| | |
| | | #include "deconvolutional_layer.h" |
| | | #include "maxpool_layer.h" |
| | | #include "cost_layer.h" |
| | | #include "normalization_layer.h" |
| | | #include "softmax_layer.h" |
| | | #include "dropout_layer.h" |
| | | #include "route_layer.h" |
| | |
| | | { |
| | | int i; |
| | | for(i = 0; i < net.n; ++i){ |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | forward_convolutional_layer_gpu(*(convolutional_layer *)net.layers[i], state); |
| | | layer l = net.layers[i]; |
| | | if(l.type == CONVOLUTIONAL){ |
| | | forward_convolutional_layer_gpu(l, state); |
| | | } else if(l.type == DECONVOLUTIONAL){ |
| | | forward_deconvolutional_layer_gpu(l, state); |
| | | } else if(l.type == DETECTION){ |
| | | forward_detection_layer_gpu(l, state); |
| | | } else if(l.type == CONNECTED){ |
| | | forward_connected_layer_gpu(l, state); |
| | | } else if(l.type == CROP){ |
| | | forward_crop_layer_gpu(l, state); |
| | | } else if(l.type == COST){ |
| | | forward_cost_layer_gpu(l, state); |
| | | } else if(l.type == SOFTMAX){ |
| | | forward_softmax_layer_gpu(l, state); |
| | | } else if(l.type == MAXPOOL){ |
| | | forward_maxpool_layer_gpu(l, state); |
| | | } else if(l.type == DROPOUT){ |
| | | forward_dropout_layer_gpu(l, state); |
| | | } else if(l.type == ROUTE){ |
| | | forward_route_layer_gpu(l, net); |
| | | } |
| | | else if(net.types[i] == DECONVOLUTIONAL){ |
| | | forward_deconvolutional_layer_gpu(*(deconvolutional_layer *)net.layers[i], state); |
| | | } |
| | | else if(net.types[i] == COST){ |
| | | forward_cost_layer_gpu(*(cost_layer *)net.layers[i], state); |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | forward_connected_layer_gpu(*(connected_layer *)net.layers[i], state); |
| | | } |
| | | else if(net.types[i] == DETECTION){ |
| | | forward_detection_layer_gpu(*(detection_layer *)net.layers[i], state); |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | forward_maxpool_layer_gpu(*(maxpool_layer *)net.layers[i], state); |
| | | } |
| | | else if(net.types[i] == SOFTMAX){ |
| | | forward_softmax_layer_gpu(*(softmax_layer *)net.layers[i], state); |
| | | } |
| | | else if(net.types[i] == DROPOUT){ |
| | | forward_dropout_layer_gpu(*(dropout_layer *)net.layers[i], state); |
| | | } |
| | | else if(net.types[i] == CROP){ |
| | | forward_crop_layer_gpu(*(crop_layer *)net.layers[i], state); |
| | | } |
| | | else if(net.types[i] == ROUTE){ |
| | | forward_route_layer_gpu(*(route_layer *)net.layers[i], net); |
| | | } |
| | | state.input = get_network_output_gpu_layer(net, i); |
| | | state.input = l.output_gpu; |
| | | } |
| | | } |
| | | |
| | |
| | | int i; |
| | | float * original_input = state.input; |
| | | for(i = net.n-1; i >= 0; --i){ |
| | | layer l = net.layers[i]; |
| | | if(i == 0){ |
| | | state.input = original_input; |
| | | state.delta = 0; |
| | | }else{ |
| | | state.input = get_network_output_gpu_layer(net, i-1); |
| | | state.delta = get_network_delta_gpu_layer(net, i-1); |
| | | layer prev = net.layers[i-1]; |
| | | state.input = prev.output_gpu; |
| | | state.delta = prev.delta_gpu; |
| | | } |
| | | |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | backward_convolutional_layer_gpu(*(convolutional_layer *)net.layers[i], state); |
| | | } |
| | | else if(net.types[i] == DECONVOLUTIONAL){ |
| | | backward_deconvolutional_layer_gpu(*(deconvolutional_layer *)net.layers[i], state); |
| | | } |
| | | else if(net.types[i] == COST){ |
