list"); |
| | | list *plist = get_paths("/data/imagenet/cls.train.list"); |
| | | char **paths = (char **)list_to_array(plist); |
| | |
| | | time=clock(); |
| | | pthread_join(load_thread, 0); |
| | | train = buffer; |
| | | normalize_data_rows(train); |
| | | //normalize_data_rows(train); |
| | | translate_data_rows(train, -128); |
| | | scale_data_rows(train, 1./128); |
| | | load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 256, 256, &buffer); |
| | | printf("Loaded: %lf seconds\n", sec(clock()-time)); |
| | | time=clock(); |
| | |
| | | free_data(train); |
| | | if(i%100==0){ |
| | | char buff[256]; |
| | | sprintf(buff, "/home/pjreddie/imagenet_backup/net_%d.cfg", i); |
| | | sprintf(buff, "/home/pjreddie/imagenet_backup/alexnet_%d.cfg", i); |
| | | save_network(net, buff); |
| | | } |
| | | } |
| | |
| | | int i = 0; |
| | | char *filename = "data/test.jpg"; |
| | | |
| | | image im = load_image_color(filename, 224, 224); |
| | | z_normalize_image(im); |
| | | image im = load_image_color(filename, 256, 256); |
| | | //z_normalize_image(im); |
| | | translate_image(im, -128); |
| | | scale_image(im, 1/128.); |
| | | float *X = im.data; |
| | | forward_network(net, X, 0, 1); |
| | | for(i = 0; i < net.n; ++i){ |
| | |
| | | if(count%10 == 0){ |
| | | float test_acc = network_accuracy(net, test); |
| | | printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds\n", count, loss, test_acc,sec(clock()-time)); |
| | | char buff[256]; |
| | | sprintf(buff, "unikitty/cifar10_%d.cfg", count); |
| | | save_network(net, buff); |
| | | //char buff[256]; |
| | | //sprintf(buff, "unikitty/cifar10_%d.cfg", count); |
| | | //save_network(net, buff); |
| | | }else{ |
| | | printf("%d: Loss: %f, Time: %lf seconds\n", count, loss, sec(clock()-time)); |
| | | } |
| | |
| | | cvWaitKey(0); |
| | | } |
| | | |
| | | void test_gpu_net() |
| | | void test_correct_nist() |
| | | { |
| | | srand(222222); |
| | | network net = parse_network_cfg("cfg/nist.cfg"); |
| | |
| | | clock_t time; |
| | | int count = 0; |
| | | network net; |
| | | |
| | | srand(222222); |
| | | net = parse_network_cfg("cfg/net.cfg"); |
| | | int imgs = net.batch; |
| | | |
| | | count = 0; |
| | | srand(222222); |
| | | net = parse_network_cfg("cfg/net.cfg"); |
| | | while(++count <= 5){ |
| | | time=clock(); |
| | | data train = load_data(paths, imgs, plist->size, labels, 1000, 256, 256); |
| | |
| | | } |
| | | #endif |
| | | |
| | | if(0==strcmp(argv[1], "detection")) train_detection_net(); |
| | | else if(0==strcmp(argv[1], "cifar")) train_cifar10(); |
| | | if(0==strcmp(argv[1], "cifar")) train_cifar10(); |
| | | else if(0==strcmp(argv[1], "test_correct")) test_correct_alexnet(); |
| | | else if(0==strcmp(argv[1], "test_correct_nist")) test_correct_nist(); |
| | | else if(0==strcmp(argv[1], "test")) test_imagenet(); |
| | | else if(0==strcmp(argv[1], "server")) run_server(); |
| | | |
| | |
| | | fprintf(stderr, "usage: %s <function> <filename>\n", argv[0]); |
| | | return 0; |
| | | } |
| | | else if(0==strcmp(argv[1], "detection")) train_detection_net(argv[2]); |
| | | else if(0==strcmp(argv[1], "nist")) train_nist(argv[2]); |
| | | else if(0==strcmp(argv[1], "train")) train_imagenet(argv[2]); |
| | | else if(0==strcmp(argv[1], "client")) train_imagenet_distributed(argv[2]); |
| | |
| | | else if(0==strcmp(argv[1], "visualize")) test_visualize(argv[2]); |
| | | else if(0==strcmp(argv[1], "valid")) validate_imagenet(argv[2]); |
| | | else if(0==strcmp(argv[1], "testnist")) test_nist(argv[2]); |
| | | else if(0==strcmp(argv[1], "validetect")) validate_detection_net(argv[2]); |
| | | else if(argc < 4){ |
| | | fprintf(stderr, "usage: %s <function> <filename> <filename>\n", argv[0]); |
| | | return 0; |