| | |
| | | #include "matrix.h" |
| | | #include "utils.h" |
| | | #include "mini_blas.h" |
| | | #include "matrix.h" |
| | | #include "server.h" |
| | | |
| | | #include <time.h> |
| | | #include <stdlib.h> |
| | |
| | | |
| | | void test_convolutional_layer() |
| | | { |
| | | /* |
| | | int i; |
| | | image dog = load_image("data/dog.jpg",224,224); |
| | | network net = parse_network_cfg("cfg/convolutional.cfg"); |
| | |
| | | |
| | | float *gpu_del = calloc(del_size, sizeof(float)); |
| | | memcpy(gpu_del, get_network_delta_layer(net, 0), del_size*sizeof(float)); |
| | | */ |
| | | |
| | | /* |
| | | start = clock(); |
| | |
| | | */ |
| | | } |
| | | |
| | | /* |
| | | void test_col2im() |
| | | { |
| | | float col[] = {1,2,1,2, |
| | |
| | | int ksize = 3; |
| | | int stride = 1; |
| | | int pad = 0; |
| | | col2im_gpu(col, batch, |
| | | channels, height, width, |
| | | ksize, stride, pad, im); |
| | | //col2im_gpu(col, batch, |
| | | // channels, height, width, |
| | | // ksize, stride, pad, im); |
| | | int i; |
| | | for(i = 0; i < 16; ++i)printf("%f,", im[i]); |
| | | printf("\n"); |
| | | /* |
| | | float data_im[] = { |
| | | 1,2,3,4, |
| | | 5,6,7,8, |
| | |
| | | ksize, stride, pad, data_col) ; |
| | | for(i = 0; i < 18; ++i)printf("%f,", data_col[i]); |
| | | printf("\n"); |
| | | */ |
| | | } |
| | | */ |
| | | |
| | | #endif |
| | | |
| | |
| | | int i; |
| | | clock_t start = clock(), end; |
| | | for(i = 0; i < 1000; ++i){ |
| | | im2col_cpu(dog.data,1, dog.c, dog.h, dog.w, size, stride, 0, matrix); |
| | | //im2col_cpu(dog.data,1, dog.c, dog.h, dog.w, size, stride, 0, matrix); |
| | | gemm(0,0,n,mw,mh,1,filters,mh,matrix,mw,1,edge.data,mw); |
| | | } |
| | | end = clock(); |
| | |
| | | |
| | | void verify_convolutional_layer() |
| | | { |
| | | /* |
| | | srand(0); |
| | | int i; |
| | | int n = 1; |
| | |
| | | printf("%f %f\n", avg_image_layer(mj1,0), avg_image_layer(mj2,0)); |
| | | show_image(mj1, "forward jacobian"); |
| | | show_image(mj2, "backward jacobian"); |
| | | */ |
| | | } |
| | | |
| | | void test_load() |
| | |
| | | } |
| | | } |
| | | |
| | | void draw_detection(image im, float *box, int side) |
| | | { |
| | | int j; |
| | | int r, c; |
| | | float amount[5]; |
| | | for(r = 0; r < side*side; ++r){ |
| | | for(j = 0; j < 5; ++j){ |
| | | if(box[r*5] > amount[j]) { |
| | | amount[j] = box[r*5]; |
| | | break; |
| | | } |
| | | } |
| | | } |
| | | float smallest = amount[0]; |
| | | for(j = 1; j < 5; ++j) if(amount[j] < smallest) smallest = amount[j]; |
| | | |
| | | for(r = 0; r < side; ++r){ |
| | | for(c = 0; c < side; ++c){ |
| | | j = (r*side + c) * 5; |
| | | printf("Prob: %f\n", box[j]); |
| | | if(box[j] >= smallest){ |
| | | int d = im.w/side; |
| | | int y = r*d+box[j+1]*d; |
| | | int x = c*d+box[j+2]*d; |
| | | int h = box[j+3]*256; |
| | | int w = box[j+4]*256; |
| | | printf("%f %f %f %f\n", box[j+1], box[j+2], box[j+3], box[j+4]); |
| | | printf("%d %d %d %d\n", x, y, w, h); |
| | | printf("%d %d %d %d\n", x-w/2, y-h/2, x+w/2, y+h/2); |
| | | draw_box(im, x-w/2, y-h/2, x+w/2, y+h/2); |
| | | } |
| | | } |
| | | } |
| | | show_image(im, "box"); |
| | | cvWaitKey(0); |
| | | } |
| | | |
| | | |
| | | void train_detection_net() |
| | | { |
| | | float avg_loss = 1; |
| | |
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | int imgs = 1000/net.batch+1; |
| | | srand(time(0)); |
| | | //srand(23410); |
| | | int i = 0; |
| | | list *plist = get_paths("/home/pjreddie/data/imagenet/horse.txt"); |
