| | |
| | | #include "network.h" |
| | | #include "region_layer.h" |
| | | #include "detection_layer.h" |
| | | #include "cost_layer.h" |
| | | #include "utils.h" |
| | |
| | | |
| | | char *voc_names[] = {"aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"}; |
| | | |
| | | void draw_swag(image im, float *box, int side, int objectness, char *label, float thresh) |
| | | void draw_swag(image im, int num, float thresh, box *boxes, float **probs, char *label) |
| | | { |
| | | int classes = 20; |
| | | int elems = 4+classes+objectness; |
| | | int j; |
| | | int r, c; |
| | | int i; |
| | | |
| | | for(r = 0; r < side; ++r){ |
| | | for(c = 0; c < side; ++c){ |
| | | j = (r*side + c) * elems; |
| | | float scale = 1; |
| | | if(objectness) scale = 1 - box[j++]; |
| | | int class = max_index(box+j, classes); |
| | | if(scale * box[j+class] > thresh){ |
| | | int width = sqrt(scale*box[j+class])*5 + 1; |
| | | printf("%f %s\n", scale * box[j+class], voc_names[class]); |
| | | float red = get_color(0,class,classes); |
| | | float green = get_color(1,class,classes); |
| | | float blue = get_color(2,class,classes); |
| | | for(i = 0; i < num; ++i){ |
| | | int class = max_index(probs[i], classes); |
| | | float prob = probs[i][class]; |
| | | if(prob > thresh){ |
| | | int width = pow(prob, 1./3.)*10 + 1; |
| | | printf("%f %s\n", prob, voc_names[class]); |
| | | float red = get_color(0,class,classes); |
| | | float green = get_color(1,class,classes); |
| | | float blue = get_color(2,class,classes); |
| | | //red = green = blue = 0; |
| | | box b = boxes[i]; |
| | | |
| | | j += classes; |
| | | float x = box[j+0]; |
| | | float y = box[j+1]; |
| | | x = (x+c)/side; |
| | | y = (y+r)/side; |
| | | float w = box[j+2]; //*maxwidth; |
| | | float h = box[j+3]; //*maxheight; |
| | | h = h*h; |
| | | w = w*w; |
| | | |
| | | int left = (x-w/2)*im.w; |
| | | int right = (x+w/2)*im.w; |
| | | int top = (y-h/2)*im.h; |
| | | int bot = (y+h/2)*im.h; |
| | | draw_box_width(im, left, top, right, bot, width, red, green, blue); |
| | | } |
| | | int left = (b.x-b.w/2.)*im.w; |
| | | int right = (b.x+b.w/2.)*im.w; |
| | | int top = (b.y-b.h/2.)*im.h; |
| | | int bot = (b.y+b.h/2.)*im.h; |
| | | draw_box_width(im, left, top, right, bot, width, red, green, blue); |
| | | } |
| | | } |
| | | show_image(im, label); |
| | |
| | | |
| | | void train_swag(char *cfgfile, char *weightfile) |
| | | { |
| | | //char *train_images = "/home/pjreddie/data/voc/person_detection/2010_person.txt"; |
| | | //char *train_images = "/home/pjreddie/data/people-art/train.txt"; |
| | | //char *train_images = "/home/pjreddie/data/voc/test/2012_trainval.txt"; |
| | | char *train_images = "/home/pjreddie/data/voc/test/train.txt"; |
| | | //char *train_images = "/home/pjreddie/data/voc/test/train_all.txt"; |
| | | //char *train_images = "/home/pjreddie/data/voc/test/2007_trainval.txt"; |
| | | char *backup_directory = "/home/pjreddie/backup/"; |
| | | srand(time(0)); |
| | | data_seed = time(0); |
| | |
| | | |
| | | int side = l.side; |
| | | int classes = l.classes; |
| | | float jitter = l.jitter; |
| | | |
| | | list *plist = get_paths(train_images); |
| | | //int N = plist->size; |
| | |
| | | args.n = imgs; |
| | | args.m = plist->size; |
| | | args.classes = classes; |
| | | args.jitter = jitter; |
| | | args.num_boxes = side; |
| | | args.d = &buffer; |
| | | args.type = REGION_DATA; |
| | |
| | | |
| | | printf("Loaded: %lf seconds\n", sec(clock()-time)); |
| | | |
| | | /* |
| | | image im = float_to_image(net.w, net.h, 3, train.X.vals[113]); |
| | | image copy = copy_image(im); |
| | | draw_swag(copy, train.y.vals[113], 7, "truth"); |
| | | cvWaitKey(0); |
| | | free_image(copy); |
| | | */ |
| | | /* |
| | | image im = float_to_image(net.w, net.h, 3, train.X.vals[113]); |
| | | image copy = copy_image(im); |
| | | draw_swag(copy, train.y.vals[113], 7, "truth"); |
| | | cvWaitKey(0); |
| | | free_image(copy); |
| | | */ |
| | | |
| | | time=clock(); |
| | | float loss = train_network(net, train); |
| | | if (avg_loss < 0) avg_loss = loss; |
| | | avg_loss = avg_loss*.9 + loss*.1; |
| | | |
| | | printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs); |
| | | printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs); |
| | | if(i%1000==0){ |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i); |
| | |
| | | save_weights(net, buff); |
| | | } |
| | | |
| | | void convert_swag_detections(float *predictions, int classes, int num, int square, int side, int w, int h, float thresh, float **probs, box *boxes) |
| | | void convert_swag_detections(float *predictions, int classes, int num, int square, int side, int w, int h, float thresh, float **probs, box *boxes, int only_objectness) |
| | | { |
| | | int i,j,n; |
| | | //int per_cell = 5*num+classes; |
| | |
| | | float prob = scale*predictions[class_index+j]; |
| | | probs[index][j] = (prob > thresh) ? prob : 0; |
| | | } |
| | | if(only_objectness){ |
| | | probs[index][0] = scale; |
| | | } |
| | | } |
| | | } |
| | | } |
| | |
| | | srand(time(0)); |
| | | |
| | | char *base = "results/comp4_det_test_"; |
| | | //base = "/home/pjreddie/comp4_det_test_"; |
| | | //list *plist = get_paths("/home/pjreddie/data/people-art/test.txt"); |
| | | //list *plist = get_paths("/home/pjreddie/data/cubist/test.txt"); |
| | | list *plist = get_paths("/home/pjreddie/data/voc/test/2007_test.txt"); |
| | | char **paths = (char **)list_to_array(plist); |
| | | |
| | |
| | | int nms = 1; |
| | | float iou_thresh = .5; |
| | | |
| | | int nthreads = 8; |
| | | int nthreads = 2; |
| | | image *val = calloc(nthreads, sizeof(image)); |
| | | image *val_resized = calloc(nthreads, sizeof(image)); |
| | | image *buf = calloc(nthreads, sizeof(image)); |
| | |
| | | float *predictions = network_predict(net, X); |
| | | int w = val[t].w; |
| | | int h = val[t].h; |
| | | convert_swag_detections(predictions, classes, l.n, square, side, w, h, thresh, probs, boxes); |
| | | if (nms) do_nms(boxes, probs, side*side*l.n, classes, iou_thresh); |
| | | convert_swag_detections(predictions, classes, l.n, square, side, w, h, thresh, probs, boxes, 0); |
| | | if (nms) do_nms_sort(boxes, probs, side*side*l.n, classes, iou_thresh); |
| | | print_swag_detections(fps, id, boxes, probs, side*side*l.n, classes, w, h); |
| | | free(id); |
| | | free_image(val[t]); |
| | |
| | | fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start)); |
| | | } |
| | | |
| | | void validate_swag_recall(char *cfgfile, char *weightfile) |
| | | { |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | set_batch_network(&net, 1); |
| | | fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | srand(time(0)); |
| | | |
| | | char *base = "results/comp4_det_test_"; |
| | | list *plist = get_paths("/home/pjreddie/data/voc/test/2007_test.txt"); |
| | | char **paths = (char **)list_to_array(plist); |
| | | |
| | | layer l = net.layers[net.n-1]; |
| | | int classes = l.classes; |
| | | int square = l.sqrt; |
| | | int side = l.side; |
| | | |
| | | int j, k; |
| | | FILE **fps = calloc(classes, sizeof(FILE *)); |
| | | for(j = 0; j < classes; ++j){ |
| | | char buff[1024]; |
| | | snprintf(buff, 1024, "%s%s.txt", base, voc_names[j]); |
| | | fps[j] = fopen(buff, "w"); |
| | | } |
| | | box *boxes = calloc(side*side*l.n, sizeof(box)); |
| | | float **probs = calloc(side*side*l.n, sizeof(float *)); |
| | | for(j = 0; j < side*side*l.n; ++j) probs[j] = calloc(classes, sizeof(float *)); |
| | | |
| | | int m = plist->size; |
| | | int i=0; |
| | | |
| | | float thresh = .001; |
| | | int nms = 0; |
| | | float iou_thresh = .5; |
| | | float nms_thresh = .5; |
| | | |
| | | int total = 0; |
| | | int correct = 0; |
| | | int proposals = 0; |
| | | float avg_iou = 0; |
| | | |
| | | for(i = 0; i < m; ++i){ |
| | | char *path = paths[i]; |
| | | image orig = load_image_color(path, 0, 0); |
| | | image sized = resize_image(orig, net.w, net.h); |
| | | char *id = basecfg(path); |
| | | float *predictions = network_predict(net, sized.data); |
| | | convert_swag_detections(predictions, classes, l.n, square, side, 1, 1, thresh, probs, boxes, 1); |
| | | if (nms) do_nms(boxes, probs, side*side*l.n, 1, nms_thresh); |
| | | |
| | | char *labelpath = find_replace(path, "images", "labels"); |
| | | labelpath = find_replace(labelpath, "JPEGImages", "labels"); |
| | | labelpath = find_replace(labelpath, ".jpg", ".txt"); |
