| | |
| | | |
| | | #include "crop_layer.h" |
| | | #include "connected_layer.h" |
| | | #include "rnn_layer.h" |
| | | #include "local_layer.h" |
| | | #include "convolutional_layer.h" |
| | | #include "activation_layer.h" |
| | | #include "deconvolutional_layer.h" |
| | | #include "detection_layer.h" |
| | | #include "normalization_layer.h" |
| | |
| | | #include "softmax_layer.h" |
| | | #include "dropout_layer.h" |
| | | #include "route_layer.h" |
| | | #include "shortcut_layer.h" |
| | | |
| | | int get_current_batch(network net) |
| | | { |
| | |
| | | return batch_num; |
| | | } |
| | | |
| | | void reset_momentum(network net) |
| | | { |
| | | if (net.momentum == 0) return; |
| | | net.learning_rate = 0; |
| | | net.momentum = 0; |
| | | net.decay = 0; |
| | | #ifdef GPU |
| | | if(gpu_index >= 0) update_network_gpu(net); |
| | | #endif |
| | | } |
| | | |
| | | float get_current_rate(network net) |
| | | { |
| | | int batch_num = get_current_batch(net); |
| | |
| | | for(i = 0; i < net.num_steps; ++i){ |
| | | if(net.steps[i] > batch_num) return rate; |
| | | rate *= net.scales[i]; |
| | | if(net.steps[i] > batch_num - 1) reset_momentum(net); |
| | | } |
| | | return rate; |
| | | case EXP: |
| | |
| | | switch(a){ |
| | | case CONVOLUTIONAL: |
| | | return "convolutional"; |
| | | case ACTIVE: |
| | | return "activation"; |
| | | case LOCAL: |
| | | return "local"; |
| | | case DECONVOLUTIONAL: |
| | | return "deconvolutional"; |
| | | case CONNECTED: |
| | | return "connected"; |
| | | case RNN: |
| | | return "rnn"; |
| | | case MAXPOOL: |
| | | return "maxpool"; |
| | | case AVGPOOL: |
| | |
| | | return "cost"; |
| | | case ROUTE: |
| | | return "route"; |
| | | case SHORTCUT: |
| | | return "shortcut"; |
| | | case NORMALIZATION: |
| | | return "normalization"; |
| | | default: |
| | |
| | | { |
| | | int i; |
| | | for(i = 0; i < net.n; ++i){ |
| | | state.index = i; |
| | | layer l = net.layers[i]; |
| | | if(l.delta){ |
| | | scal_cpu(l.outputs * l.batch, 0, l.delta, 1); |
| | |
| | | forward_convolutional_layer(l, state); |
| | | } else if(l.type == DECONVOLUTIONAL){ |
| | | forward_deconvolutional_layer(l, state); |
| | | } else if(l.type == ACTIVE){ |
| | | forward_activation_layer(l, state); |
| | | } else if(l.type == LOCAL){ |
| | | forward_local_layer(l, state); |
| | | } else if(l.type == NORMALIZATION){ |
| | | forward_normalization_layer(l, state); |
| | | } else if(l.type == DETECTION){ |
| | | forward_detection_layer(l, state); |
| | | } else if(l.type == CONNECTED){ |
| | | forward_connected_layer(l, state); |
| | | } else if(l.type == RNN){ |
| | | forward_rnn_layer(l, state); |
| | | } else if(l.type == CROP){ |
| | | forward_crop_layer(l, state); |
| | | } else if(l.type == COST){ |
| | |
| | | forward_dropout_layer(l, state); |
| | | } else if(l.type == ROUTE){ |
| | | forward_route_layer(l, net); |
| | | } else if(l.type == SHORTCUT){ |
| | | forward_shortcut_layer(l, state); |
| | | } |
| | | state.input = l.output; |
| | | } |
| | |
| | | update_deconvolutional_layer(l, rate, net.momentum, net.decay); |
| | | } else if(l.type == CONNECTED){ |
| | | update_connected_layer(l, update_batch, rate, net.momentum, net.decay); |
| | | } else if(l.type == RNN){ |
| | | update_rnn_layer(l, update_batch, rate, net.momentum, net.decay); |
| | | } else if(l.type == LOCAL){ |
| | | update_local_layer(l, update_batch, rate, net.momentum, net.decay); |
| | | } |
| | | } |
| | | } |
| | |
| | | float *original_input = state.input; |
| | | float *original_delta = state.delta; |
| | | for(i = net.n-1; i >= 0; --i){ |
| | | state.index = i; |
| | | if(i == 0){ |
| | | state.input = original_input; |
| | | state.delta = original_delta; |
| | |
| | | backward_convolutional_layer(l, state); |
| | | } else if(l.type == DECONVOLUTIONAL){ |
| | | backward_deconvolutional_layer(l, state); |
| | | } else if(l.type == ACTIVE){ |
| | | backward_activation_layer(l, state); |
| | | } else if(l.type == NORMALIZATION){ |
| | | backward_normalization_layer(l, state); |
| | | } else if(l.type == MAXPOOL){ |
| | |
| | | if(i != 0) backward_softmax_layer(l, state); |
| | | } else if(l.type == CONNECTED){ |
| | | backward_connected_layer(l, state); |
| | | } else if(l.type == RNN){ |
| | | backward_rnn_layer(l, state); |
| | | } else if(l.type == LOCAL){ |
| | | backward_local_layer(l, state); |
| | | } else if(l.type == COST){ |
| | | backward_cost_layer(l, state); |
| | | } else if(l.type == ROUTE){ |
| | | backward_route_layer(l, net); |
| | | } else if(l.type == SHORTCUT){ |
| | | backward_shortcut_layer(l, state); |
| | | } |
| | | } |
| | | } |
| | |
| | | if(gpu_index >= 0) return train_network_datum_gpu(net, x, y); |
| | | #endif |
| | | network_state state; |
| | | state.index = 0; |
| | | state.net = net; |
| | | state.input = x; |
| | | state.delta = 0; |
| | | state.truth = y; |
| | |
| | | { |
| | | int i,j; |
| | | network_state state; |
| | | state.index = 0; |
| | | state.net = net; |
| | | state.train = 1; |
| | | state.delta = 0; |
| | | float sum = 0; |
| | |
| | | layer l = net->layers[i]; |
| | | if(l.type == CONVOLUTIONAL){ |
| | | resize_convolutional_layer(&l, w, h); |
| | | }else if(l.type == CROP){ |
| | | resize_crop_layer(&l, w, h); |
| | | }else if(l.type == MAXPOOL){ |
| | | resize_maxpool_layer(&l, w, h); |
| | | }else if(l.type == AVGPOOL){ |
| | | resize_avgpool_layer(&l, w, h); |
| | | break; |
| | | }else if(l.type == NORMALIZATION){ |
| | | resize_normalization_layer(&l, w, h); |
| | | }else if(l.type == COST){ |
| | |
| | | net->layers[i] = l; |
| | | w = l.out_w; |
| | | h = l.out_h; |
| | | if(l.type == AVGPOOL) break; |
| | | } |
| | | //fprintf(stderr, " Done!\n"); |
| | | return 0; |
| | |
| | | #endif |
| | | |
| | | network_state state; |
| | | state.net = net; |
| | | state.index = 0; |
| | | state.input = input; |
| | | state.truth = 0; |
| | | state.train = 0; |