Edmond Yoo
2018-10-13 17c776a0eab276e9d1057cb1abf8fd7d77d54ada
opencv_dnn.py
@@ -3,6 +3,8 @@
import pandas as pd
import imagehash as ih
import os
import ast
import queue
import sys
import math
import random
@@ -17,33 +19,53 @@
card_height = 440
def calc_image_hashes(card_pool, save_to=None):
    card_pool['art_hash'] = np.NaN
def calc_image_hashes(card_pool, save_to=None, hash_size=32, highfreq_factor=4):
    new_pool = pd.DataFrame(columns=list(card_pool.columns.values))
    new_pool['card_hash'] = np.NaN
    new_pool['art_hash'] = np.NaN
    for ind, card_info in card_pool.iterrows():
        if ind % 100 == 0:
            print(ind)
        img_name = '%s/card_img/png/%s/%s_%s.png' % (transform_data.data_dir, card_info['set'],
                                                     card_info['collector_number'],
                                                     fetch_data.get_valid_filename(card_info['name']))
        card_img = cv2.imread(img_name)
        if card_img is None:
            fetch_data.fetch_card_image(card_info,
                                        out_dir='%s/card_img/png/%s' % (transform_data.data_dir, card_info['set']))
        card_names = []
        if card_info['layout'] in ['transform', 'double_faced_token']:
            if isinstance(card_info['card_faces'], str):  # For some reason, dict isn't being parsed in the previous step
                card_faces = ast.literal_eval(card_info['card_faces'])
            else:
                card_faces = card_info['card_faces']
            for i in range(len(card_faces)):
                card_names.append(card_faces[i]['name'])
        else:  # if card_info['layout'] == 'normal':
            card_names.append(card_info['name'])
        for card_name in card_names:
            card_info['name'] = card_name
            img_name = '%s/card_img/png/%s/%s_%s.png' % (transform_data.data_dir, card_info['set'],
                                                         card_info['collector_number'],
                                                         fetch_data.get_valid_filename(card_info['name']))
            card_img = cv2.imread(img_name)
        if card_img is None:
            print('WARNING: card %s is not found!' % img_name)
        img_art = Image.fromarray(card_img[121:580, 63:685])  # For 745*1040 size card image
        art_hash = ih.phash(img_art, hash_size=32, highfreq_factor=4)
        card_pool.at[ind, 'art_hash'] = art_hash
        img_card = Image.fromarray(card_img)
        card_hash = ih.phash(img_card, hash_size=32, highfreq_factor=4)
        card_pool.at[ind, 'card_hash'] = card_hash
        card_pool = card_pool[['artist', 'border_color', 'collector_number', 'color_identity', 'colors', 'flavor_text',
                               'image_uris', 'mana_cost', 'legalities', 'name', 'oracle_text', 'rarity', 'type_line',
                               'set', 'set_name', 'power', 'toughness', 'art_hash', 'card_hash']]
            if card_img is None:
                fetch_data.fetch_card_image(card_info,
                                            out_dir='%s/card_img/png/%s' % (transform_data.data_dir, card_info['set']))
                card_img = cv2.imread(img_name)
            if card_img is None:
                print('WARNING: card %s is not found!' % img_name)
            #img_art = Image.fromarray(card_img[121:580, 63:685])  # For 745*1040 size card image
            #art_hash = ih.phash(img_art, hash_size=32, highfreq_factor=4)
            #card_pool.at[ind, 'art_hash'] = art_hash
            img_card = Image.fromarray(card_img)
            card_hash = ih.phash(img_card, hash_size=hash_size, highfreq_factor=highfreq_factor)
            #card_pool.at[ind, 'card_hash'] = card_hash
            card_info['card_hash'] = card_hash
            #print(new_pool.index.max())
            new_pool.loc[0 if new_pool.empty else new_pool.index.max() + 1] = card_info
    new_pool = new_pool[['artist', 'border_color', 'collector_number', 'color_identity', 'colors', 'flavor_text',
                         'image_uris', 'mana_cost', 'legalities', 'name', 'oracle_text', 'rarity', 'type_line',
                         'set', 'set_name', 'power', 'toughness', 'art_hash', 'card_hash']]
    if save_to is not None:
        card_pool.to_pickle(save_to)
    return card_pool
