| | |
| | | #include "network.h" |
| | | #include "detection_layer.h" |
| | | #include "region_layer.h" |
| | | #include "cost_layer.h" |
| | | #include "utils.h" |
| | | #include "parser.h" |
| | | #include "box.h" |
| | | #include "demo.h" |
| | | |
| | | #ifdef OPENCV |
| | | #include "opencv2/highgui/highgui_c.h" |
| | | #endif |
| | | |
| | | static char *voc_names[] = {"aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"}; |
| | | static image voc_labels[20]; |
| | | |
| | | void train_detector(char *cfgfile, char *weightfile) |
| | | { |
| | |
| | | args.num_boxes = l.max_boxes; |
| | | args.d = &buffer; |
| | | args.type = DETECTION_DATA; |
| | | args.threads = 4; |
| | | |
| | | args.angle = net.angle; |
| | | args.exposure = net.exposure; |
| | | args.saturation = net.saturation; |
| | | args.hue = net.hue; |
| | | |
| | | pthread_t load_thread = load_data_in_thread(args); |
| | | pthread_t load_thread = load_data(args); |
| | | clock_t time; |
| | | //while(i*imgs < N*120){ |
| | | while(get_current_batch(net) < net.max_batches){ |
| | |
| | | time=clock(); |
| | | pthread_join(load_thread, 0); |
| | | train = buffer; |
| | | load_thread = load_data_in_thread(args); |
| | | load_thread = load_data(args); |
| | | |
| | | /* |
| | | int k; |
| | |
| | | save_weights(net, buff); |
| | | } |
| | | |
| | | static void convert_detections(float *predictions, int classes, int num, int square, int side, int w, int h, float thresh, float **probs, box *boxes, int only_objectness) |
| | | { |
| | | int i,j,n; |
| | | //int per_cell = 5*num+classes; |
| | | for (i = 0; i < side*side; ++i){ |
| | | int row = i / side; |
| | | int col = i % side; |
| | | for(n = 0; n < num; ++n){ |
| | | int index = i*num + n; |
| | | int p_index = index * (classes + 5) + 4; |
| | | float scale = predictions[p_index]; |
| | | int box_index = index * (classes + 5); |
| | | boxes[index].x = (predictions[box_index + 0] + col + .5) / side * w; |
| | | boxes[index].y = (predictions[box_index + 1] + row + .5) / side * h; |
| | | if(0){ |
| | | boxes[index].x = (logistic_activate(predictions[box_index + 0]) + col) / side * w; |
| | | boxes[index].y = (logistic_activate(predictions[box_index + 1]) + row) / side * h; |
| | | } |
| | | boxes[index].w = pow(logistic_activate(predictions[box_index + 2]), (square?2:1)) * w; |
| | | boxes[index].h = pow(logistic_activate(predictions[box_index + 3]), (square?2:1)) * h; |
| | | if(1){ |
| | | boxes[index].x = ((col + .5)/side + predictions[box_index + 0] * .5) * w; |
| | | boxes[index].y = ((row + .5)/side + predictions[box_index + 1] * .5) * h; |
| | | boxes[index].w = (exp(predictions[box_index + 2]) * .5) * w; |
| | | boxes[index].h = (exp(predictions[box_index + 3]) * .5) * h; |
| | | } |
| | | for(j = 0; j < classes; ++j){ |
| | | int class_index = index * (classes + 5) + 5; |
| | | float prob = scale*predictions[class_index+j]; |
| | | probs[index][j] = (prob > thresh) ? prob : 0; |
| | | } |
| | | if(only_objectness){ |
| | | probs[index][0] = scale; |
| | | } |
| | | } |
| | | } |
| | | } |
| | | |
| | | void print_detector_detections(FILE **fps, char *id, box *boxes, float **probs, int total, int classes, int w, int h) |
| | | { |
| | | int i, j; |
| | |
| | | |
| | | layer l = net.layers[net.n-1]; |
| | | int classes = l.classes; |
| | | int side = l.w; |
| | | |
| | | int j; |
| | | FILE **fps = calloc(classes, sizeof(FILE *)); |
| | |