| | | char **paths = (char **)list_to_array(plist); |
| | |
| | | while(1){ |
| | | i += 1; |
| | | time=clock(); |
| | | data train = load_data_detection_random(imgs*net.batch, paths, plist->size, 256, 256, 8, 8, 256); |
| | | //translate_data_rows(train, -144); |
| | | data train = load_data_detection_jitter_random(imgs*net.batch, paths, plist->size, 256, 256, 7, 7, 256); |
| | | /* |
| | | image im = float_to_image(224, 224, 3, train.X.vals[0]); |
| | | draw_detection(im, train.y.vals[0], 7); |
| | | */ |
| | | |
| | | normalize_data_rows(train); |
| | | printf("Loaded: %lf seconds\n", sec(clock()-time)); |
| | | time=clock(); |
| | |
| | | avg_loss = avg_loss*.9 + loss*.1; |
| | | printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs*net.batch); |
| | | #endif |
| | | free_data(train); |
| | | if(i%10==0){ |
| | | char buff[256]; |
| | | sprintf(buff, "/home/pjreddie/imagenet_backup/imagenet_%d.cfg", i); |
| | | sprintf(buff, "/home/pjreddie/imagenet_backup/detnet_%d.cfg", i); |
| | | save_network(net, buff); |
| | | } |
| | | free_data(train); |
| | | } |
| | | } |
| | | |
| | | |
| | | void train_imagenet() |
| | | void train_imagenet_distributed(char *address) |
| | | { |
| | | float avg_loss = 1; |
| | | //network net = parse_network_cfg("/home/pjreddie/imagenet_backup/alexnet_1270.cfg"); |
| | | network net = parse_network_cfg("cfg/trained_alexnet.cfg"); |
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | int imgs = 1000/net.batch+1; |
| | | srand(time(0)); |
| | | network net = parse_network_cfg("cfg/net.cfg"); |
| | | set_learning_network(&net, 0, 1, 0); |
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | int imgs = 1; |
| | | int i = 0; |
| | | char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list"); |
| | | list *plist = get_paths("/data/imagenet/cls.train.list"); |
| | | char **paths = (char **)list_to_array(plist); |
| | | printf("%d\n", plist->size); |
| | | clock_t time; |
| | | data train, buffer; |
| | | pthread_t load_thread = load_data_random_thread(imgs*net.batch, paths, plist->size, labels, 1000, 224, 224, &buffer); |
| | | while(1){ |
| | | i += 1; |
| | | |
| | | time=clock(); |
| | | client_update(net, address); |
| | | printf("Updated: %lf seconds\n", sec(clock()-time)); |
| | | |
| | | time=clock(); |
| | | pthread_join(load_thread, 0); |
| | | train = buffer; |
| | | normalize_data_rows(train); |
| | | load_thread = load_data_random_thread(imgs*net.batch, paths, plist->size, labels, 1000, 224, 224, &buffer); |
| | | printf("Loaded: %lf seconds\n", sec(clock()-time)); |
| | | time=clock(); |
| | | |
| | | #ifdef GPU |
| | | float loss = train_network_data_gpu(net, train, imgs); |
| | | avg_loss = avg_loss*.9 + loss*.1; |
| | | printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs*net.batch); |
| | | #endif |
| | | free_data(train); |
| | | } |
| | | } |
| | | |
| | | void train_imagenet() |
| | | { |
| | | float avg_loss = 1; |
| | | //network net = parse_network_cfg("/home/pjreddie/imagenet_backup/alexnet_1270.cfg"); |
| | | srand(time(0)); |
| | | network net = parse_network_cfg("cfg/net.cfg"); |
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | int imgs = 1000/net.batch+1; |
| | | //imgs=1; |
| | | int i = 0; |
| | | char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list"); |
| | | list *plist = get_paths("/data/imagenet/cls.train.list"); |
| | | char **paths = (char **)list_to_array(plist); |
| | | printf("%d\n", plist->size); |
| | | clock_t time; |
| | | pthread_t load_thread; |
| | | data train; |
