| | |
| | | #include "connected_layer.h" |
| | | #include "utils.h" |
| | | #include "mini_blas.h" |
| | | |
| | | #include <math.h> |
| | | #include <stdio.h> |
| | |
| | | return layer; |
| | | } |
| | | |
| | | void update_connected_layer(connected_layer layer, double step, double momentum, double decay) |
| | | { |
| | | int i; |
| | | for(i = 0; i < layer.outputs; ++i){ |
| | | layer.bias_momentum[i] = step*(layer.bias_updates[i]) + momentum*layer.bias_momentum[i]; |
| | | layer.biases[i] += layer.bias_momentum[i]; |
| | | } |
| | | for(i = 0; i < layer.outputs*layer.inputs; ++i){ |
| | | layer.weight_momentum[i] = step*(layer.weight_updates[i] - decay*layer.weights[i]) + momentum*layer.weight_momentum[i]; |
| | | layer.weights[i] += layer.weight_momentum[i]; |
| | | } |
| | | memset(layer.bias_updates, 0, layer.outputs*sizeof(double)); |
| | | memset(layer.weight_updates, 0, layer.outputs*layer.inputs*sizeof(double)); |
| | | } |
| | | |
| | | void forward_connected_layer(connected_layer layer, double *input) |
| | | { |
| | | int i, j; |
| | | int i; |
| | | memcpy(layer.output, layer.biases, layer.outputs*sizeof(double)); |
| | | int m = 1; |
| | | int k = layer.inputs; |
| | | int n = layer.outputs; |
| | | double *a = input; |
| | | double *b = layer.weights; |
| | | double *c = layer.output; |
| | | gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); |
| | | for(i = 0; i < layer.outputs; ++i){ |
| | | layer.output[i] = layer.biases[i]; |
| | | for(j = 0; j < layer.inputs; ++j){ |
| | | layer.output[i] += input[j]*layer.weights[i*layer.inputs + j]; |
| | | } |
| | | layer.output[i] = activate(layer.output[i], layer.activation); |
| | | } |
| | | } |
| | | |
| | | void learn_connected_layer(connected_layer layer, double *input) |
| | | { |
| | | int i, j; |
| | | int i; |
| | | for(i = 0; i < layer.outputs; ++i){ |
| | | layer.delta[i] *= gradient(layer.output[i], layer.activation); |
| | | layer.bias_updates[i] += layer.delta[i]; |
| | | for(j = 0; j < layer.inputs; ++j){ |
| | | layer.weight_updates[i*layer.inputs + j] += layer.delta[i]*input[j]; |
| | | } |
| | | } |
| | | } |
| | | |
| | | void update_connected_layer(connected_layer layer, double step, double momentum, double decay) |
| | | { |
| | | int i,j; |
| | | for(i = 0; i < layer.outputs; ++i){ |
| | | layer.bias_momentum[i] = step*(layer.bias_updates[i]) + momentum*layer.bias_momentum[i]; |
| | | layer.biases[i] += layer.bias_momentum[i]; |
| | | for(j = 0; j < layer.inputs; ++j){ |
| | | int index = i*layer.inputs+j; |
| | | layer.weight_momentum[index] = step*(layer.weight_updates[index] - decay*layer.weights[index]) + momentum*layer.weight_momentum[index]; |
| | | layer.weights[index] += layer.weight_momentum[index]; |
| | | } |
| | | } |
| | | memset(layer.bias_updates, 0, layer.outputs*sizeof(double)); |
| | | memset(layer.weight_updates, 0, layer.outputs*layer.inputs*sizeof(double)); |
| | | int m = layer.inputs; |
| | | int k = 1; |
| | | int n = layer.outputs; |
| | | double *a = input; |
| | | double *b = layer.delta; |
| | | double *c = layer.weight_updates; |
| | | gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); |
| | | } |
| | | |
| | | void backward_connected_layer(connected_layer layer, double *input, double *delta) |
| | | { |
| | | int i, j; |
| | | memset(delta, 0, layer.inputs*sizeof(double)); |
| | | |
| | | for(j = 0; j < layer.inputs; ++j){ |
| | | delta[j] = 0; |
| | | for(i = 0; i < layer.outputs; ++i){ |
| | | delta[j] += layer.delta[i]*layer.weights[i*layer.inputs + j]; |
| | | } |
| | | } |
| | | int m = layer.inputs; |
| | | int k = layer.outputs; |
| | | int n = 1; |
| | | |
| | | double *a = layer.weights; |
| | | double *b = layer.delta; |
| | | double *c = delta; |
| | | |
| | | gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); |
| | | } |
| | | /* |
| | | void forward_connected_layer(connected_layer layer, double *input) |
| | | { |
| | | int i, j; |
| | | for(i = 0; i < layer.outputs; ++i){ |
| | | layer.output[i] = layer.biases[i]; |
| | | for(j = 0; j < layer.inputs; ++j){ |
| | | layer.output[i] += input[j]*layer.weights[i*layer.inputs + j]; |
| | | } |
| | | layer.output[i] = activate(layer.output[i], layer.activation); |
| | | } |
| | | } |
| | | void learn_connected_layer(connected_layer layer, double *input) |
| | | { |
| | | int i, j; |
| | | for(i = 0; i < layer.outputs; ++i){ |
| | | layer.delta[i] *= gradient(layer.output[i], layer.activation); |
| | | layer.bias_updates[i] += layer.delta[i]; |
| | | for(j = 0; j < layer.inputs; ++j){ |
| | | layer.weight_updates[i*layer.inputs + j] += layer.delta[i]*input[j]; |
| | | } |
| | | } |
| | | } |
| | | void backward_connected_layer(connected_layer layer, double *input, double *delta) |
| | | { |
| | | int i, j; |
| | | |
| | | for(j = 0; j < layer.inputs; ++j){ |
| | | delta[j] = 0; |
| | | for(i = 0; i < layer.outputs; ++i){ |
| | | delta[j] += layer.delta[i]*layer.weights[i*layer.inputs + j]; |
| | | } |
| | | } |
| | | } |
| | | */ |