| | | labelpath = find_replace(labelpath, ".JPEG", ".txt"); |
| | | |
| | | int num_labels = 0; |
| | | box_label *truth = read_boxes(labelpath, &num_labels); |
| | | for(k = 0; k < side*side*l.n; ++k){ |
| | | if(probs[k][0] > thresh){ |
| | | ++proposals; |
| | | } |
| | | } |
| | | for (j = 0; j < num_labels; ++j) { |
| | | ++total; |
| | | box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h}; |
| | | float best_iou = 0; |
| | | for(k = 0; k < side*side*l.n; ++k){ |
| | | float iou = box_iou(boxes[k], t); |
| | | if(probs[k][0] > thresh && iou > best_iou){ |
| | | best_iou = iou; |
| | | } |
| | | } |
| | | avg_iou += best_iou; |
| | | if(best_iou > iou_thresh){ |
| | | ++correct; |
| | | } |
| | | } |
| | | |
| | | fprintf(stderr, "%5d %5d %5d\tRPs/Img: %.2f\tIOU: %.2f%%\tRecall:%.2f%%\n", i, correct, total, (float)proposals/(i+1), avg_iou*100/total, 100.*correct/total); |
| | | free(id); |
| | | free_image(orig); |
| | | free_image(sized); |
| | | } |
| | | } |
| | | |
| | | void test_swag(char *cfgfile, char *weightfile, char *filename, float thresh) |
| | | { |
| | | |
| | |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | detection_layer layer = get_network_detection_layer(net); |
| | | region_layer l = net.layers[net.n-1]; |
| | | set_batch_network(&net, 1); |
| | | srand(2222222); |
| | | clock_t time; |
| | | char buff[256]; |
| | | char *input = buff; |
| | | int j; |
| | | float nms=.5; |
| | | box *boxes = calloc(l.side*l.side*l.n, sizeof(box)); |
| | | float **probs = calloc(l.side*l.side*l.n, sizeof(float *)); |
| | | for(j = 0; j < l.side*l.side*l.n; ++j) probs[j] = calloc(l.classes, sizeof(float *)); |
| | | while(1){ |
| | | if(filename){ |
| | | strncpy(input, filename, 256); |
| | |
| | | time=clock(); |
| | | float *predictions = network_predict(net, X); |
| | | printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time)); |
| | | draw_swag(im, predictions, 7, layer.objectness, "predictions", thresh); |
| | | convert_swag_detections(predictions, l.classes, l.n, l.sqrt, l.side, 1, 1, thresh, probs, boxes, 0); |
| | | if (nms) do_nms_sort(boxes, probs, l.side*l.side*l.n, l.classes, nms); |
| | | draw_swag(im, l.side*l.side*l.n, thresh, boxes, probs, "predictions"); |
| | | |
| | | show_image(sized, "resized"); |
| | | free_image(im); |
| | | free_image(sized); |
| | | #ifdef OPENCV |
| | |
| | | } |
| | | } |
| | | |
| | | |
| | | /* |
| | | #ifdef OPENCV |
| | | image ipl_to_image(IplImage* src); |
| | | #include "opencv2/highgui/highgui_c.h" |
| | | #include "opencv2/imgproc/imgproc_c.h" |
| | | |
| | | void demo_swag(char *cfgfile, char *weightfile, float thresh) |
| | | { |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | region_layer layer = net.layers[net.n-1]; |
| | | CvCapture *capture = cvCaptureFromCAM(-1); |
| | | set_batch_network(&net, 1); |
| | | srand(2222222); |
| | | while(1){ |
| | | IplImage* frame = cvQueryFrame(capture); |
| | | image im = ipl_to_image(frame); |
| | | cvReleaseImage(&frame); |
| | | rgbgr_image(im); |
| | | |
| | | image sized = resize_image(im, net.w, net.h); |
| | | float *X = sized.data; |
| | | float *predictions = network_predict(net, X); |
| | | draw_swag(im, predictions, layer.side, layer.n, "predictions", thresh); |
| | | free_image(im); |
| | | free_image(sized); |
| | | cvWaitKey(10); |
| | | } |
| | | } |
| | | #else |
| | | void demo_swag(char *cfgfile, char *weightfile, float thresh){} |
| | | #endif |
| | | */ |
| | | |
| | | void demo_swag(char *cfgfile, char *weightfile, float thresh); |
| | | #ifndef GPU |
| | | void demo_swag(char *cfgfile, char *weightfile, float thresh){} |
| | | #endif |
| | | |
| | | void run_swag(int argc, char **argv) |
| | | { |
| | | float thresh = find_float_arg(argc, argv, "-thresh", .2); |
| | |
| | | if(0==strcmp(argv[2], "test")) test_swag(cfg, weights, filename, thresh); |
| | | else if(0==strcmp(argv[2], "train")) train_swag(cfg, weights); |
| | | else if(0==strcmp(argv[2], "valid")) validate_swag(cfg, weights); |
| | | else if(0==strcmp(argv[2], "recall")) validate_swag_recall(cfg, weights); |
| | | else if(0==strcmp(argv[2], "demo")) demo_swag(cfg, weights, thresh); |
| | | } |