| | | snprintf(buff, 1024, "%s%s.txt", base, voc_names[j]); |
| | | fps[j] = fopen(buff, "w"); |
| | | } |
| | | box *boxes = calloc(side*side*l.n, sizeof(box)); |
| | | float **probs = calloc(side*side*l.n, sizeof(float *)); |
| | | for(j = 0; j < side*side*l.n; ++j) probs[j] = calloc(classes, sizeof(float *)); |
| | | box *boxes = calloc(l.w*l.h*l.n, sizeof(box)); |
| | | float **probs = calloc(l.w*l.h*l.n, sizeof(float *)); |
| | | for(j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(classes, sizeof(float *)); |
| | | |
| | | int m = plist->size; |
| | | int i=0; |
| | |
| | | char *path = paths[i+t-nthreads]; |
| | | char *id = basecfg(path); |
| | | float *X = val_resized[t].data; |
| | | float *predictions = network_predict(net, X); |
| | | network_predict(net, X); |
| | | int w = val[t].w; |
| | | int h = val[t].h; |
| | | convert_detections(predictions, classes, l.n, 0, side, w, h, thresh, probs, boxes, 0); |
| | | if (nms) do_nms_sort(boxes, probs, side*side*l.n, classes, nms); |
| | | print_detector_detections(fps, id, boxes, probs, side*side*l.n, classes, w, h); |
| | | get_region_boxes(l, w, h, thresh, probs, boxes, 0); |
| | | if (nms) do_nms_sort(boxes, probs, l.w*l.h*l.n, classes, nms); |
| | | print_detector_detections(fps, id, boxes, probs, l.w*l.h*l.n, classes, w, h); |
| | | free(id); |
| | | free_image(val[t]); |
| | | free_image(val_resized[t]); |
| | |
| | | |
| | | layer l = net.layers[net.n-1]; |
| | | int classes = l.classes; |
| | | int square = l.sqrt; |
| | | int side = l.side; |
| | | |
| | | int j, k; |
| | | FILE **fps = calloc(classes, sizeof(FILE *)); |
| | |
| | | snprintf(buff, 1024, "%s%s.txt", base, voc_names[j]); |
| | | fps[j] = fopen(buff, "w"); |
| | | } |
| | | box *boxes = calloc(side*side*l.n, sizeof(box)); |
| | | float **probs = calloc(side*side*l.n, sizeof(float *)); |
| | | for(j = 0; j < side*side*l.n; ++j) probs[j] = calloc(classes, sizeof(float *)); |
| | | box *boxes = calloc(l.w*l.h*l.n, sizeof(box)); |
| | | float **probs = calloc(l.w*l.h*l.n, sizeof(float *)); |
| | | for(j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(classes, sizeof(float *)); |
| | | |
| | | int m = plist->size; |
| | | int i=0; |
| | |
| | | image orig = load_image_color(path, 0, 0); |
| | | image sized = resize_image(orig, net.w, net.h); |
| | | char *id = basecfg(path); |
| | | float *predictions = network_predict(net, sized.data); |
| | | convert_detections(predictions, classes, l.n, square, l.w, 1, 1, thresh, probs, boxes, 1); |
| | | if (nms) do_nms(boxes, probs, side*side*l.n, 1, nms); |
| | | network_predict(net, sized.data); |
| | | get_region_boxes(l, 1, 1, thresh, probs, boxes, 1); |
| | | if (nms) do_nms(boxes, probs, l.w*l.h*l.n, 1, nms); |
| | | |
| | | char *labelpath = find_replace(path, "images", "labels"); |
| | | labelpath = find_replace(labelpath, "JPEGImages", "labels"); |
| | | labelpath = find_replace(labelpath, ".jpg", ".txt"); |
| | | labelpath = find_replace(labelpath, ".JPEG", ".txt"); |
| | | char labelpath[4096]; |
| | | find_replace(path, "images", "labels", labelpath); |
| | | find_replace(labelpath, "JPEGImages", "labels", labelpath); |
| | | find_replace(labelpath, ".jpg", ".txt", labelpath); |
| | | find_replace(labelpath, ".JPEG", ".txt", labelpath); |
| | | |
| | | int num_labels = 0; |
| | | box_label *truth = read_boxes(labelpath, &num_labels); |
| | | for(k = 0; k < side*side*l.n; ++k){ |
| | | for(k = 0; k < l.w*l.h*l.n; ++k){ |