| | | data buffer; |
| | | load_thread = load_data_random_thread(imgs*net.batch, paths, plist->size, labels, 1000, 224, 224, &buffer); |
| | | while(1){ |
| | | i += 1; |
| | | time=clock(); |
| | | data train = load_data_random(imgs*net.batch, paths, plist->size, labels, 1000, 256, 256); |
| | | //translate_data_rows(train, -144); |
| | | pthread_join(load_thread, 0); |
| | | train = buffer; |
| | | normalize_data_rows(train); |
| | | load_thread = load_data_random_thread(imgs*net.batch, paths, plist->size, labels, 1000, 224, 224, &buffer); |
| | | printf("Loaded: %lf seconds\n", sec(clock()-time)); |
| | | time=clock(); |
| | | #ifdef GPU |
| | |
| | | free_data(train); |
| | | if(i%10==0){ |
| | | char buff[256]; |
| | | sprintf(buff, "/home/pjreddie/imagenet_backup/imagenet_%d.cfg", i); |
| | | sprintf(buff, "/home/pjreddie/imagenet_backup/alexnet_%d.cfg", i); |
| | | save_network(net, buff); |
| | | } |
| | | } |
| | |
| | | |
| | | clock_t time; |
| | | float avg_acc = 0; |
| | | float avg_top5 = 0; |
| | | int splits = 50; |
| | | |
| | | for(i = 0; i < splits; ++i){ |
| | | time=clock(); |
| | | char **part = paths+(i*m/splits); |
| | | int num = (i+1)*m/splits - i*m/splits; |
| | | data val = load_data(part, num, labels, 1000, 256, 256); |
| | | data val = load_data(part, num, labels, 1000, 224, 224); |
| | | |
| | | normalize_data_rows(val); |
| | | printf("Loaded: %d images in %lf seconds\n", val.X.rows, sec(clock()-time)); |
| | | time=clock(); |
| | | #ifdef GPU |
| | | float acc = network_accuracy_gpu(net, val); |
| | | avg_acc += acc; |
| | | printf("%d: %f, %f avg, %lf seconds, %d images\n", i, acc, avg_acc/(i+1), sec(clock()-time), val.X.rows); |
| | | float *acc = network_accuracies_gpu(net, val); |
| | | avg_acc += acc[0]; |
| | | avg_top5 += acc[1]; |
| | | printf("%d: top1: %f, top5: %f, %lf seconds, %d images\n", i, avg_acc/(i+1), avg_top5/(i+1), sec(clock()-time), val.X.rows); |
| | | #endif |
| | | free_data(val); |
| | | } |
| | |
| | | |
| | | void test_detection() |
| | | { |
| | | network net = parse_network_cfg("cfg/detnet_test.cfg"); |
| | | //imgs=1; |
| | | network net = parse_network_cfg("cfg/detnet.test"); |
| | | srand(2222222); |
| | | int i = 0; |
| | | clock_t time; |
| | | char filename[256]; |
| | | int indexes[10]; |
| | | while(1){ |
| | | fgets(filename, 256, stdin); |
| | | image im = load_image_color(filename, 256, 256); |
| | | strtok(filename, "\n"); |
| | | image im = load_image_color(filename, 224, 224); |
| | | z_normalize_image(im); |
| | | printf("%d %d %d\n", im.h, im.w, im.c); |
| | | float *X = im.data; |
| | | time=clock(); |
| | | float *predictions = network_predict(net, X); |
| | | top_predictions(net, 10, indexes); |
| | | printf("%s: Predicted in %f seconds.\n", filename, sec(clock()-time)); |
| | | draw_detection(im, predictions, 7); |
| | | free_image(im); |
| | | } |
| | | } |
| | | |
| | | void test_init(char *cfgfile) |
| | | { |
| | | network net = parse_network_cfg(cfgfile); |
| | | set_batch_network(&net, 1); |
| | | srand(2222222); |
| | | int i = 0; |
| | | char *filename = "data/test.jpg"; |
| | | |
| | | image im = load_image_color(filename, 224, 224); |
| | | z_normalize_image(im); |
| | | float *X = im.data; |
| | | forward_network(net, X, 0, 1); |
| | | for(i = 0; i < net.n; ++i){ |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | image output = get_convolutional_image(layer); |
| | | int size = output.h*output.w*output.c; |
| | | float v = variance_array(layer.output, size); |
