some fixes, some other experiments
| | |
| | | endif |
| | | endif |
| | | CFLAGS= $(COMMON) $(OPTS) |
| | | CFLAGS= $(COMMON) -O0 -g |
| | | #CFLAGS= $(COMMON) -O0 -g |
| | | LDFLAGS+=`pkg-config --libs opencv` -lm -pthread |
| | | VPATH=./src/ |
| | | EXEC=cnn |
| | |
| | | __kernel void mask(int n, __global float *x, __global float *mask, int mod) |
| | | { |
| | | int i = get_global_id(0); |
| | | x[i] = (mask[(i/mod)*mod] || i%mod == 0) ? x[i] : 0; |
| | | x[i] = (i%mod && !mask[(i/mod)*mod]) ? 0 : x[i]; |
| | | } |
| | | |
| | | __kernel void copy(int N, __global float *X, int OFFX, int INCX, __global float *Y, int OFFY, int INCY) |
| | |
| | | save_network(net, "cfg/trained_imagenet_smaller.cfg"); |
| | | } |
| | | |
| | | #define AMNT 3 |
| | | void draw_detection(image im, float *box, int side) |
| | | { |
| | | int j; |
| | | int r, c; |
| | | float amount[5] = {0,0,0,0,0}; |
| | | float amount[AMNT] = {0}; |
| | | for(r = 0; r < side*side; ++r){ |
| | | for(j = 0; j < 5; ++j){ |
| | | if(box[r*5] > amount[j]) { |
| | | amount[j] = box[r*5]; |
| | | break; |
| | | float val = box[r*5]; |
| | | for(j = 0; j < AMNT; ++j){ |
| | | if(val > amount[j]) { |
| | | float swap = val; |
| | | val = amount[j]; |
| | | amount[j] = swap; |
| | | } |
| | | } |
| | | } |
| | | float smallest = amount[0]; |
| | | for(j = 1; j < 5; ++j) if(amount[j] < smallest) smallest = amount[j]; |
| | | float smallest = amount[AMNT-1]; |
| | | |
| | | for(r = 0; r < side; ++r){ |
| | | for(c = 0; c < side; ++c){ |
| | |
| | | int x = c*d+box[j+2]*d; |
| | | int h = box[j+3]*256; |
| | | int w = box[j+4]*256; |
| | | printf("%f %f %f %f\n", box[j+1], box[j+2], box[j+3], box[j+4]); |
| | | printf("%d %d %d %d\n", x, y, w, h); |
| | | printf("%d %d %d %d\n", x-w/2, y-h/2, x+w/2, y+h/2); |
| | | //printf("%f %f %f %f\n", box[j+1], box[j+2], box[j+3], box[j+4]); |
| | | //printf("%d %d %d %d\n", x, y, w, h); |
| | | //printf("%d %d %d %d\n", x-w/2, y-h/2, x+w/2, y+h/2); |
| | | draw_box(im, x-w/2, y-h/2, x+w/2, y+h/2); |
| | | } |
| | | } |
| | |
| | | i += 1; |
| | | time=clock(); |
| | | data train = load_data_detection_jitter_random(imgs, paths, plist->size, 256, 256, 7, 7, 256); |
| | | /* |
| | | image im = float_to_image(224, 224, 3, train.X.vals[0]); |
| | | draw_detection(im, train.y.vals[0], 7); |
| | | //data train = load_data_detection_random(imgs, paths, plist->size, 224, 224, 7, 7, 256); |
| | | |
| | | /* |
| | | image im = float_to_image(224, 224, 3, train.X.vals[923]); |
| | | draw_detection(im, train.y.vals[923], 7); |
| | | */ |
| | | |
| | | normalize_data_rows(train); |
| | |
| | | //network net = parse_network_cfg("/home/pjreddie/imagenet_backup/alexnet_1270.cfg"); |
| | | srand(time(0)); |
| | | network net = parse_network_cfg(cfgfile); |
| | | set_learning_network(&net, net.learning_rate, .5, .0005); |
| | | set_learning_network(&net, net.learning_rate/10., .5, .0005); |
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | int imgs = 1024; |
| | | int i = 23030; |
| | | int i = 44700; |
| | | char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list"); |
| | | list *plist = get_paths("/data/imagenet/cls.train.list"); |
| | | char **paths = (char **)list_to_array(plist); |
| | |
| | | data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10); |
