| | |
| | | #include <string.h> |
| | | #include <stdlib.h> |
| | | |
| | | int get_detection_layer_locations(detection_layer layer) |
| | | int get_detection_layer_locations(detection_layer l) |
| | | { |
| | | return layer.inputs / (layer.classes+layer.coords+layer.rescore+layer.background); |
| | | return l.inputs / (l.classes+l.coords+l.rescore+l.background); |
| | | } |
| | | |
| | | int get_detection_layer_output_size(detection_layer layer) |
| | | int get_detection_layer_output_size(detection_layer l) |
| | | { |
| | | return get_detection_layer_locations(layer)*(layer.background + layer.classes + layer.coords); |
| | | return get_detection_layer_locations(l)*(l.background + l.classes + l.coords); |
| | | } |
| | | |
| | | detection_layer *make_detection_layer(int batch, int inputs, int classes, int coords, int rescore, int background, int nuisance) |
| | | detection_layer make_detection_layer(int batch, int inputs, int classes, int coords, int rescore, int background, int nuisance) |
| | | { |
| | | detection_layer *layer = calloc(1, sizeof(detection_layer)); |
| | | detection_layer l = {0}; |
| | | l.type = DETECTION; |
| | | |
| | | layer->batch = batch; |
| | | layer->inputs = inputs; |
| | | layer->classes = classes; |
| | | layer->coords = coords; |
| | | layer->rescore = rescore; |
| | | layer->nuisance = nuisance; |
| | | layer->cost = calloc(1, sizeof(float)); |
| | | layer->does_cost=1; |
| | | layer->background = background; |
| | | int outputs = get_detection_layer_output_size(*layer); |
| | | layer->output = calloc(batch*outputs, sizeof(float)); |
| | | layer->delta = calloc(batch*outputs, sizeof(float)); |
| | | l.batch = batch; |
| | | l.inputs = inputs; |
| | | l.classes = classes; |
| | | l.coords = coords; |
| | | l.rescore = rescore; |
| | | l.nuisance = nuisance; |
| | | l.cost = calloc(1, sizeof(float)); |
| | | l.does_cost=1; |
| | | l.background = background; |
| | | int outputs = get_detection_layer_output_size(l); |
| | | l.outputs = outputs; |
| | | l.output = calloc(batch*outputs, sizeof(float)); |
| | | l.delta = calloc(batch*outputs, sizeof(float)); |
| | | #ifdef GPU |
| | | layer->output_gpu = cuda_make_array(0, batch*outputs); |
| | | layer->delta_gpu = cuda_make_array(0, batch*outputs); |
| | | l.output_gpu = cuda_make_array(0, batch*outputs); |
| | | l.delta_gpu = cuda_make_array(0, batch*outputs); |
| | | #endif |
| | | |
| | | fprintf(stderr, "Detection Layer\n"); |
| | | srand(0); |
| | | |
| | | return layer; |
| | | return l; |
| | | } |
| | | |
| | | void dark_zone(detection_layer layer, int class, int start, network_state state) |
| | | void dark_zone(detection_layer l, int class, int start, network_state state) |
| | | { |
| | | int index = start+layer.background+class; |
| | | int size = layer.classes+layer.coords+layer.background; |
| | | int index = start+l.background+class; |
| | | int size = l.classes+l.coords+l.background; |
| | | int location = (index%(7*7*size)) / size ; |
| | | int r = location / 7; |
| | | int c = location % 7; |
| | |
| | | if((c + dc) > 6 || (c + dc) < 0) continue; |
| | | int di = (dr*7 + dc) * size; |
| | | if(state.truth[index+di]) continue; |
| | | layer.output[index + di] = 0; |
| | | l.output[index + di] = 0; |
| | | //if(!state.truth[start+di]) continue; |
| | | //layer.output[start + di] = 1; |
| | | //l.output[start + di] = 1; |
| | | } |
| | | } |
| | | } |
| | |
| | | return dd; |
| | | } |
| | | |
| | | void forward_detection_layer(const detection_layer layer, network_state state) |