| | | float m = mean_array(layer.output, size); |
| | | printf("%d: Convolutional, mean: %f, variance %f\n", i, m, v); |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | int size = layer.outputs; |
| | | float v = variance_array(layer.output, size); |
| | | float m = mean_array(layer.output, size); |
| | | printf("%d: Connected, mean: %f, variance %f\n", i, m, v); |
| | | } |
| | | } |
| | | free_image(im); |
| | | } |
| | | |
| | | void test_imagenet() |
| | | { |
| | | network net = parse_network_cfg("cfg/imagenet_test.cfg"); |
| | |
| | | int indexes[10]; |
| | | while(1){ |
| | | fgets(filename, 256, stdin); |
| | | strtok(filename, "\n"); |
| | | image im = load_image_color(filename, 256, 256); |
| | | z_normalize_image(im); |
| | | printf("%d %d %d\n", im.h, im.w, im.c); |
| | |
| | | |
| | | } |
| | | |
| | | void test_nist() |
| | | void test_nist(char *path) |
| | | { |
| | | srand(222222); |
| | | network net = parse_network_cfg("cfg/nist_final.cfg"); |
| | | network net = parse_network_cfg(path); |
| | | data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10); |
| | | translate_data_rows(test, -144); |
| | | normalize_data_rows(test); |
| | | clock_t start = clock(), end; |
| | | float test_acc = network_accuracy_multi(net, test,16); |
| | | float test_acc = network_accuracy_gpu(net, test); |
| | | end = clock(); |
| | | printf("Accuracy: %f, Time: %lf seconds\n", test_acc,(float)(end-start)/CLOCKS_PER_SEC); |
| | | } |
| | |
| | | network net = parse_network_cfg("cfg/nist.cfg"); |
| | | data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10); |
| | | data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10); |
| | | translate_data_rows(train, -144); |
| | | translate_data_rows(test, -144); |
| | | normalize_data_rows(train); |
| | | normalize_data_rows(test); |
| | | int count = 0; |
| | | int iters = 50000/net.batch; |
| | | int iters = 60000/net.batch + 1; |
| | | //iters = 6000/net.batch + 1; |
| | | while(++count <= 2000){ |
| | | clock_t start = clock(), end; |
| | | float loss = train_network_sgd(net, train, iters); |
| | | float loss = train_network_sgd_gpu(net, train, iters); |
| | | end = clock(); |
| | | float test_acc = network_accuracy(net, test); |
| | | float test_acc = 0; |
| | | if(count%1 == 0) test_acc = network_accuracy_gpu(net, test); |
| | | printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC); |
| | | } |
| | | } |
| | | |
| | | void train_nist_distributed(char *address) |
| | | { |
| | | srand(time(0)); |
| | | network net = parse_network_cfg("cfg/nist.client"); |
| | | data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10); |
| | | //data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10); |
| | | normalize_data_rows(train); |
| | | //normalize_data_rows(test); |
| | | int count = 0; |
| | | int iters = 50000/net.batch; |
| | | iters = 1000/net.batch + 1; |
| | | while(++count <= 2000){ |
| | | clock_t start = clock(), end; |
| | | float loss = train_network_sgd_gpu(net, train, iters); |
| | | client_update(net, address); |
| | | end = clock(); |
| | | //float test_acc = network_accuracy_gpu(net, test); |
| | | //float test_acc = 0; |
| | | printf("%d: Loss: %f, Time: %lf seconds\n", count, loss, (float)(end-start)/CLOCKS_PER_SEC); |
| | | } |
| | | } |
| | | |
| | | void test_ensemble() |
| | | { |
| | | int i; |
| | |
| | | lr /= 2; |
| | | } |
| | | matrix partial = network_predict_data(net, test); |
| | | float acc = matrix_accuracy(test.y, partial); |
| | | float acc = matrix_topk_accuracy(test.y, partial,1); |