| | | backward_cost_layer_gpu(*(cost_layer *)net.layers[i], state); |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | backward_connected_layer_gpu(*(connected_layer *)net.layers[i], state); |
| | | } |
| | | else if(net.types[i] == DETECTION){ |
| | | backward_detection_layer_gpu(*(detection_layer *)net.layers[i], state); |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | backward_maxpool_layer_gpu(*(maxpool_layer *)net.layers[i], state); |
| | | } |
| | | else if(net.types[i] == DROPOUT){ |
| | | backward_dropout_layer_gpu(*(dropout_layer *)net.layers[i], state); |
| | | } |
| | | else if(net.types[i] == SOFTMAX){ |
| | | backward_softmax_layer_gpu(*(softmax_layer *)net.layers[i], state); |
| | | } |
| | | else if(net.types[i] == ROUTE){ |
| | | backward_route_layer_gpu(*(route_layer *)net.layers[i], net); |
| | | if(l.type == CONVOLUTIONAL){ |
| | | backward_convolutional_layer_gpu(l, state); |
| | | } else if(l.type == DECONVOLUTIONAL){ |
| | | backward_deconvolutional_layer_gpu(l, state); |
| | | } else if(l.type == MAXPOOL){ |
| | | if(i != 0) backward_maxpool_layer_gpu(l, state); |
| | | } else if(l.type == DROPOUT){ |
| | | backward_dropout_layer_gpu(l, state); |
| | | } else if(l.type == DETECTION){ |
| | | backward_detection_layer_gpu(l, state); |
| | | } else if(l.type == SOFTMAX){ |
| | | if(i != 0) backward_softmax_layer_gpu(l, state); |
| | | } else if(l.type == CONNECTED){ |
| | | backward_connected_layer_gpu(l, state); |
| | | } else if(l.type == COST){ |
| | | backward_cost_layer_gpu(l, state); |
| | | } else if(l.type == ROUTE){ |
| | | backward_route_layer_gpu(l, net); |
| | | } |
| | | } |
| | | } |
| | |
| | | int i; |
| | | int update_batch = net.batch*net.subdivisions; |
| | | for(i = 0; i < net.n; ++i){ |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | update_convolutional_layer_gpu(layer, update_batch, net.learning_rate, net.momentum, net.decay); |
| | | } |
| | | else if(net.types[i] == DECONVOLUTIONAL){ |
| | | deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i]; |
| | | update_deconvolutional_layer_gpu(layer, net.learning_rate, net.momentum, net.decay); |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | update_connected_layer_gpu(layer, update_batch, net.learning_rate, net.momentum, net.decay); |
| | | layer l = net.layers[i]; |
| | | if(l.type == CONVOLUTIONAL){ |
| | | update_convolutional_layer_gpu(l, update_batch, net.learning_rate, net.momentum, net.decay); |
| | | } else if(l.type == DECONVOLUTIONAL){ |
| | | update_deconvolutional_layer_gpu(l, net.learning_rate, net.momentum, net.decay); |
| | | } else if(l.type == CONNECTED){ |
| | | update_connected_layer_gpu(l, update_batch, net.learning_rate, net.momentum, net.decay); |
| | | } |
| | | } |
| | | } |
| | | |
| | | float * get_network_output_gpu_layer(network net, int i) |
| | | { |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | return ((convolutional_layer *)net.layers[i]) -> output_gpu; |
| | | } |
| | | else if(net.types[i] == DECONVOLUTIONAL){ |
| | | return ((deconvolutional_layer *)net.layers[i]) -> output_gpu; |
| | | } |
| | | else if(net.types[i] == DETECTION){ |
| | | return ((detection_layer *)net.layers[i]) -> output_gpu; |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | return ((connected_layer *)net.layers[i]) -> output_gpu; |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | return ((maxpool_layer *)net.layers[i]) -> output_gpu; |
| | | } |
| | | else if(net.types[i] == CROP){ |
| | | return ((crop_layer *)net.layers[i]) -> output_gpu; |
| | | } |
| | | else if(net.types[i] == SOFTMAX){ |
| | | return ((softmax_layer *)net.layers[i]) -> output_gpu; |
| | | } |
| | | else if(net.types[i] == ROUTE){ |
| | | return ((route_layer *)net.layers[i]) -> output_gpu; |
| | | } |
| | | else if(net.types[i] == DROPOUT){ |
| | | return get_network_output_gpu_layer(net, i-1); |
| | | } |
| | | return 0; |
| | | } |
| | | |
| | | float * get_network_delta_gpu_layer(network net, int i) |
| | | { |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | return layer.delta_gpu; |
| | | } |
| | | else if(net.types[i] == DETECTION){ |
| | | detection_layer layer = *(detection_layer *)net.layers[i]; |
| | | return layer.delta_gpu; |
| | | } |
| | | else if(net.types[i] == DECONVOLUTIONAL){ |
| | | deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i]; |
| | | return layer.delta_gpu; |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | return layer.delta_gpu; |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | return layer.delta_gpu; |
| | | } |
| | | else if(net.types[i] == ROUTE){ |
| | | route_layer layer = *(route_layer *)net.layers[i]; |
| | | return layer.delta_gpu; |
| | | } |
| | | else if(net.types[i] == SOFTMAX){ |
| | | softmax_layer layer = *(softmax_layer *)net.layers[i]; |
| | | return layer.delta_gpu; |
| | | } else if(net.types[i] == DROPOUT){ |
| | | if(i == 0) return 0; |
| | | return get_network_delta_gpu_layer(net, i-1); |
| | | } |
| | | return 0; |
| | | } |
| | | |
| | | float train_network_datum_gpu(network net, float *x, float *y) |
| | | { |
| | | network_state state; |
| | |
| | | |
| | | float *get_network_output_layer_gpu(network net, int i) |
| | | { |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | return layer.output; |
| | | } |
| | | else if(net.types[i] == DECONVOLUTIONAL){ |
| | | deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i]; |
| | | return layer.output; |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | cuda_pull_array(layer.output_gpu, layer.output, layer.outputs*layer.batch); |
| | | return layer.output; |
| | | } |
| | | else if(net.types[i] == DETECTION){ |
| | | detection_layer layer = *(detection_layer *)net.layers[i]; |
| | | int outputs = get_detection_layer_output_size(layer); |
| | | cuda_pull_array(layer.output_gpu, layer.output, outputs*layer.batch); |
| | | return layer.output; |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | return layer.output; |
| | | } |
| | | else if(net.types[i] == SOFTMAX){ |
| | | softmax_layer layer = *(softmax_layer *)net.layers[i]; |
| | | pull_softmax_layer_output(layer); |
| | | return layer.output; |
| | | layer l = net.layers[i]; |
| | | if(l.type == CONVOLUTIONAL){ |
| | | return l.output; |
| | | } else if(l.type == DECONVOLUTIONAL){ |
| | | return l.output; |
| | | } else if(l.type == CONNECTED){ |
| | | cuda_pull_array(l.output_gpu, l.output, l.outputs*l.batch); |
| | | return l.output; |
| | | } else if(l.type == DETECTION){ |
| | | cuda_pull_array(l.output_gpu, l.output, l.outputs*l.batch); |
| | | return l.output; |
| | | } else if(l.type == MAXPOOL){ |
| | | return l.output; |
| | | } else if(l.type == SOFTMAX){ |
| | | pull_softmax_layer_output(l); |
| | | return l.output; |
| | | } |
| | | return 0; |
| | | } |
| | |
| | | float *get_network_output_gpu(network net) |
| | | { |
| | | int i; |
| | | for(i = net.n-1; i > 0; --i) if(net.types[i] != COST) break; |
| | | for(i = net.n-1; i > 0; --i) if(net.layers[i].type != COST) break; |
| | | return get_network_output_layer_gpu(net, i); |
| | | } |
| | | |