| | |
| | | #include "parser.h" |
| | | #include "data.h" |
| | | #include "matrix.h" |
| | | #include "utils.h" |
| | | |
| | | #include <time.h> |
| | | #include <stdlib.h> |
| | |
| | | int i; |
| | | clock_t start = clock(), end; |
| | | for(i = 0; i < 1000; ++i){ |
| | | convolve(dog, kernel, 1, 0, edge); |
| | | convolve(dog, kernel, 1, 0, edge, 1); |
| | | } |
| | | end = clock(); |
| | | printf("Convolutions: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC); |
| | |
| | | show_image_layers(get_maxpool_image(mlayer), "Test Maxpool Layer"); |
| | | } |
| | | |
| | | void verify_convolutional_layer() |
| | | { |
| | | srand(0); |
| | | int i; |
| | | int n = 1; |
| | | int stride = 1; |
| | | int size = 3; |
| | | double eps = .00000001; |
| | | image test = make_random_image(5,5, 1); |
| | | convolutional_layer layer = *make_convolutional_layer(test.h,test.w,test.c, n, size, stride, RELU); |
| | | image out = get_convolutional_image(layer); |
| | | double **jacobian = calloc(test.h*test.w*test.c, sizeof(double)); |
| | | |
| | | forward_convolutional_layer(layer, test.data); |
| | | image base = copy_image(out); |
| | | |
| | | for(i = 0; i < test.h*test.w*test.c; ++i){ |
| | | test.data[i] += eps; |
| | | forward_convolutional_layer(layer, test.data); |
| | | image partial = copy_image(out); |
| | | subtract_image(partial, base); |
| | | scale_image(partial, 1/eps); |
| | | jacobian[i] = partial.data; |
| | | test.data[i] -= eps; |
| | | } |
| | | double **jacobian2 = calloc(out.h*out.w*out.c, sizeof(double)); |
| | | image in_delta = make_image(test.h, test.w, test.c); |
| | | image out_delta = get_convolutional_delta(layer); |
| | | for(i = 0; i < out.h*out.w*out.c; ++i){ |
| | | out_delta.data[i] = 1; |
| | | backward_convolutional_layer2(layer, test.data, in_delta.data); |
| | | image partial = copy_image(in_delta); |
| | | jacobian2[i] = partial.data; |
| | | out_delta.data[i] = 0; |
| | | } |
| | | int j; |
| | | double *j1 = calloc(test.h*test.w*test.c*out.h*out.w*out.c, sizeof(double)); |
| | | double *j2 = calloc(test.h*test.w*test.c*out.h*out.w*out.c, sizeof(double)); |
| | | for(i = 0; i < test.h*test.w*test.c; ++i){ |
| | | for(j =0 ; j < out.h*out.w*out.c; ++j){ |
| | | j1[i*out.h*out.w*out.c + j] = jacobian[i][j]; |
| | | j2[i*out.h*out.w*out.c + j] = jacobian2[j][i]; |
| | | printf("%f %f\n", jacobian[i][j], jacobian2[j][i]); |
| | | } |
| | | } |
| | | |
| | | |
| | | image mj1 = double_to_image(test.w*test.h*test.c, out.w*out.h*out.c, 1, j1); |
| | | image mj2 = double_to_image(test.w*test.h*test.c, out.w*out.h*out.c, 1, j2); |
| | | printf("%f %f\n", avg_image_layer(mj1,0), avg_image_layer(mj2,0)); |
| | | show_image(mj1, "forward jacobian"); |
| | | show_image(mj2, "backward jacobian"); |
| | | |
| | | } |
| | | |
| | | void test_load() |
| | | { |
| | | image dog = load_image("dog.jpg"); |
| | |
| | | |
| | | void test_data() |
| | | { |
| | | batch train = random_batch("train_paths.txt", 101); |
| | | char *labels[] = {"cat","dog"}; |
| | | batch train = random_batch("train_paths.txt", 101,labels, 2); |
| | | show_image(train.images[0], "Test Data Loading"); |
| | | show_image(train.images[100], "Test Data Loading"); |
| | | show_image(train.images[10], "Test Data Loading"); |
| | | free_batch(train); |
| | | } |
| | | |
| | | void test_train() |
| | | void test_full() |
| | | { |
| | | network net = parse_network_cfg("test.cfg"); |
| | | network net = parse_network_cfg("full.cfg"); |
| | | srand(0); |
| | | //visualize_network(net); |
| | | int i = 1000; |
| | | //while(1){ |
| | | while(i > 0){ |
| | | batch train = random_batch("train_paths.txt", 100); |
| | | int i = 0; |
| | | char *labels[] = {"cat","dog"}; |
| | | while(i++ < 1000 || 1){ |
| | | batch train = random_batch("train_paths.txt", 1000, labels, 2); |
| | | train_network_batch(net, train); |
| | | //show_image_layers(get_network_image(net), "hey"); |
| | | //visualize_network(net); |
| | | //cvWaitKey(0); |
| | | free_batch(train); |
| | | --i; |
| | | } |
| | | //} |
| | | printf("Round %d\n", i); |
| | | } |
| | | } |
| | | |
| | | double error_network(network net, matrix m, double *truth) |
| | |
| | | return (double)correct/m.rows; |
| | | } |
| | | |
| | | void classify_random_filters() |
| | | double **one_hot(double *a, int n, int k) |
| | | { |
| | | network net = parse_network_cfg("random_filter_finish.cfg"); |
| | | int i; |
| | | double **t = calloc(n, sizeof(double*)); |
| | | for(i = 0; i < n; ++i){ |
| | | t[i] = calloc(k, sizeof(double)); |
