| | |
| | | #include "local_layer.h" |
| | | #include "convolutional_layer.h" |
| | | #include "activation_layer.h" |
| | | #include "deconvolutional_layer.h" |
| | | #include "detection_layer.h" |
| | | #include "region_layer.h" |
| | | #include "normalization_layer.h" |
| | |
| | | if(l.delta){ |
| | | scal_cpu(l.outputs * l.batch, 0, l.delta, 1); |
| | | } |
| | | if(l.type == CONVOLUTIONAL){ |
| | | forward_convolutional_layer(l, state); |
| | | } else if(l.type == DECONVOLUTIONAL){ |
| | | forward_deconvolutional_layer(l, state); |
| | | } else if(l.type == ACTIVE){ |
| | | forward_activation_layer(l, state); |
| | | } else if(l.type == LOCAL){ |
| | | forward_local_layer(l, state); |
| | | } else if(l.type == NORMALIZATION){ |
| | | forward_normalization_layer(l, state); |
| | | } else if(l.type == BATCHNORM){ |
| | | forward_batchnorm_layer(l, state); |
| | | } else if(l.type == DETECTION){ |
| | | forward_detection_layer(l, state); |
| | | } else if(l.type == REGION){ |
| | | forward_region_layer(l, state); |
| | | } else if(l.type == CONNECTED){ |
| | | forward_connected_layer(l, state); |
| | | } else if(l.type == RNN){ |
| | | forward_rnn_layer(l, state); |
| | | } else if(l.type == GRU){ |
| | | forward_gru_layer(l, state); |
| | | } else if(l.type == CRNN){ |
| | | forward_crnn_layer(l, state); |
| | | } else if(l.type == CROP){ |
| | | forward_crop_layer(l, state); |
| | | } else if(l.type == COST){ |
| | | forward_cost_layer(l, state); |
| | | } else if(l.type == SOFTMAX){ |
| | | forward_softmax_layer(l, state); |
| | | } else if(l.type == MAXPOOL){ |
| | | forward_maxpool_layer(l, state); |
| | | } else if(l.type == REORG){ |
| | | forward_reorg_layer(l, state); |
| | | } else if(l.type == AVGPOOL){ |
| | | forward_avgpool_layer(l, state); |
| | | } else if(l.type == DROPOUT){ |
| | | forward_dropout_layer(l, state); |
| | | } else if(l.type == ROUTE){ |
| | | forward_route_layer(l, net); |
| | | } else if(l.type == SHORTCUT){ |
| | | forward_shortcut_layer(l, state); |
| | | } |
| | | l.forward(l, state); |
| | | state.input = l.output; |
| | | } |
| | | } |
| | |
| | | float rate = get_current_rate(net); |
| | | for(i = 0; i < net.n; ++i){ |
| | | layer l = net.layers[i]; |
| | | if(l.type == CONVOLUTIONAL){ |
| | | update_convolutional_layer(l, update_batch, rate, net.momentum, net.decay); |
| | | } else if(l.type == DECONVOLUTIONAL){ |
| | | update_deconvolutional_layer(l, rate, net.momentum, net.decay); |
| | | } else if(l.type == CONNECTED){ |
| | | update_connected_layer(l, update_batch, rate, net.momentum, net.decay); |
| | | } else if(l.type == RNN){ |
| | | update_rnn_layer(l, update_batch, rate, net.momentum, net.decay); |
| | | } else if(l.type == GRU){ |
| | | update_gru_layer(l, update_batch, rate, net.momentum, net.decay); |
| | | } else if(l.type == CRNN){ |
| | | update_crnn_layer(l, update_batch, rate, net.momentum, net.decay); |
| | | } else if(l.type == LOCAL){ |
| | | update_local_layer(l, update_batch, rate, net.momentum, net.decay); |
| | | if(l.update){ |
| | | l.update(l, update_batch, rate, net.momentum, net.decay); |
| | | } |
| | | } |
| | | } |
| | |
| | | state.delta = prev.delta; |
| | | } |
| | | layer l = net.layers[i]; |
| | | if(l.type == CONVOLUTIONAL){ |
| | | backward_convolutional_layer(l, state); |
| | | } else if(l.type == DECONVOLUTIONAL){ |
| | | backward_deconvolutional_layer(l, state); |
| | | } else if(l.type == ACTIVE){ |
| | | backward_activation_layer(l, state); |
| | | } else if(l.type == NORMALIZATION){ |
| | | backward_normalization_layer(l, state); |
| | | } else if(l.type == BATCHNORM){ |
| | | backward_batchnorm_layer(l, state); |
| | | } else if(l.type == MAXPOOL){ |
| | | if(i != 0) backward_maxpool_layer(l, state); |
| | | } else if(l.type == REORG){ |
| | | backward_reorg_layer(l, state); |
| | | } else if(l.type == AVGPOOL){ |
| | | backward_avgpool_layer(l, state); |
| | | } else if(l.type == DROPOUT){ |
| | | backward_dropout_layer(l, state); |
| | | } else if(l.type == DETECTION){ |
| | | backward_detection_layer(l, state); |
| | | } else if(l.type == REGION){ |
| | | backward_region_layer(l, state); |
| | | } else if(l.type == SOFTMAX){ |
| | | if(i != 0) backward_softmax_layer(l, state); |
| | | } else if(l.type == CONNECTED){ |
| | | backward_connected_layer(l, state); |
| | | } else if(l.type == RNN){ |
| | | backward_rnn_layer(l, state); |
| | | } else if(l.type == GRU){ |
| | | backward_gru_layer(l, state); |
| | | } else if(l.type == CRNN){ |
| | | backward_crnn_layer(l, state); |
| | | } else if(l.type == LOCAL){ |
| | | backward_local_layer(l, state); |
| | | } else if(l.type == COST){ |
| | | backward_cost_layer(l, state); |
| | | } else if(l.type == ROUTE){ |
| | | backward_route_layer(l, net); |
| | | } else if(l.type == SHORTCUT){ |
| | | backward_shortcut_layer(l, state); |
| | | } |
| | | l.backward(l, state); |
| | | } |
| | | } |
| | | |