| | | printf("Model Accuracy: %lf\n", acc); |
| | | matrix_add_matrix(partial, prediction); |
| | | acc = matrix_accuracy(test.y, prediction); |
| | | acc = matrix_topk_accuracy(test.y, prediction,1); |
| | | printf("Current Ensemble Accuracy: %lf\n", acc); |
| | | free_matrix(partial); |
| | | } |
| | | float acc = matrix_accuracy(test.y, prediction); |
| | | float acc = matrix_topk_accuracy(test.y, prediction,1); |
| | | printf("Full Ensemble Accuracy: %lf\n", acc); |
| | | } |
| | | |
| | |
| | | printf("%d, %d, %d\n", train.X.rows, split[0].X.rows, split[1].X.rows); |
| | | } |
| | | |
| | | void test_im2row() |
| | | { |
| | | int h = 20; |
| | | int w = 20; |
| | | int c = 3; |
| | | int stride = 1; |
| | | int size = 11; |
| | | image test = make_random_image(h,w,c); |
| | | int mc = 1; |
| | | int mw = ((h-size)/stride+1)*((w-size)/stride+1); |
| | | int mh = (size*size*c); |
| | | int msize = mc*mw*mh; |
| | | float *matrix = calloc(msize, sizeof(float)); |
| | | int i; |
| | | for(i = 0; i < 1000; ++i){ |
| | | im2col_cpu(test.data,1, c, h, w, size, stride, 0, matrix); |
| | | //image render = float_to_image(mh, mw, mc, matrix); |
| | | } |
| | | /* |
| | | void test_im2row() |
| | | { |
| | | int h = 20; |
| | | int w = 20; |
| | | int c = 3; |
| | | int stride = 1; |
| | | int size = 11; |
| | | image test = make_random_image(h,w,c); |
| | | int mc = 1; |
| | | int mw = ((h-size)/stride+1)*((w-size)/stride+1); |
| | | int mh = (size*size*c); |
| | | int msize = mc*mw*mh; |
| | | float *matrix = calloc(msize, sizeof(float)); |
| | | int i; |
| | | for(i = 0; i < 1000; ++i){ |
| | | //im2col_cpu(test.data,1, c, h, w, size, stride, 0, matrix); |
| | | //image render = float_to_image(mh, mw, mc, matrix); |
| | | } |
| | | } |
| | | */ |
| | | |
| | | void flip_network() |
| | | { |
| | |
| | | #endif |
| | | } |
| | | |
| | | void test_correct_alexnet() |
| | | { |
| | | char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list"); |
| | | list *plist = get_paths("/data/imagenet/cls.train.list"); |
| | | char **paths = (char **)list_to_array(plist); |
| | | printf("%d\n", plist->size); |
| | | clock_t time; |
| | | int count = 0; |
| | | |
| | | srand(222222); |
| | | network net = parse_network_cfg("cfg/alexnet.test"); |
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | int imgs = 1000/net.batch+1; |
| | | imgs = 1; |
| | | |
| | | while(++count <= 5){ |
| | | time=clock(); |
| | | data train = load_data_random(imgs*net.batch, paths, plist->size, labels, 1000, 256, 256); |
| | | //translate_data_rows(train, -144); |
| | | normalize_data_rows(train); |
| | | printf("Loaded: %lf seconds\n", sec(clock()-time)); |
| | | time=clock(); |
| | | float loss = train_network_data_cpu(net, train, imgs); |
| | | printf("%d: %f, %lf seconds, %d images\n", count, loss, sec(clock()-time), imgs*net.batch); |
| | | free_data(train); |
| | | } |
| | | #ifdef GPU |
| | | count = 0; |
| | | srand(222222); |
| | | net = parse_network_cfg("cfg/alexnet.test"); |
| | | while(++count <= 5){ |
| | | time=clock(); |
| | | data train = load_data_random(imgs*net.batch, paths, plist->size, labels, 1000, 256, 256); |
| | | //translate_data_rows(train, -144); |
| | | normalize_data_rows(train); |
| | | printf("Loaded: %lf seconds\n", sec(clock()-time)); |
| | | time=clock(); |
| | | float loss = train_network_data_gpu(net, train, imgs); |
| | | printf("%d: %f, %lf seconds, %d images\n", count, loss, sec(clock()-time), imgs*net.batch); |
| | | free_data(train); |
| | | } |
| | | #endif |
| | | } |
| | | |
| | | void run_server() |
| | | { |
| | | srand(time(0)); |
| | | network net = parse_network_cfg("cfg/net.cfg"); |
| | | set_batch_network(&net, 1); |
| | | server_update(net); |
| | | } |
| | | void test_client() |
| | | { |
| | | network net = parse_network_cfg("cfg/alexnet.client"); |
| | | clock_t time=clock(); |
| | | client_update(net, "localhost"); |
| | | printf("1\n"); |
| | | client_update(net, "localhost"); |
| | | printf("2\n"); |
| | | client_update(net, "localhost"); |
| | | printf("3\n"); |
| | | printf("Transfered: %lf seconds\n", sec(clock()-time)); |
| | | } |
| | | |
| | | int find_int_arg(int argc, char* argv[], char *arg) |
| | | { |
| | | int i; |
| | | for(i = 0; i < argc-1; ++i) if(0==strcmp(argv[i], arg)) return atoi(argv[i+1]); |
| | | return 0; |
| | | } |
| | | |
| | | int main(int argc, char *argv[]) |
| | | { |
| | |
| | | fprintf(stderr, "usage: %s <function>\n", argv[0]); |
| | | return 0; |
| | | } |
| | | int index = find_int_arg(argc, argv, "-i"); |
| | | #ifdef GPU |
| | | cl_setup(index); |
| | | #endif |
| | | if(0==strcmp(argv[1], "train")) train_imagenet(); |
| | | else if(0==strcmp(argv[1], "detection")) train_detection_net(); |
| | | else if(0==strcmp(argv[1], "asirra")) train_asirra(); |
| | | else if(0==strcmp(argv[1], "nist")) train_nist(); |
| | | else if(0==strcmp(argv[1], "test_correct")) test_gpu_net(); |
| | | else if(0==strcmp(argv[1], "test_correct")) test_correct_alexnet(); |
| | | else if(0==strcmp(argv[1], "test")) test_imagenet(); |
| | | else if(0==strcmp(argv[1], "visualize")) test_visualize(argv[2]); |
| | | else if(0==strcmp(argv[1], "valid")) validate_imagenet(argv[2]); |
| | | else if(0==strcmp(argv[1], "server")) run_server(); |
| | | else if(0==strcmp(argv[1], "detect")) test_detection(); |
| | | #ifdef GPU |
| | | else if(0==strcmp(argv[1], "test_gpu")) test_gpu_blas(); |
| | | #endif |
| | | else if(argc < 3){ |
| | | fprintf(stderr, "usage: %s <function>\n", argv[0]); |
| | | return 0; |
| | | } |
| | | else if(0==strcmp(argv[1], "client")) train_imagenet_distributed(argv[2]); |
| | | else if(0==strcmp(argv[1], "init")) test_init(argv[2]); |
| | | else if(0==strcmp(argv[1], "visualize")) test_visualize(argv[2]); |
| | | else if(0==strcmp(argv[1], "valid")) validate_imagenet(argv[2]); |
| | | else if(0==strcmp(argv[1], "testnist")) test_nist(argv[2]); |
| | | fprintf(stderr, "Success!\n"); |
| | | return 0; |
| | | } |
| | | |
| | | /* |
| | | void visualize_imagenet_topk(char *filename) |
| | | { |
| | | int i,j,k,l; |
| | | int topk = 10; |
| | | network net = parse_network_cfg("cfg/voc_imagenet.cfg"); |
| | | list *plist = get_paths(filename); |
| | | node *n = plist->front; |
| | | int h = voc_size(1), w = voc_size(1); |
| | | int num = get_network_image(net).c; |
| | | image **vizs = calloc(num, sizeof(image*)); |
| | | float **score = calloc(num, sizeof(float *)); |
| | | for(i = 0; i < num; ++i){ |
| | | vizs[i] = calloc(topk, sizeof(image)); |
| | | for(j = 0; j < topk; ++j) vizs[i][j] = make_image(h,w,3); |
| | | score[i] = calloc(topk, sizeof(float)); |
| | | } |
| | | void visualize_imagenet_topk(char *filename) |
| | | { |
| | | int i,j,k,l; |
| | | int topk = 10; |
| | | network net = parse_network_cfg("cfg/voc_imagenet.cfg"); |
| | | list *plist = get_paths(filename); |
| | | node *n = plist->front; |
| | | int h = voc_size(1), w = voc_size(1); |
| | | int num = get_network_image(net).c; |
| | | image **vizs = calloc(num, sizeof(image*)); |
| | | float **score = calloc(num, sizeof(float *)); |
| | | for(i = 0; i < num; ++i){ |
| | | vizs[i] = calloc(topk, sizeof(image)); |
| | | for(j = 0; j < topk; ++j) vizs[i][j] = make_image(h,w,3); |
| | | score[i] = calloc(topk, sizeof(float)); |
| | | } |
| | | |
| | | int count = 0; |
| | | while(n){ |
| | | ++count; |
| | | char *image_path = (char *)n->val; |
| | | image im = load_image(image_path, 0, 0); |
| | | n = n->next; |
| | | if(im.h < 200 || im.w < 200) continue; |
| | | printf("Processing %dx%d image\n", im.h, im.w); |
| | | resize_network(net, im.h, im.w, im.c); |
| | | //scale_image(im, 1./255); |
| | | translate_image(im, -144); |
| | | forward_network(net, im.data, 0, 0); |
| | | image out = get_network_image(net); |
| | | int count = 0; |
| | | while(n){ |
| | | ++count; |
| | | char *image_path = (char *)n->val; |
| | | image im = load_image(image_path, 0, 0); |
| | | n = n->next; |
| | | if(im.h < 200 || im.w < 200) continue; |
| | | printf("Processing %dx%d image\n", im.h, im.w); |
| | | resize_network(net, im.h, im.w, im.c); |
| | | //scale_image(im, 1./255); |
| | | translate_image(im, -144); |
| | | forward_network(net, im.data, 0, 0); |
| | | image out = get_network_image(net); |
| | | |
| | | int dh = (im.h - h)/(out.h-1); |
| | | int dw = (im.w - w)/(out.w-1); |
| | | //printf("%d %d\n", dh, dw); |
| | | for(k = 0; k < out.c; ++k){ |
| | | float topv = 0; |
| | | int topi = -1; |
| | | int topj = -1; |
| | | for(i = 0; i < out.h; ++i){ |
| | | for(j = 0; j < out.w; ++j){ |
| | | float val = get_pixel(out, i, j, k); |
| | | if(val > topv){ |
| | | topv = val; |
| | | topi = i; |
| | | topj = j; |
| | | } |
| | | } |
| | | } |
| | | if(topv){ |
| | | image sub = get_sub_image(im, dh*topi, dw*topj, h, w); |
| | | for(l = 0; l < topk; ++l){ |
| | | if(topv > score[k][l]){ |
| | | float swap = score[k][l]; |
| | | score[k][l] = topv; |
| | | topv = swap; |
| | | int dh = (im.h - h)/(out.h-1); |
| | | int dw = (im.w - w)/(out.w-1); |
| | | //printf("%d %d\n", dh, dw); |
| | | for(k = 0; k < out.c; ++k){ |
| | | float topv = 0; |
| | | int topi = -1; |
| | | int topj = -1; |
| | | for(i = 0; i < out.h; ++i){ |
| | | for(j = 0; j < out.w; ++j){ |
| | | float val = get_pixel(out, i, j, k); |
| | | if(val > topv){ |
| | | topv = val; |
| | | topi = i; |
| | | topj = j; |
| | | } |
| | | } |
| | | } |
| | | if(topv){ |
| | | image sub = get_sub_image(im, dh*topi, dw*topj, h, w); |
| | | for(l = 0; l < topk; ++l){ |
| | | if(topv > score[k][l]){ |
| | | float swap = score[k][l]; |
| | | score[k][l] = topv; |
| | | topv = swap; |
| | | |
| | | image swapi = vizs[k][l]; |
| | | vizs[k][l] = sub; |
| | | sub = swapi; |
| | | } |
| | | } |
| | | free_image(sub); |
| | | } |
| | | } |
| | | free_image(im); |
| | | if(count%50 == 0){ |
| | | image grid = grid_images(vizs, num, topk); |
| | | //show_image(grid, "IMAGENET Visualization"); |
| | | save_image(grid, "IMAGENET Grid Single Nonorm"); |
| | | free_image(grid); |
| | | } |
| | | } |
| | | //cvWaitKey(0); |
| | | image swapi = vizs[k][l]; |
| | | vizs[k][l] = sub; |
| | | sub = swapi; |
| | | } |
| | | } |
| | | free_image(sub); |
| | | } |
| | | } |
| | | free_image(im); |
| | | if(count%50 == 0){ |
| | | image grid = grid_images(vizs, num, topk); |
| | | //show_image(grid, "IMAGENET Visualization"); |
| | | save_image(grid, "IMAGENET Grid Single Nonorm"); |
| | | free_image(grid); |
| | | } |
| | | } |
| | | //cvWaitKey(0); |
| | | } |
| | | |
| | | void visualize_imagenet_features(char *filename) |