| | |
| | | import os |
| | | import random |
| | | import math |
| | | import cv2 |
| | | import numpy as np |
| | | import imutils |
| | | import pandas as pd |
| | | import fetch_data |
| | | import generate_data |
| | | from shapely import geometry |
| | | import imgaug as ia |
| | | from imgaug import augmenters as iaa |
| | | from imgaug import parameters as iap |
| | | import imutils |
| | | import math |
| | | import numpy as np |
| | | import os |
| | | import pandas as pd |
| | | import random |
| | | from shapely import geometry |
| | | |
| | | card_mask = cv2.imread('data/mask.png') |
| | | data_dir = os.path.abspath('/media/win10/data') |
| | | darknet_dir = os.path.abspath('.') |
| | | import fetch_data |
| | | import generate_data |
| | | from config import Config |
| | | |
| | | |
| | | def key_pts_to_yolo(key_pts, w_img, h_img): |
| | |
| | | """ |
| | | self.check_visibility(visibility=visibility) |
| | | img_result = np.zeros((self.height, self.width, 3), dtype=np.uint8) |
| | | card_mask = cv2.imread(Config.card_mask_path) |
| | | |
| | | for card in self.cards: |
| | | card_x = int(card.x + 0.5) |
| | |
| | | random.seed() |
| | | ia.seed(random.randrange(10000)) |
| | | |
| | | bg_images = generate_data.load_dtd(dtd_dir='%s/dtd/images' % data_dir, dump_it=False) |
| | | bg_images = generate_data.load_dtd(dtd_dir='%s/dtd/images' % Config.data_dir, dump_it=False) |
| | | background = generate_data.Backgrounds(images=bg_images) |
| | | |
| | | card_pool = pd.DataFrame() |
| | | for set_name in fetch_data.all_set_list: |
| | | df = fetch_data.load_all_cards_text('%s/csv/%s.csv' % (data_dir, set_name)) |
| | | for set_name in Config.all_set_list: |
| | | df = fetch_data.load_all_cards_text('%s/csv/%s.csv' % (Config.data_dir, set_name)) |
| | | card_pool = card_pool.append(df) |
| | | class_ids = {} |
| | | with open('%s/obj.names' % data_dir) as names_file: |
| | | with open('%s/obj.names' % Config.data_dir) as names_file: |
| | | class_name_list = names_file.read().splitlines() |
| | | for i in range(len(class_name_list)): |
| | | class_ids[class_name_list[i]] = i |
| | |
| | | |
| | | # Use 2 to 5 cards per generator |
| | | for _, card_info in card_pool.sample(random.randint(2, 5)).iterrows(): |
| | | img_name = '%s/card_img/png/%s/%s_%s.png' % (data_dir, card_info['set'], card_info['collector_number'], |
| | | img_name = '%s/card_img/png/%s/%s_%s.png' % (Config.data_dir, card_info['set'], |
| | | card_info['collector_number'], |
| | | fetch_data.get_valid_filename(card_info['name'])) |
| | | out_name += '%s%s_' % (card_info['set'], card_info['collector_number']) |
| | | card_img = cv2.imread(img_name) |
| | | if card_img is None: |
| | | fetch_data.fetch_card_image(card_info, out_dir='%s/card_img/png/%s' % (data_dir, card_info['set'])) |
| | | fetch_data.fetch_card_image(card_info, out_dir='%s/card_img/png/%s' % (Config.data_dir, |
| | | card_info['set'])) |
| | | card_img = cv2.imread(img_name) |
| | | if card_img is None: |
| | | print('WARNING: card %s is not found!' % img_name) |
| | |
| | | if i % 3 == 0: |
| | | generator.generate_non_obstructive() |
| | | generator.export_training_data(visibility=0.0, out_name='%s/train/non_obstructive_update/%s%d' |
| | | % (data_dir, out_name, j), aug=seq) |
| | | % (Config.data_dir, out_name, j), aug=seq) |
| | | elif i % 3 == 1: |
| | | generator.generate_horizontal_span(theta=random.uniform(-math.pi, math.pi)) |
| | | generator.export_training_data(visibility=0.0, out_name='%s/train/horizontal_span_update/%s%d' |
| | | % (data_dir, out_name, j), aug=seq) |
| | | % (Config.data_dir, out_name, j), aug=seq) |
| | | else: |
| | | generator.generate_vertical_span(theta=random.uniform(-math.pi, math.pi)) |
| | | generator.export_training_data(visibility=0.0, out_name='%s/train/vertical_span_update/%s%d' |
| | | % (data_dir, out_name, j), aug=seq) |
| | | % (Config.data_dir, out_name, j), aug=seq) |
| | | |
| | | #generator.generate_horizontal_span(theta=random.uniform(-math.pi, math.pi)) |
| | | #generator.render(display=True, aug=seq, debug=True) |