        new_pool.to_pickle(save_to)
    return new_pool
# www.pyimagesearch.com/2014/08/25/4-point-opencv-getperspective-transform-example/
@@ -204,7 +226,7 @@
    return corrected
def find_card(img, thresh_c=5, kernel_size=(3, 3), size_ratio=0.2):
def find_card(img, thresh_c=5, kernel_size=(3, 3), size_thresh=5000):
    # Typical pre-processing - grayscale, blurring, thresholding
    img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    img_blur = cv2.medianBlur(img_gray, 5)
@@ -221,19 +243,58 @@
    if len(cnts) == 0:
        print('no contours')
        return []
    cv2.drawContours(img, cnts, -1, (0, 0, 255), 1)
    '''
    next = 0
    while next != -1:
        img_copy = img.copy()
        print(hier[0][next])
        cv2.drawContours(img_copy, cnts[hier[0][next][0]], -1, (0, 255, 0), 2)
        cv2.imshow('hi', img_copy)
        cv2.waitKey(0)
        next = hier[0][next][0]
    '''
    #img_contour = cv2.cvtColor(img_contour, cv2.COLOR_GRAY2BGR)
    #img_contour = cv2.drawContours(img_contour, cnts, -1, (0, 255, 0), 1)
    #cv2.imshow('test', img_contour)
    # For each contours detected, check if they are large enough and are rectangle
    '''
    The hierarchy from cv2.findContours() is similar to a tree: each node has an access to the parent, the first child,
    their previous and next node
    Using (preorder) depth-first search, find the uppermost contour in the hierarchy that satisfies the condition
    The candidate contour must be rectangle (has 4 points) and should be larger than a threshold
    '''
    cnts_rect = []
    stack = [(0, hier[0][0])]
    while len(stack) > 0:
        i_cnt, h = stack.pop()
        i_next, i_prev, i_child, i_parent = h
        if i_next != -1:
            stack.append((i_next, hier[0][i_next]))
        cnt = cnts[i_cnt]
        size = cv2.contourArea(cnt)
        peri = cv2.arcLength(cnt, True)
        approx = cv2.approxPolyDP(cnt, 0.04 * peri, True)
        if size >= size_thresh:
            cv2.drawContours(img, [cnt], -1, (255, 0, 0), 1)
            #print(size)
            if len(approx) == 4:
                cnts_rect.append(approx)
        else:
            if i_child != -1:
                stack.append((i_child, hier[0][i_child]))
    '''
    # For each contours detected, check if they are large enough and are rectangle
    ind_sort = sorted(range(len(cnts)), key=lambda i: cv2.contourArea(cnts[i]), reverse=True)
    for i in range(min(len(cnts), 5)):  # The card should be within top 5 largest contour
        size = cv2.contourArea(cnts[ind_sort[i]])
    for i in range(len(cnts)):
        peri = cv2.arcLength(cnts[ind_sort[i]], True)
        approx = cv2.approxPolyDP(cnts[ind_sort[i]], 0.04 * peri, True)
        if size > img.shape[0] * img.shape[1] * size_ratio and len(approx) == 4:
        if len(approx) == 4:
            cnts_rect.append(approx)
    '''
    return cnts_rect
@@ -280,9 +341,11 @@
    return img_graph
def detect_frame(net, classes, img, card_pool, thresh_conf=0.5, thresh_nms=0.4, in_dim=(416, 416), out_path=None, display=True,
                 debug=False):
    img_copy = img.copy()
def detect_frame(net, classes, img, card_pool, thresh_conf=0.5, thresh_nms=0.4, in_dim=(416, 416), card_size=1000,
                 out_path=None, display=True, debug=False):
    start_1 = time.time()
    elapsed = []
    '''
    # Create a 4D blob from a frame.
    blob = cv2.dnn.blobFromImage(img, 1 / 255, in_dim, [0, 0, 0], 1, crop=False)
@@ -291,7 +354,9 @@
    # Runs the forward pass to get output of the output layers
    outs = net.forward(get_outputs_names(net))
    elapsed.append((time.time() - start_1) * 1000)
    start_2 = time.time()
    img_result = img.copy()
    # Remove the bounding boxes with low confidence
@@ -300,7 +365,9 @@
        class_id, confidence, box = obj
        left, top, width, height = box
        draw_pred(img_result, class_id, classes, confidence, left, top, left + width, top + height)
    elapsed.append((time.time() - start_2) * 1000)
    '''
    img_result = img.copy()
    # Put efficiency information. The function getPerfProfile returns the
    # overall time for inference(t) and the timings for each of the layers(in layersTimes)
    #if display:
@@ -314,54 +381,53 @@
    comparing the perceptual hashing of the image with the other cards' image from the database.