| | | void forward_detection_layer(const detection_layer l, network_state state) |
| | | { |
| | | int in_i = 0; |
| | | int out_i = 0; |
| | | int locations = get_detection_layer_locations(layer); |
| | | int locations = get_detection_layer_locations(l); |
| | | int i,j; |
| | | for(i = 0; i < layer.batch*locations; ++i){ |
| | | int mask = (!state.truth || state.truth[out_i + layer.background + layer.classes + 2]); |
| | | for(i = 0; i < l.batch*locations; ++i){ |
| | | int mask = (!state.truth || state.truth[out_i + l.background + l.classes + 2]); |
| | | float scale = 1; |
| | | if(layer.rescore) scale = state.input[in_i++]; |
| | | else if(layer.nuisance){ |
| | | layer.output[out_i++] = 1-state.input[in_i++]; |
| | | if(l.rescore) scale = state.input[in_i++]; |
| | | else if(l.nuisance){ |
| | | l.output[out_i++] = 1-state.input[in_i++]; |
| | | scale = mask; |
| | | } |
| | | else if(layer.background) layer.output[out_i++] = scale*state.input[in_i++]; |
| | | else if(l.background) l.output[out_i++] = scale*state.input[in_i++]; |
| | | |
| | | for(j = 0; j < layer.classes; ++j){ |
| | | layer.output[out_i++] = scale*state.input[in_i++]; |
| | | for(j = 0; j < l.classes; ++j){ |
| | | l.output[out_i++] = scale*state.input[in_i++]; |
| | | } |
| | | if(layer.nuisance){ |
| | | if(l.nuisance){ |
| | | |
| | | }else if(layer.background){ |
| | | softmax_array(layer.output + out_i - layer.classes-layer.background, layer.classes+layer.background, layer.output + out_i - layer.classes-layer.background); |
| | | activate_array(state.input+in_i, layer.coords, LOGISTIC); |
| | | }else if(l.background){ |
| | | softmax_array(l.output + out_i - l.classes-l.background, l.classes+l.background, l.output + out_i - l.classes-l.background); |
| | | activate_array(state.input+in_i, l.coords, LOGISTIC); |
| | | } |
| | | for(j = 0; j < layer.coords; ++j){ |
| | | layer.output[out_i++] = mask*state.input[in_i++]; |
| | | for(j = 0; j < l.coords; ++j){ |
| | | l.output[out_i++] = mask*state.input[in_i++]; |
| | | } |
| | | } |
| | | if(layer.does_cost && state.train && 0){ |
| | | if(l.does_cost && state.train && 0){ |
| | | int count = 0; |
| | | float avg = 0; |
| | | *(layer.cost) = 0; |
| | | int size = get_detection_layer_output_size(layer) * layer.batch; |
| | | memset(layer.delta, 0, size * sizeof(float)); |
| | | for (i = 0; i < layer.batch*locations; ++i) { |
| | | int classes = layer.nuisance+layer.classes; |
| | | int offset = i*(classes+layer.coords); |
| | | *(l.cost) = 0; |
| | | int size = get_detection_layer_output_size(l) * l.batch; |
| | | memset(l.delta, 0, size * sizeof(float)); |
| | | for (i = 0; i < l.batch*locations; ++i) { |
| | | int classes = l.nuisance+l.classes; |
| | | int offset = i*(classes+l.coords); |
| | | for (j = offset; j < offset+classes; ++j) { |
| | | *(layer.cost) += pow(state.truth[j] - layer.output[j], 2); |
| | | layer.delta[j] = state.truth[j] - layer.output[j]; |
| | | *(l.cost) += pow(state.truth[j] - l.output[j], 2); |
| | | l.delta[j] = state.truth[j] - l.output[j]; |
| | | } |
| | | box truth; |
| | | truth.x = state.truth[j+0]; |
| | |
| | | truth.w = state.truth[j+2]; |
| | | truth.h = state.truth[j+3]; |
| | | box out; |
| | | out.x = layer.output[j+0]; |
| | | out.y = layer.output[j+1]; |
| | | out.w = layer.output[j+2]; |
| | | out.h = layer.output[j+3]; |
| | | out.x = l.output[j+0]; |
| | | out.y = l.output[j+1]; |
| | | out.w = l.output[j+2]; |
| | | out.h = l.output[j+3]; |
| | | if(!(truth.w*truth.h)) continue; |
| | | //printf("iou: %f\n", iou); |
| | | dbox d = diou(out, truth); |
| | | layer.delta[j+0] = d.dx; |
| | | layer.delta[j+1] = d.dy; |
| | | layer.delta[j+2] = d.dw; |
| | | layer.delta[j+3] = d.dh; |
| | | l.delta[j+0] = d.dx; |
| | | l.delta[j+1] = d.dy; |
| | | l.delta[j+2] = d.dw; |
| | | l.delta[j+3] = d.dh; |
| | | |
| | | int sqr = 1; |
| | | if(sqr){ |
| | |
| | | out.h *= out.h; |
| | | } |
| | | float iou = box_iou(truth, out); |
| | | *(layer.cost) += pow((1-iou), 2); |
| | | *(l.cost) += pow((1-iou), 2); |
| | | avg += iou; |
| | | ++count; |
| | | } |
| | |
| | | } |
| | | /* |
| | | int count = 0; |
| | | for(i = 0; i < layer.batch*locations; ++i){ |
| | | for(j = 0; j < layer.classes+layer.background; ++j){ |
| | | printf("%f, ", layer.output[count++]); |
| | | for(i = 0; i < l.batch*locations; ++i){ |
| | | for(j = 0; j < l.classes+l.background; ++j){ |
| | | printf("%f, ", l.output[count++]); |
| | | } |
| | | printf("\n"); |
| | | for(j = 0; j < layer.coords; ++j){ |
| | | printf("%f, ", layer.output[count++]); |
| | | for(j = 0; j < l.coords; ++j){ |
| | | printf("%f, ", l.output[count++]); |
| | | } |
| | | printf("\n"); |
| | | } |
| | | */ |
| | | /* |
| | | if(layer.background || 1){ |
| | | for(i = 0; i < layer.batch*locations; ++i){ |
| | | int index = i*(layer.classes+layer.coords+layer.background); |
| | | for(j= 0; j < layer.classes; ++j){ |
| | | if(state.truth[index+j+layer.background]){ |
| | | //dark_zone(layer, j, index, state); |
| | | if(l.background || 1){ |
| | | for(i = 0; i < l.batch*locations; ++i){ |
| | | int index = i*(l.classes+l.coords+l.background); |
| | | for(j= 0; j < l.classes; ++j){ |
| | | if(state.truth[index+j+l.background]){ |
| | | //dark_zone(l, j, index, state); |
| | | } |
| | | } |
| | | } |
| | |
| | | */ |
| | | } |
| | | |
| | | void backward_detection_layer(const detection_layer layer, network_state state) |
| | | void backward_detection_layer(const detection_layer l, network_state state) |
| | | { |
| | | int locations = get_detection_layer_locations(layer); |
| | | int locations = get_detection_layer_locations(l); |
| | | int i,j; |
| | | int in_i = 0; |
| | | int out_i = 0; |
| | | for(i = 0; i < layer.batch*locations; ++i){ |
| | | for(i = 0; i < l.batch*locations; ++i){ |
| | | float scale = 1; |
| | | float latent_delta = 0; |
| | | if(layer.rescore) scale = state.input[in_i++]; |
| | | else if (layer.nuisance) state.delta[in_i++] = -layer.delta[out_i++]; |
| | | else if (layer.background) state.delta[in_i++] = scale*layer.delta[out_i++]; |
| | | for(j = 0; j < layer.classes; ++j){ |
| | | latent_delta += state.input[in_i]*layer.delta[out_i]; |
| | | state.delta[in_i++] = scale*layer.delta[out_i++]; |
| | | if(l.rescore) scale = state.input[in_i++]; |
| | | else if (l.nuisance) state.delta[in_i++] = -l.delta[out_i++]; |
| | | else if (l.background) state.delta[in_i++] = scale*l.delta[out_i++]; |
| | | for(j = 0; j < l.classes; ++j){ |
| | | latent_delta += state.input[in_i]*l.delta[out_i]; |
| | | state.delta[in_i++] = scale*l.delta[out_i++]; |
| | | } |
| | | |
| | | if (layer.nuisance) { |
| | | if (l.nuisance) { |
| | | |
| | | }else if (layer.background) gradient_array(layer.output + out_i, layer.coords, LOGISTIC, layer.delta + out_i); |
| | | for(j = 0; j < layer.coords; ++j){ |
| | | state.delta[in_i++] = layer.delta[out_i++]; |
| | | }else if (l.background) gradient_array(l.output + out_i, l.coords, LOGISTIC, l.delta + out_i); |
| | | for(j = 0; j < l.coords; ++j){ |