| | | network net = parse_network_cfg(cfgfile); |
| | | int count = 0; |
| | | int iters = 60000/net.batch + 1; |
| | | while(++count <= 10){ |
| | | int iters = 6000/net.batch + 1; |
| | | while(++count <= 100){ |
| | | clock_t start = clock(), end; |
| | | normalize_data_rows(train); |
| | | normalize_data_rows(test); |
| | |
| | | layer->delta = calloc(batch*outputs, sizeof(float*)); |
| | | |
| | | layer->weight_updates = calloc(inputs*outputs, sizeof(float)); |
| | | layer->bias_updates = calloc(outputs, sizeof(float)); |
| | | |
| | | layer->weight_prev = calloc(inputs*outputs, sizeof(float)); |
| | | layer->bias_prev = calloc(outputs, sizeof(float)); |
| | | |
| | | layer->weights = calloc(inputs*outputs, sizeof(float)); |
| | | layer->biases = calloc(outputs, sizeof(float)); |
| | | |
| | | |
| | | float scale = 1./sqrt(inputs); |
| | | //scale = .01; |
| | | for(i = 0; i < inputs*outputs; ++i){ |
| | | layer->weights[i] = scale*rand_normal(); |
| | | } |
| | | |
| | | layer->bias_updates = calloc(outputs, sizeof(float)); |
| | | layer->biases = calloc(outputs, sizeof(float)); |
| | | for(i = 0; i < outputs; ++i){ |
| | | layer->biases[i] = scale; |
| | | } |
| | |
| | | return layer; |
| | | } |
| | | |
| | | void secret_update_connected_layer(connected_layer *layer) |
| | | { |
| | | int n = layer->outputs*layer->inputs; |
| | | float dot = dot_cpu(n, layer->weight_updates, 1, layer->weight_prev, 1); |
| | | float mag = sqrt(dot_cpu(n, layer->weight_updates, 1, layer->weight_updates, 1)) |
| | | * sqrt(dot_cpu(n, layer->weight_prev, 1, layer->weight_prev, 1)); |
| | | float cos = dot/mag; |
| | | if(cos > .3) layer->learning_rate *= 1.1; |
| | | else if (cos < -.3) layer-> learning_rate /= 1.1; |
| | | |
| | | scal_cpu(n, layer->momentum, layer->weight_prev, 1); |
| | | axpy_cpu(n, 1, layer->weight_updates, 1, layer->weight_prev, 1); |
| | | scal_cpu(n, 0, layer->weight_updates, 1); |
| | | |
| | | scal_cpu(layer->outputs, layer->momentum, layer->bias_prev, 1); |
| | | axpy_cpu(layer->outputs, 1, layer->bias_updates, 1, layer->bias_prev, 1); |
| | | scal_cpu(layer->outputs, 0, layer->bias_updates, 1); |
| | | |
| | | //printf("rate: %f\n", layer->learning_rate); |
| | | |
| | | axpy_cpu(layer->outputs, layer->learning_rate, layer->bias_prev, 1, layer->biases, 1); |
| | | |
| | | axpy_cpu(layer->inputs*layer->outputs, -layer->decay, layer->weights, 1, layer->weight_prev, 1); |
| | | axpy_cpu(layer->inputs*layer->outputs, layer->learning_rate, layer->weight_prev, 1, layer->weights, 1); |
| | | } |
| | | |
| | | void update_connected_layer(connected_layer layer) |
| | | { |
| | | axpy_cpu(layer.outputs, layer.learning_rate, layer.bias_updates, 1, layer.biases, 1); |
| | |
| | | float *weight_updates; |
| | | float *bias_updates; |
| | | |
| | | float *weight_adapt; |
| | | float *bias_adapt; |
| | | float *weight_prev; |
| | | float *bias_prev; |
| | | |
| | | float *output; |
| | | float *delta; |
| | |
| | | |
| | | } connected_layer; |
| | | |
| | | void secret_update_connected_layer(connected_layer *layer); |
| | | connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation, float learning_rate, float momentum, float decay); |
| | | |
| | | void forward_connected_layer(connected_layer layer, float *input); |
| | |
| | | return X; |
| | | } |
| | | |