    '''
    det_cards = []
    for i in range(len(obj_list)):
        _, _, box = obj_list[i]
        left, top, width, height = box
        # Just in case the bounding box trimmed the edge of the cards, give it a bit of offset around the edge
        offset_ratio = 0.1
        x1 = max(0, int(left - offset_ratio * width))
        x2 = min(img.shape[1], int(left + (1 + offset_ratio) * width))
        y1 = max(0, int(top - offset_ratio * height))
        y2 = min(img.shape[0], int(top + (1 + offset_ratio) * height))
        img_snip = img[y1:y2, x1:x2]
        cnts = find_card(img_snip)
        if len(cnts) > 0:
            cnt = cnts[0]  # The largest (rectangular) contour
            pts = np.float32([p[0] for p in cnt])
            img_warp = four_point_transform(img_snip, pts)
            img_warp = cv2.resize(img_warp, (card_width, card_height))
            '''
            img_art = img_warp[47:249, 22:294]
            img_art = Image.fromarray(img_art.astype('uint8'), 'RGB')
            art_hash = ih.phash(img_art, hash_size=32, highfreq_factor=4)
            card_pool['hash_diff'] = card_pool['art_hash'] - art_hash
            min_cards = card_pool[card_pool['hash_diff'] == min(card_pool['hash_diff'])]
            card_name = min_cards.iloc[0]['name']
            '''
            img_card = Image.fromarray(img_warp.astype('uint8'), 'RGB')
            card_hash = ih.phash(img_card, hash_size=32, highfreq_factor=4)
            card_pool['hash_diff'] = card_pool['card_hash'] - card_hash
            min_cards = card_pool[card_pool['hash_diff'] == min(card_pool['hash_diff'])]
            card_name = min_cards.iloc[0]['name']
            card_set = min_cards.iloc[0]['set']
            det_cards.append((card_name, card_set))
            hash_diff = min_cards.iloc[0]['hash_diff']
    start_3 = time.time()
    cnts = find_card(img_result)
    for i in range(len(cnts)):
        cnt = cnts[i]
        # ignore any contours smaller than threshold
        elapsed.append((time.time() - start_3) * 1000)
        start_4 = time.time()
        pts = np.float32([p[0] for p in cnt])
        img_warp = four_point_transform(img, pts)
        img_warp = cv2.resize(img_warp, (card_width, card_height))
        elapsed.append((time.time() - start_4) * 1000)
        '''
        img_art = img_warp[47:249, 22:294]
        img_art = Image.fromarray(img_art.astype('uint8'), 'RGB')
        art_hash = ih.phash(img_art, hash_size=32, highfreq_factor=4)
        card_pool['hash_diff'] = card_pool['art_hash'] - art_hash
        min_cards = card_pool[card_pool['hash_diff'] == min(card_pool['hash_diff'])]
        card_name = min_cards.iloc[0]['name']
        '''
        start_5 = time.time()
        img_card = Image.fromarray(img_warp.astype('uint8'), 'RGB')
        card_hash = ih.phash(img_card, hash_size=32, highfreq_factor=4).hash.flatten()
        card_pool['hash_diff'] = card_pool['card_hash'].apply(lambda x: np.count_nonzero(x != card_hash))
        min_cards = card_pool[card_pool['hash_diff'] == min(card_pool['hash_diff'])]
        card_name = min_cards.iloc[0]['name']
        card_set = min_cards.iloc[0]['set']
        det_cards.append((card_name, card_set))
        hash_diff = min_cards.iloc[0]['hash_diff']
        elapsed.append((time.time() - start_5) * 1000)
            # Display the result
            if debug:
                # cv2.rectangle(img_warp, (22, 47), (294, 249), (0, 255, 0), 2)
                cv2.putText(img_warp, card_name + ', ' + str(hash_diff), (0, 50),
                            cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)
            cv2.putText(img_result, card_name, (x1, y1), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2)
            if debug:
                cv2.imshow('card#%d' % i, img_warp)
        elif debug:
            cv2.imshow('card#%d' % i, np.zeros((1, 1), dtype=np.uint8))
        # Display the result
        if debug:
            # cv2.rectangle(img_warp, (22, 47), (294, 249), (0, 255, 0), 2)
            cv2.putText(img_warp, card_name + ', ' + str(hash_diff), (0, 50),
                        cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)
        cv2.drawContours(img_result, [cnt], -1, (0, 255, 0), 1)
        cv2.putText(img_result, card_name, (pts[0][0], pts[0][1]), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2)
        if debug:
            cv2.imshow('card#%d' % i, img_warp)
        #if debug:
        #    cv2.imshow('card#%d' % i, np.zeros((1, 1), dtype=np.uint8))
    if out_path is not None:
        cv2.imwrite(out_path, img_result.astype(np.uint8))
    return obj_list, det_cards, img_result
    elapsed = [(time.time() - start_1) * 1000] + elapsed