| | | state.delta[in_i++] = l.delta[out_i++]; |
| | | } |
| | | if(layer.rescore) state.delta[in_i-layer.coords-layer.classes-layer.rescore-layer.background] = latent_delta; |
| | | if(l.rescore) state.delta[in_i-l.coords-l.classes-l.rescore-l.background] = latent_delta; |
| | | } |
| | | } |
| | | |
| | | #ifdef GPU |
| | | |
| | | void forward_detection_layer_gpu(const detection_layer layer, network_state state) |
| | | void forward_detection_layer_gpu(const detection_layer l, network_state state) |
| | | { |
| | | int outputs = get_detection_layer_output_size(layer); |
| | | float *in_cpu = calloc(layer.batch*layer.inputs, sizeof(float)); |
| | | int outputs = get_detection_layer_output_size(l); |
| | | float *in_cpu = calloc(l.batch*l.inputs, sizeof(float)); |
| | | float *truth_cpu = 0; |
| | | if(state.truth){ |
| | | truth_cpu = calloc(layer.batch*outputs, sizeof(float)); |
| | | cuda_pull_array(state.truth, truth_cpu, layer.batch*outputs); |
| | | truth_cpu = calloc(l.batch*outputs, sizeof(float)); |
| | | cuda_pull_array(state.truth, truth_cpu, l.batch*outputs); |
| | | } |
| | | cuda_pull_array(state.input, in_cpu, layer.batch*layer.inputs); |
| | | cuda_pull_array(state.input, in_cpu, l.batch*l.inputs); |
| | | network_state cpu_state; |
| | | cpu_state.train = state.train; |
| | | cpu_state.truth = truth_cpu; |
| | | cpu_state.input = in_cpu; |
| | | forward_detection_layer(layer, cpu_state); |
| | | cuda_push_array(layer.output_gpu, layer.output, layer.batch*outputs); |
| | | cuda_push_array(layer.delta_gpu, layer.delta, layer.batch*outputs); |
| | | forward_detection_layer(l, cpu_state); |
| | | cuda_push_array(l.output_gpu, l.output, l.batch*outputs); |
| | | cuda_push_array(l.delta_gpu, l.delta, l.batch*outputs); |
| | | free(cpu_state.input); |
| | | if(cpu_state.truth) free(cpu_state.truth); |
| | | } |
| | | |
| | | void backward_detection_layer_gpu(detection_layer layer, network_state state) |
| | | void backward_detection_layer_gpu(detection_layer l, network_state state) |
| | | { |
| | | int outputs = get_detection_layer_output_size(layer); |
| | | int outputs = get_detection_layer_output_size(l); |
| | | |
| | | float *in_cpu = calloc(layer.batch*layer.inputs, sizeof(float)); |
| | | float *delta_cpu = calloc(layer.batch*layer.inputs, sizeof(float)); |
| | | float *in_cpu = calloc(l.batch*l.inputs, sizeof(float)); |
| | | float *delta_cpu = calloc(l.batch*l.inputs, sizeof(float)); |
| | | float *truth_cpu = 0; |
| | | if(state.truth){ |
| | | truth_cpu = calloc(layer.batch*outputs, sizeof(float)); |
| | | cuda_pull_array(state.truth, truth_cpu, layer.batch*outputs); |
| | | truth_cpu = calloc(l.batch*outputs, sizeof(float)); |
| | | cuda_pull_array(state.truth, truth_cpu, l.batch*outputs); |
| | | } |
| | | network_state cpu_state; |
| | | cpu_state.train = state.train; |
| | |
| | | cpu_state.truth = truth_cpu; |
| | | cpu_state.delta = delta_cpu; |
| | | |
| | | cuda_pull_array(state.input, in_cpu, layer.batch*layer.inputs); |
| | | cuda_pull_array(layer.delta_gpu, layer.delta, layer.batch*outputs); |
| | | backward_detection_layer(layer, cpu_state); |
| | | cuda_push_array(state.delta, delta_cpu, layer.batch*layer.inputs); |
| | | cuda_pull_array(state.input, in_cpu, l.batch*l.inputs); |
| | | cuda_pull_array(l.delta_gpu, l.delta, l.batch*outputs); |
| | | backward_detection_layer(l, cpu_state); |
| | | cuda_push_array(state.delta, delta_cpu, l.batch*l.inputs); |
| | | |
| | | free(in_cpu); |
| | | free(delta_cpu); |