| | | char **get_random_paths(char **paths, int n, int m) |
| | | { |
| | | char **random_paths = calloc(n, sizeof(char*)); |
| | | int i; |
| | | for(i = 0; i < n; ++i){ |
| | | int index = rand()%m; |
| | | random_paths[i] = paths[index]; |
| | | if(i == 0) printf("%s\n", paths[index]); |
| | | } |
| | | return random_paths; |
| | | } |
| | | |
| | | matrix load_labels_paths(char **paths, int n, char **labels, int k) |
| | | { |
| | | matrix y = make_matrix(n, k); |
| | |
| | | |
| | | data load_data_detection_jitter_random(int n, char **paths, int m, int h, int w, int nh, int nw, float scale) |
| | | { |
| | | char **random_paths = calloc(n, sizeof(char*)); |
| | | char **random_paths = get_random_paths(paths, n, m); |
| | | int i; |
| | | for(i = 0; i < n; ++i){ |
| | | int index = rand()%m; |
| | | random_paths[i] = paths[index]; |
| | | if(i == 0) printf("%s\n", paths[index]); |
| | | } |
| | | data d; |
| | | d.shallow = 0; |
| | | d.X = load_image_paths(random_paths, n, h, w); |
| | |
| | | int dx = rand()%32; |
| | | int dy = rand()%32; |
| | | fill_truth_detection(random_paths[i], d.y.vals[i], 224, 224, nh, nw, scale, dx, dy); |
| | | |
| | | image a = float_to_image(h, w, 3, d.X.vals[i]); |
| | | jitter_image(a,224,224,dy,dx); |
| | | } |
| | | d.X.cols = 224*224*3; |
| | | // print_matrix(d.y); |
| | | free(random_paths); |
| | | return d; |
| | | } |
| | |
| | | |
| | | data load_data_detection_random(int n, char **paths, int m, int h, int w, int nh, int nw, float scale) |
| | | { |
| | | char **random_paths = calloc(n, sizeof(char*)); |
| | | int i; |
| | | for(i = 0; i < n; ++i){ |
| | | int index = rand()%m; |
| | | random_paths[i] = paths[index]; |
| | | if(i == 0) printf("%s\n", paths[index]); |
| | | } |
| | | char **random_paths = get_random_paths(paths, n, m); |
| | | data d; |
| | | d.shallow = 0; |
| | | d.X = load_image_paths(random_paths, n, h, w); |
| | |
| | | return d; |
| | | } |
| | | |
| | | char **get_random_paths(char **paths, int n, int m) |
| | | { |
| | | char **random_paths = calloc(n, sizeof(char*)); |
| | | int i; |
| | | for(i = 0; i < n; ++i){ |
| | | int index = rand()%m; |
| | | random_paths[i] = paths[index]; |
| | | if(i == 0) printf("%s\n", paths[index]); |
| | | } |
| | | return random_paths; |
| | | } |
| | | |
| | | data load_data(char **paths, int n, int m, char **labels, int k, int h, int w) |
| | | { |
| | | if(m) paths = get_random_paths(paths, n, m); |
| | |
| | | |
| | | void backward_dropout_layer_gpu(dropout_layer layer, cl_mem delta) |
| | | { |
| | | if(!delta) return; |
| | | int size = layer.inputs*layer.batch; |
| | | |
| | | cl_kernel kernel = get_dropout_kernel(); |
| | |
| | | for(j = 0; j < w; ++j){ |
| | | int src = j + dw + (i+dh)*a.w + k*a.w*a.h; |
| | | int dst = j + i*w + k*w*h; |
| | | //printf("%d %d\n", src, dst); |
| | | a.data[dst] = a.data[src]; |
| | | } |
| | | } |
| | |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | update_connected_layer(layer); |
| | | secret_update_connected_layer((connected_layer *)net.layers[i]); |
| | | //update_connected_layer(layer); |
| | | } |
| | | } |
| | | } |
| | |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | cl_read_array(layer.output_cl, layer.output, layer.outputs*layer.batch); |
| | | return layer.output; |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |