| | |
| | | #include "convolutional_layer.h" |
| | | #include "connected_layer.h" |
| | | #include "maxpool_layer.h" |
| | | #include "normalization_layer.h" |
| | | #include "softmax_layer.h" |
| | | #include "list.h" |
| | | #include "option_list.h" |
| | |
| | | int is_connected(section *s); |
| | | int is_maxpool(section *s); |
| | | int is_softmax(section *s); |
| | | int is_normalization(section *s); |
| | | list *read_cfg(char *filename); |
| | | |
| | | void free_section(section *s) |
| | |
| | | int n = option_find_int(options, "filters",1); |
| | | int size = option_find_int(options, "size",1); |
| | | int stride = option_find_int(options, "stride",1); |
| | | int pad = option_find_int(options, "pad",0); |
| | | char *activation_s = option_find_str(options, "activation", "sigmoid"); |
| | | ACTIVATION activation = get_activation(activation_s); |
| | | if(count == 0){ |
| | | h = option_find_int(options, "height",1); |
| | | w = option_find_int(options, "width",1); |
| | | c = option_find_int(options, "channels",1); |
| | | net.batch = option_find_int(options, "batch",1); |
| | | }else{ |
| | | image m = get_network_image_layer(net, count-1); |
| | | h = m.h; |
| | |
| | | c = m.c; |
| | | if(h == 0) error("Layer before convolutional layer must output image."); |
| | | } |
| | | convolutional_layer *layer = make_convolutional_layer(h,w,c,n,size,stride, activation); |
| | | convolutional_layer *layer = make_convolutional_layer(net.batch,h,w,c,n,size,stride,pad,activation); |
| | | char *data = option_find_str(options, "data", 0); |
| | | if(data){ |
| | | char *curr = data; |
| | |
| | | int i; |
| | | int input; |
| | | int output = option_find_int(options, "output",1); |
| | | float dropout = option_find_float(options, "dropout", 0.); |
| | | char *activation_s = option_find_str(options, "activation", "sigmoid"); |
| | | ACTIVATION activation = get_activation(activation_s); |
| | | if(count == 0){ |
| | | input = option_find_int(options, "input",1); |
| | | net.batch = option_find_int(options, "batch",1); |
| | | }else{ |
| | | input = get_network_output_size_layer(net, count-1); |
| | | } |
| | | connected_layer *layer = make_connected_layer(input, output, activation); |
| | | connected_layer *layer = make_connected_layer(net.batch, input, output, dropout, activation); |
| | | char *data = option_find_str(options, "data", 0); |
| | | if(data){ |
| | | char *curr = data; |
| | |
| | | int input; |
| | | if(count == 0){ |
| | | input = option_find_int(options, "input",1); |
| | | net.batch = option_find_int(options, "batch",1); |
| | | }else{ |
| | | input = get_network_output_size_layer(net, count-1); |
| | | } |
| | | softmax_layer *layer = make_softmax_layer(input); |
| | | softmax_layer *layer = make_softmax_layer(net.batch, input); |
| | | option_unused(options); |
| | | return layer; |
| | | } |
| | |
| | | h = option_find_int(options, "height",1); |
| | | w = option_find_int(options, "width",1); |
| | | c = option_find_int(options, "channels",1); |
| | | net.batch = option_find_int(options, "batch",1); |
| | | }else{ |
| | | image m = get_network_image_layer(net, count-1); |
| | | h = m.h; |
| | |
| | | c = m.c; |
| | | if(h == 0) error("Layer before convolutional layer must output image."); |
| | | } |
| | | maxpool_layer *layer = make_maxpool_layer(h,w,c,stride); |
| | | maxpool_layer *layer = make_maxpool_layer(net.batch,h,w,c,stride); |
| | | option_unused(options); |
| | | return layer; |
| | | } |
| | | |
| | | normalization_layer *parse_normalization(list *options, network net, int count) |
| | | { |
| | | int h,w,c; |
| | | int size = option_find_int(options, "size",1); |
| | | float alpha = option_find_float(options, "alpha", 0.); |
| | | float beta = option_find_float(options, "beta", 1.); |
| | | float kappa = option_find_float(options, "kappa", 1.); |
| | | if(count == 0){ |
| | | h = option_find_int(options, "height",1); |
| | | w = option_find_int(options, "width",1); |
| | | c = option_find_int(options, "channels",1); |
| | | net.batch = option_find_int(options, "batch",1); |
| | | }else{ |
| | | image m = get_network_image_layer(net, count-1); |
| | | h = m.h; |
| | | w = m.w; |
| | | c = m.c; |
| | | if(h == 0) error("Layer before convolutional layer must output image."); |
| | | } |
| | | normalization_layer *layer = make_normalization_layer(net.batch,h,w,c,size, alpha, beta, kappa); |
| | | option_unused(options); |
| | | return layer; |
| | | } |
| | |
| | | network parse_network_cfg(char *filename) |
| | | { |
| | | list *sections = read_cfg(filename); |
| | | network net = make_network(sections->size); |
| | | network net = make_network(sections->size, 0); |
| | | |
| | | node *n = sections->front; |
| | | int count = 0; |
| | |
| | | convolutional_layer *layer = parse_convolutional(options, net, count); |
| | | net.types[count] = CONVOLUTIONAL; |
| | | net.layers[count] = layer; |
| | | net.batch = layer->batch; |
| | | }else if(is_connected(s)){ |
| | | connected_layer *layer = parse_connected(options, net, count); |
| | | net.types[count] = CONNECTED; |
| | | net.layers[count] = layer; |
| | | net.batch = layer->batch; |
| | | }else if(is_softmax(s)){ |
| | | softmax_layer *layer = parse_softmax(options, net, count); |
| | | net.types[count] = SOFTMAX; |
| | | net.layers[count] = layer; |
| | | net.batch = layer->batch; |
| | | }else if(is_maxpool(s)){ |
| | | maxpool_layer *layer = parse_maxpool(options, net, count); |
| | | net.types[count] = MAXPOOL; |
| | | net.layers[count] = layer; |
| | | net.batch = layer->batch; |
| | | }else if(is_normalization(s)){ |
| | | normalization_layer *layer = parse_normalization(options, net, count); |
| | | net.types[count] = NORMALIZATION; |
| | | net.layers[count] = layer; |
| | | net.batch = layer->batch; |
| | | }else{ |
| | | fprintf(stderr, "Type not recognized: %s\n", s->type); |
| | | } |
| | |
| | | return (strcmp(s->type, "[soft]")==0 |
| | | || strcmp(s->type, "[softmax]")==0); |
| | | } |
| | | int is_normalization(section *s) |
| | | { |
| | | return (strcmp(s->type, "[lrnorm]")==0 |
| | | || strcmp(s->type, "[localresponsenormalization]")==0); |
| | | } |
| | | |
| | | int read_option(char *s, list *options) |
| | | { |