| | |
| | | save_network(net, "cfg/trained_imagenet_smaller.cfg"); |
| | | } |
| | | |
| | | #define AMNT 3 |
| | | void draw_detection(image im, float *box, int side) |
| | | { |
| | | int j; |
| | | int r, c; |
| | | float amount[5] = {0,0,0,0,0}; |
| | | float amount[AMNT] = {0}; |
| | | for(r = 0; r < side*side; ++r){ |
| | | for(j = 0; j < 5; ++j){ |
| | | if(box[r*5] > amount[j]) { |
| | | amount[j] = box[r*5]; |
| | | break; |
| | | float val = box[r*5]; |
| | | for(j = 0; j < AMNT; ++j){ |
| | | if(val > amount[j]) { |
| | | float swap = val; |
| | | val = amount[j]; |
| | | amount[j] = swap; |
| | | } |
| | | } |
| | | } |
| | | float smallest = amount[0]; |
| | | for(j = 1; j < 5; ++j) if(amount[j] < smallest) smallest = amount[j]; |
| | | float smallest = amount[AMNT-1]; |
| | | |
| | | for(r = 0; r < side; ++r){ |
| | | for(c = 0; c < side; ++c){ |
| | |
| | | int x = c*d+box[j+2]*d; |
| | | int h = box[j+3]*256; |
| | | int w = box[j+4]*256; |
| | | printf("%f %f %f %f\n", box[j+1], box[j+2], box[j+3], box[j+4]); |
| | | printf("%d %d %d %d\n", x, y, w, h); |
| | | printf("%d %d %d %d\n", x-w/2, y-h/2, x+w/2, y+h/2); |
| | | //printf("%f %f %f %f\n", box[j+1], box[j+2], box[j+3], box[j+4]); |
| | | //printf("%d %d %d %d\n", x, y, w, h); |
| | | //printf("%d %d %d %d\n", x-w/2, y-h/2, x+w/2, y+h/2); |
| | | draw_box(im, x-w/2, y-h/2, x+w/2, y+h/2); |
| | | } |
| | | } |
| | |
| | | i += 1; |
| | | time=clock(); |
| | | data train = load_data_detection_jitter_random(imgs, paths, plist->size, 256, 256, 7, 7, 256); |
| | | /* |
| | | image im = float_to_image(224, 224, 3, train.X.vals[0]); |
| | | draw_detection(im, train.y.vals[0], 7); |
| | | //data train = load_data_detection_random(imgs, paths, plist->size, 224, 224, 7, 7, 256); |
| | | |
| | | /* |
| | | image im = float_to_image(224, 224, 3, train.X.vals[923]); |
| | | draw_detection(im, train.y.vals[923], 7); |
| | | */ |
| | | |
| | | normalize_data_rows(train); |
| | |
| | | //network net = parse_network_cfg("/home/pjreddie/imagenet_backup/alexnet_1270.cfg"); |
| | | srand(time(0)); |
| | | network net = parse_network_cfg(cfgfile); |
| | | set_learning_network(&net, net.learning_rate, .5, .0005); |
| | | set_learning_network(&net, net.learning_rate/10., .5, .0005); |
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | int imgs = 1024; |
| | | int i = 23030; |
| | | int i = 44700; |
| | | char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list"); |
| | | list *plist = get_paths("/data/imagenet/cls.train.list"); |
| | | char **paths = (char **)list_to_array(plist); |
| | |
| | | data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10); |
| | | network net = parse_network_cfg(cfgfile); |
| | | int count = 0; |
| | | int iters = 60000/net.batch + 1; |
| | | while(++count <= 10){ |
| | | int iters = 6000/net.batch + 1; |
| | | while(++count <= 100){ |
| | | clock_t start = clock(), end; |
| | | normalize_data_rows(train); |
| | | normalize_data_rows(test); |