| | |
| | | #include "data.h" |
| | | #include "utils.h" |
| | | |
| | | #include "crop_layer.h" |
| | | #include "connected_layer.h" |
| | | #include "convolutional_layer.h" |
| | | #include "maxpool_layer.h" |
| | |
| | | forward_softmax_layer(layer, input); |
| | | input = layer.output; |
| | | } |
| | | else if(net.types[i] == CROP){ |
| | | crop_layer layer = *(crop_layer *)net.layers[i]; |
| | | forward_crop_layer(layer, input); |
| | | input = layer.output; |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | forward_maxpool_layer(layer, input); |
| | |
| | | forward_connected_layer(layer, input); |
| | | input = layer.output; |
| | | } |
| | | else if(net.types[i] == CROP){ |
| | | crop_layer layer = *(crop_layer *)net.layers[i]; |
| | | forward_crop_layer(layer, input); |
| | | input = layer.output; |
| | | } |
| | | else if(net.types[i] == SOFTMAX){ |
| | | softmax_layer layer = *(softmax_layer *)net.layers[i]; |
| | | forward_softmax_layer(layer, input); |
| | |
| | | |
| | | int i,j; |
| | | float sum = 0; |
| | | int index = 0; |
| | | for(i = 0; i < n; ++i){ |
| | | for(j = 0; j < batch; ++j){ |
| | | int index = rand()%d.X.rows; |
| | | index = rand()%d.X.rows; |
| | | memcpy(X+j*d.X.cols, d.X.vals[index], d.X.cols*sizeof(float)); |
| | | memcpy(y+j*d.y.cols, d.y.vals[index], d.y.cols*sizeof(float)); |
| | | } |
| | | |
| | | float err = train_network_datum(net, X, y); |
| | | sum += err; |
| | | //train_network_datum(net, X, y); |
| | |
| | | //} |
| | | } |
| | | //printf("Accuracy: %f\n",(float) correct/n); |
| | | //show_image(float_to_image(32,32,3,X), "Orig"); |
| | | free(X); |
| | | free(y); |
| | | return (float)sum/(n*batch); |
| | |
| | | normalization_layer layer = *(normalization_layer *)net.layers[i]; |
| | | return get_normalization_image(layer); |
| | | } |
| | | else if(net.types[i] == CROP){ |
| | | crop_layer layer = *(crop_layer *)net.layers[i]; |
| | | return get_crop_image(layer); |
| | | } |
| | | return make_empty_image(0,0,0); |
| | | } |
| | | |
| | |
| | | image *prev = 0; |
| | | int i; |
| | | char buff[256]; |
| | | show_image(get_network_image_layer(net, 0), "Crop"); |
| | | for(i = 0; i < net.n; ++i){ |
| | | sprintf(buff, "Layer %d", i); |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | |
| | | return out; |
| | | } |
| | | |
| | | matrix network_predict_data_multi(network net, data test, int n) |
| | | { |
| | | int i,j,b,m; |
| | | int k = get_network_output_size(net); |
| | | matrix pred = make_matrix(test.X.rows, k); |
| | | float *X = calloc(net.batch*test.X.rows, sizeof(float)); |
| | | for(i = 0; i < test.X.rows; i += net.batch){ |
| | | for(b = 0; b < net.batch; ++b){ |
| | | if(i+b == test.X.rows) break; |
| | | memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float)); |
| | | } |
| | | for(m = 0; m < n; ++m){ |
| | | float *out = network_predict(net, X); |
| | | for(b = 0; b < net.batch; ++b){ |
| | | if(i+b == test.X.rows) break; |
| | | for(j = 0; j < k; ++j){ |
| | | pred.vals[i+b][j] += out[j+b*k]/n; |
| | | } |
| | | } |
| | | } |
| | | } |
| | | free(X); |
| | | return pred; |
| | | } |
| | | |
| | | matrix network_predict_data(network net, data test) |
| | | { |
| | | int i,j,b; |
| | |
| | | image m = get_maxpool_image(layer); |
| | | n = m.h*m.w*m.c; |
| | | } |
| | | else if(net.types[i] == CROP){ |
| | | crop_layer layer = *(crop_layer *)net.layers[i]; |
| | | output = layer.output; |
| | | image m = get_crop_image(layer); |
| | | n = m.h*m.w*m.c; |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | output = layer.output; |
| | |
| | | return acc; |
| | | } |
| | | |
| | | float network_accuracy_multi(network net, data d, int n) |
| | | { |
| | | matrix guess = network_predict_data_multi(net, d, n); |
| | | float acc = matrix_accuracy(d.y, guess); |
| | | free_matrix(guess); |
| | | return acc; |
| | | } |
| | | |
| | | |