| | | int index = (int)a[i]; |
| | | t[i][index] = 1; |
| | | } |
| | | return t; |
| | | } |
| | | |
| | | void test_nist() |
| | | { |
| | | network net = parse_network_cfg("nist.cfg"); |
| | | matrix m = csv_to_matrix("images/nist_train.csv"); |
| | | matrix ho = hold_out_matrix(&m, 3000); |
| | | double *truth_1d = pop_column(&m, 0); |
| | | double **truth = one_hot(truth_1d, m.rows, 10); |
| | | double *ho_truth_1d = pop_column(&ho, 0); |
| | | double **ho_truth = one_hot(ho_truth_1d, ho.rows, 10); |
| | | int i,j; |
| | | clock_t start = clock(), end; |
| | | int count = 0; |
| | | double lr = .0001; |
| | | while(++count <= 3000000){ |
| | | //lr *= .99; |
| | | int index = 0; |
| | | int correct = 0; |
| | | for(i = 0; i < 1000; ++i){ |
| | | index = rand()%m.rows; |
| | | normalize_array(m.vals[index], 28*28); |
| | | forward_network(net, m.vals[index]); |
| | | double *out = get_network_output(net); |
| | | double *delta = get_network_delta(net); |
| | | int max_i = 0; |
| | | double max = out[0]; |
| | | for(j = 0; j < 10; ++j){ |
| | | delta[j] = truth[index][j]-out[j]; |
| | | if(out[j] > max){ |
| | | max = out[j]; |
| | | max_i = j; |
| | | } |
| | | } |
| | | if(truth[index][max_i]) ++correct; |
| | | learn_network(net, m.vals[index]); |
| | | update_network(net, lr); |
| | | } |
| | | print_network(net); |
| | | image input = double_to_image(28,28,1, m.vals[index]); |
| | | show_image(input, "Input"); |
| | | image o = get_network_image(net); |
| | | show_image_collapsed(o, "Output"); |
| | | visualize_network(net); |
| | | cvWaitKey(100); |
| | | //double test_acc = error_network(net, m, truth); |
| | | //double valid_acc = error_network(net, ho, ho_truth); |
| | | //printf("%f, %f\n", test_acc, valid_acc); |
| | | fprintf(stderr, "%5d: %f %f\n",count, (double)correct/1000, lr); |
| | | //if(valid_acc > .70) break; |
| | | } |
| | | end = clock(); |
| | | printf("Neural Net Learning: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC); |
| | | } |
| | | |
| | | void test_kernel_update() |
| | | { |
| | | srand(0); |
| | | double delta[] = {.1}; |
| | | double input[] = {.3, .5, .3, .5, .5, .5, .5, .0, .5}; |
| | | double kernel[] = {1,2,3,4,5,6,7,8,9}; |
| | | convolutional_layer layer = *make_convolutional_layer(3, 3, 1, 1, 3, 1, IDENTITY); |
| | | layer.kernels[0].data = kernel; |
| | | layer.delta = delta; |
| | | learn_convolutional_layer(layer, input); |
| | | print_image(layer.kernels[0]); |
| | | print_image(get_convolutional_delta(layer)); |
| | | print_image(layer.kernel_updates[0]); |
| | | |
| | | } |
| | | |
| | | void test_random_classify() |
| | | { |
| | | network net = parse_network_cfg("connected.cfg"); |
| | | matrix m = csv_to_matrix("train.csv"); |
| | | matrix ho = hold_out_matrix(&m, 2500); |
| | | double *truth = pop_column(&m, 0); |
| | |
| | | // printf("%f\n", delta[0]); |
| | | //printf("%f %f\n", truth[index], out[0]); |
| | | learn_network(net, m.vals[index]); |
| | | update_network(net, .000005); |
| | | update_network(net, .00001); |
| | | } |
| | | double test_acc = error_network(net, m, truth); |
| | | double valid_acc = error_network(net, ho, ho_truth); |
| | |
| | | printf("Neural Net Learning: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC); |
| | | } |
| | | |
| | | void test_random_filters() |
| | | void test_random_preprocess() |
| | | { |
| | | FILE *file = fopen("test.csv", "w"); |
| | | FILE *file = fopen("train.csv", "w"); |
| | | char *labels[] = {"cat","dog"}; |
| | | int i,j,k; |
| | | srand(0); |
| | | network net = parse_network_cfg("test_random_filter.cfg"); |
| | | network net = parse_network_cfg("convolutional.cfg"); |
| | | for(i = 0; i < 100; ++i){ |
| | | printf("%d\n", i); |
| | | batch part = get_batch("test_paths.txt", i, 100); |
| | | batch part = get_batch("train_paths.txt", i, 100, labels, 2); |
| | | for(j = 0; j < part.n; ++j){ |
| | | forward_network(net, part.images[j].data); |
| | | double *out = get_network_output(net); |
| | |
| | | |
| | | int main() |
| | | { |
| | | //classify_random_filters(); |
| | | //test_random_filters(); |
| | | test_train(); |
| | | //test_kernel_update(); |
| | | //test_nist(); |
| | | test_full(); |
| | | //test_random_preprocess(); |
| | | //test_random_classify(); |
| | | //test_parser(); |
| | | //test_backpropagate(); |
| | | //test_ann(); |
| | |
| | | //test_load(); |
| | | //test_network(); |
| | | //test_convolutional_layer(); |
| | | //verify_convolutional_layer(); |
| | | //test_color(); |
| | | cvWaitKey(0); |
| | | return 0; |