| | | if(probs[k][0] > thresh){ |
| | | ++proposals; |
| | | } |
| | |
| | | ++total; |
| | | box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h}; |
| | | float best_iou = 0; |
| | | for(k = 0; k < side*side*l.n; ++k){ |
| | | for(k = 0; k < l.w*l.h*l.n; ++k){ |
| | | float iou = box_iou(boxes[k], t); |
| | | if(probs[k][0] > thresh && iou > best_iou){ |
| | | best_iou = iou; |
| | |
| | | |
| | | void test_detector(char *cfgfile, char *weightfile, char *filename, float thresh) |
| | | { |
| | | |
| | | image *alphabet = load_alphabet(); |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | detection_layer l = net.layers[net.n-1]; |
| | | l.side = l.w; |
| | | layer l = net.layers[net.n-1]; |
| | | set_batch_network(&net, 1); |
| | | srand(2222222); |
| | | clock_t time; |
| | |
| | | char *input = buff; |
| | | int j; |
| | | float nms=.4; |
| | | box *boxes = calloc(l.side*l.side*l.n, sizeof(box)); |
| | | float **probs = calloc(l.side*l.side*l.n, sizeof(float *)); |
| | | for(j = 0; j < l.side*l.side*l.n; ++j) probs[j] = calloc(l.classes, sizeof(float *)); |
| | | box *boxes = calloc(l.w*l.h*l.n, sizeof(box)); |
| | | float **probs = calloc(l.w*l.h*l.n, sizeof(float *)); |
| | | for(j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(l.classes, sizeof(float *)); |
| | | while(1){ |
| | | if(filename){ |
| | | strncpy(input, filename, 256); |
| | |
| | | image sized = resize_image(im, net.w, net.h); |
| | | float *X = sized.data; |
| | | time=clock(); |
| | | float *predictions = network_predict(net, X); |
| | | network_predict(net, X); |
| | | printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time)); |
| | | convert_detections(predictions, l.classes, l.n, 0, l.w, 1, 1, thresh, probs, boxes, 0); |
| | | if (nms) do_nms_sort(boxes, probs, l.side*l.side*l.n, l.classes, nms); |
| | | //draw_detections(im, l.side*l.side*l.n, thresh, boxes, probs, voc_names, voc_labels, 20); |
| | | draw_detections(im, l.side*l.side*l.n, thresh, boxes, probs, voc_names, voc_labels, 20); |
| | | get_region_boxes(l, 1, 1, thresh, probs, boxes, 0); |
| | | if (nms) do_nms_sort(boxes, probs, l.w*l.h*l.n, l.classes, nms); |
| | | //draw_detections(im, l.w*l.h*l.n, thresh, boxes, probs, voc_names, voc_labels, 20); |
| | | draw_detections(im, l.w*l.h*l.n, thresh, boxes, probs, voc_names, alphabet, 20); |
| | | save_image(im, "predictions"); |
| | | show_image(im, "predictions"); |
| | | |
| | |
| | | |
| | | void run_detector(int argc, char **argv) |
| | | { |
| | | int i; |
| | | for(i = 0; i < 20; ++i){ |
| | | char buff[256]; |
| | | sprintf(buff, "data/labels/%s.png", voc_names[i]); |
| | | voc_labels[i] = load_image_color(buff, 0, 0); |
| | | } |
| | | |
| | | char *prefix = find_char_arg(argc, argv, "-prefix", 0); |
| | | float thresh = find_float_arg(argc, argv, "-thresh", .2); |
| | | int cam_index = find_int_arg(argc, argv, "-c", 0); |
| | | int frame_skip = find_int_arg(argc, argv, "-s", 0); |
| | | if(argc < 4){ |
| | | fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); |
| | | return; |
| | |
| | | else if(0==strcmp(argv[2], "train")) train_detector(cfg, weights); |
| | | else if(0==strcmp(argv[2], "valid")) validate_detector(cfg, weights); |
| | | else if(0==strcmp(argv[2], "recall")) validate_detector_recall(cfg, weights); |
| | | else if(0==strcmp(argv[2], "demo")) demo(cfg, weights, thresh, cam_index, filename, voc_names, 20, frame_skip, prefix); |
| | | } |