| | |
| | | #include <opencv2/opencv.hpp> // C++ |
| | | #include "opencv2/highgui/highgui_c.h" // C |
| | | #include "opencv2/imgproc/imgproc_c.h" // C |
| | | |
| | | #include <opencv2/cudaoptflow.hpp> |
| | | #include <opencv2/cudaimgproc.hpp> |
| | | #include <opencv2/cudaarithm.hpp> |
| | | #include "opencv2/core/cuda.hpp" |
| | | #endif // OPENCV |
| | | |
| | | #ifdef YOLODLL_EXPORTS |
| | |
| | | |
| | | class Detector { |
| | | std::shared_ptr<void> detector_gpu_ptr; |
| | | std::deque<std::vector<bbox_t>> prev_bbox_vec_deque; |
| | | public: |
| | | float nms = .4; |
| | | |
| | |
| | | YOLODLL_API std::vector<bbox_t> detect(image_t img, float thresh = 0.2, bool use_mean = false); |
| | | static YOLODLL_API image_t load_image(std::string image_filename); |
| | | static YOLODLL_API void free_image(image_t m); |
| | | YOLODLL_API int get_net_width(); |
| | | YOLODLL_API int get_net_height(); |
| | | YOLODLL_API int get_net_width() const; |
| | | YOLODLL_API int get_net_height() const; |
| | | |
| | | YOLODLL_API std::vector<bbox_t> tracking(std::vector<bbox_t> cur_bbox_vec, int const frames_story = 6); |
| | | |
| | |
| | | std::vector<bbox_t> detect(cv::Mat mat, float thresh = 0.2, bool use_mean = false) |
| | | { |
| | | if(mat.data == NULL) |
| | | throw std::runtime_error("file not found"); |
| | | throw std::runtime_error("Image is empty"); |
| | | auto image_ptr = mat_to_image_resize(mat); |
| | | return detect_resized(*image_ptr, mat.size(), thresh, use_mean); |
| | | } |
| | | |
| | | std::vector<bbox_t> detect_resized(image_t img, cv::Size init_size, float thresh = 0.2, bool use_mean = false) |
| | | { |
| | | if (img.data == NULL) |
| | | throw std::runtime_error("Image is empty"); |
| | | auto detection_boxes = detect(img, thresh, use_mean); |
| | | float wk = (float)init_size.width / img.w, hk = (float)init_size.height / img.h; |
| | | for (auto &i : detection_boxes) i.x *= wk, i.w *= wk, i.y *= hk, i.h *= hk; |
| | | return detection_boxes; |
| | | } |
| | | |
| | | std::shared_ptr<image_t> mat_to_image_resize(cv::Mat mat) const |
| | | { |
| | | if (mat.data == NULL) return std::shared_ptr<image_t>(NULL); |
| | | cv::Mat det_mat; |
| | | cv::resize(mat, det_mat, cv::Size(get_net_width(), get_net_height())); |
| | | auto image_ptr = mat_to_image(det_mat); |
| | | auto detection_boxes = detect(*image_ptr, thresh, use_mean); |
| | | float wk = (float)mat.cols / det_mat.cols, hk = (float)mat.rows / det_mat.rows; |
| | | for (auto &i : detection_boxes) i.x*=wk, i.w*= wk, i.y*=hk, i.h*=hk; |
| | | return detection_boxes; |
| | | return mat_to_image(det_mat); |
| | | } |
| | | |
| | | static std::shared_ptr<image_t> mat_to_image(cv::Mat img) |
| | |
| | | } |
| | | |
| | | private: |
| | | |
| | | static image_t ipl_to_image(IplImage* src) |
| | | { |
| | | unsigned char *data = (unsigned char *)src->imageData; |
| | |
| | | |
| | | #endif // OPENCV |
| | | |
| | | std::deque<std::vector<bbox_t>> prev_bbox_vec_deque; |
| | | }; |
| | | |
| | | |
| | | #if defined(TRACK_OPTFLOW) && defined(OPENCV) |
| | | |
| | | class Tracker_optflow { |
| | | public: |
| | | |
| | | |
| | | // just to avoid extra allocations |
| | | cv::cuda::GpuMat src_mat_gpu; |