    #print(', '.join(['%.2f' % t for t in elapsed]))
    return det_cards, img_result
def detect_video(net, classes, capture, card_pool, thresh_conf=0.5, thresh_nms=0.4, in_dim=(416, 416), out_path=None,
@@ -384,10 +450,11 @@
                cv2.waitKey(0)
                break
            # Use the YOLO model to identify each cards annonymously
            obj_list, det_cards, img_result = detect_frame(net, classes, frame, card_pool, thresh_conf=thresh_conf,
                                                           thresh_nms=thresh_nms, in_dim=in_dim, out_path=None,
                                                           display=display, debug=debug)
            start_yolo = time.time()
            det_cards, img_result = detect_frame(net, classes, frame, card_pool, thresh_conf=thresh_conf,
                                                 thresh_nms=thresh_nms, in_dim=in_dim, out_path=None, display=display,
                                                 debug=debug)
            elapsed_yolo = (time.time() - start_yolo) * 1000
            # If the card was already detected in the previous frame, append 1 to the list
            # If the card previously detected was not found in this trame, append 0 to the list
            # If the card wasn't previously detected, make a new list and add 1 to it
@@ -413,21 +480,24 @@
                    exist_cards[key] = [1]
            for key in gone:
                exist_cards.pop(key)
            start_graph = time.time()
            img_graph = draw_card_graph(exist_cards, card_pool, f_len)
            elapsed_graph = (time.time() - start_graph) * 1000
            #if debug:
            #    max_num_obj = max(max_num_obj, len(obj_list))
            #    for i in range(len(obj_list), max_num_obj):
            #        cv2.imshow('card#%d' % i, np.zeros((1, 1), dtype=np.uint8))
            if debug:
                max_num_obj = max(max_num_obj, len(obj_list))
                for i in range(len(obj_list), max_num_obj):
                    cv2.imshow('card#%d' % i, np.zeros((1, 1), dtype=np.uint8))
            start_display = time.time()
            img_save = np.zeros((height, width, 3), dtype=np.uint8)
            img_save[0:img_result.shape[0], 0:img_result.shape[1]] = img_result
            img_save[0:img_graph.shape[0], img_result.shape[1]:img_result.shape[1] + img_graph.shape[1]] = img_graph
            if display:
                cv2.imshow('result', img_save)
            elapsed_display = (time.time() - start_display) * 1000
            elapsed_ms = (time.time() - start_time) * 1000
            print('Elapsed time: %.2f ms' % elapsed_ms)
            print('Elapsed time: %.2f ms, %.2f, %.2f, %.2f' % (elapsed_ms, elapsed_yolo, elapsed_graph, elapsed_display))
            if out_path is not None:
                vid_writer.write(img_save.astype(np.uint8))
            cv2.waitKey(1)
@@ -469,18 +539,28 @@
        df = fetch_data.load_all_cards_text(csv_name)
        df_list.append(df)
        #print(df)
    card_pool = pd.concat(df_list)
    card_pool = pd.concat(df_list, sort=True)
    card_pool.reset_index(drop=True, inplace=True)
    card_pool.drop('Unnamed: 0', axis=1, inplace=True, errors='ignore')
    card_pool = calc_image_hashes(card_pool, save_to='card_pool.pck')
    for hash_size in [8, 16, 32, 64]:
        for highfreq_factor in [4, 8, 16, 32]:
            pck_name = 'card_pool_%d_%d.pck' % (hash_size, highfreq_factor)
            if not os.path.exists(pck_name):
                print(pck_name)
                calc_image_hashes(card_pool, save_to=pck_name, hash_size=hash_size, highfreq_factor=highfreq_factor)
    '''
    # csv_name = '%s/csv/%s.csv' % (transform_data.data_dir, 'rtr')
    # card_pool = fetch_data.load_all_cards_text(csv_name)
    # card_pool = calc_image_hashes(card_pool)
    card_pool = pd.read_pickle('card_pool.pck')
    card_pool = card_pool[(card_pool['set'] == 'rtr') | (card_pool['set'] == 'isd')]
    #csv_name = '%s/csv/%s.csv' % (transform_data.data_dir, 'rtr')
    #card_pool = fetch_data.load_all_cards_text(csv_name)
    #card_pool = calc_image_hashes(card_pool, save_to='card_pool.pck')
    #return
    card_pool = pd.read_pickle('card_pool_32_4.pck')
    #card_pool = card_pool[(card_pool['set'] == 'rtr') | (card_pool['set'] == 'isd')]
    card_pool = card_pool[['name', 'set', 'collector_number', 'card_hash']]
    # ImageHash is basically just one numpy.ndarray with (hash_size)^2 number of bits. pre-emptively flattening it
    # significantly increases speed for subtracting hashes in the future.
    card_pool['card_hash'] = card_pool['card_hash'].apply(lambda x: x.hash.flatten())
    thresh_conf = 0.01
    thresh_nms = 0.8