| | | cv::cuda::GpuMat dst_mat_gpu, dst_grey_gpu; |
| | | cv::cuda::GpuMat tmp_grey_gpu; |
| | | cv::cuda::GpuMat prev_pts_flow_gpu, cur_pts_flow_gpu; |
| | | cv::cuda::GpuMat status_gpu, err_gpu; |
| | | |
| | | cv::cuda::GpuMat src_grey_gpu; // used in both functions |
| | | cv::Ptr<cv::cuda::SparsePyrLKOpticalFlow> sync_PyrLKOpticalFlow_gpu; |
| | | |
| | | void update_tracking_flow(cv::Mat src_mat, int gpu_id = 0) |
| | | { |
| | | int const old_gpu_id = cv::cuda::getDevice(); |
| | | static const int gpu_count = cv::cuda::getCudaEnabledDeviceCount(); |
| | | if (gpu_count > gpu_id) |
| | | cv::cuda::setDevice(gpu_id); |
| | | |
| | | cv::cuda::Stream stream; |
| | | |
| | | if (sync_PyrLKOpticalFlow_gpu.empty()) { |
| | | sync_PyrLKOpticalFlow_gpu = cv::cuda::SparsePyrLKOpticalFlow::create(); |
| | | |
| | | //sync_PyrLKOpticalFlow_gpu->setWinSize(cv::Size(31, 31)); //sync_PyrLKOpticalFlow_gpu.winSize = cv::Size(31, 31); |
| | | //sync_PyrLKOpticalFlow_gpu->setWinSize(cv::Size(15, 15)); //sync_PyrLKOpticalFlow_gpu.winSize = cv::Size(15, 15); |
| | | sync_PyrLKOpticalFlow_gpu->setWinSize(cv::Size(21, 21)); |
| | | sync_PyrLKOpticalFlow_gpu->setMaxLevel(3); //sync_PyrLKOpticalFlow_gpu.maxLevel = 8; // +-32 points // def: 3 |
| | | sync_PyrLKOpticalFlow_gpu->setNumIters(6000); //sync_PyrLKOpticalFlow_gpu.iters = 8000; // def: 30 |
| | | //??? //sync_PyrLKOpticalFlow_gpu.getMinEigenVals = true; |
| | | //std::cout << "sync_PyrLKOpticalFlow_gpu.maxLevel: " << sync_PyrLKOpticalFlow_gpu.maxLevel << std::endl; |
| | | //std::cout << "sync_PyrLKOpticalFlow_gpu.iters: " << sync_PyrLKOpticalFlow_gpu.iters << std::endl; |
| | | //std::cout << "sync_PyrLKOpticalFlow_gpu.winSize: " << sync_PyrLKOpticalFlow_gpu.winSize << std::endl; |
| | | } |
| | | |
| | | if (src_mat.channels() == 3) { |
| | | if (src_mat_gpu.cols == 0) { |
| | | src_mat_gpu = cv::cuda::GpuMat(src_mat.size(), src_mat.type()); |
| | | src_grey_gpu = cv::cuda::GpuMat(src_mat.size(), CV_8UC1); |
| | | } |
| | | |
| | | src_mat_gpu.upload(src_mat, stream); |
| | | cv::cuda::cvtColor(src_mat_gpu, src_grey_gpu, CV_BGR2GRAY, 0, stream); |
| | | //std::cout << " \n\n OK !!! \n\n"; |
| | | } |
| | | cv::cuda::setDevice(old_gpu_id); |
| | | } |
| | | |
| | | |
| | | std::vector<bbox_t> tracking_flow(cv::Mat dst_mat, std::vector<bbox_t> cur_bbox_vec, int gpu_id = 0) |
| | | { |
| | | if (sync_PyrLKOpticalFlow_gpu.empty()) { |
| | | std::cout << "sync_PyrLKOpticalFlow_gpu isn't initialized \n"; |
| | | return cur_bbox_vec; |
| | | } |
| | | |
| | | int const old_gpu_id = cv::cuda::getDevice(); |
| | | static const int gpu_count = cv::cuda::getCudaEnabledDeviceCount(); |
| | | if (gpu_count > gpu_id) |
| | | cv::cuda::setDevice(gpu_id); |
| | | |
| | | cv::cuda::Stream stream; |
| | | |
| | | if (dst_mat_gpu.cols == 0) { |
| | | dst_mat_gpu = cv::cuda::GpuMat(dst_mat.size(), dst_mat.type()); |
| | | dst_grey_gpu = cv::cuda::GpuMat(dst_mat.size(), CV_8UC1); |
| | | tmp_grey_gpu = cv::cuda::GpuMat(dst_mat.size(), CV_8UC1); |
| | | } |
| | | |
| | | |
| | | dst_mat_gpu.upload(dst_mat, stream); |
| | | |
| | | cv::cuda::cvtColor(dst_mat_gpu, dst_grey_gpu, CV_BGR2GRAY, 0, stream); |
| | | |
| | | if (src_grey_gpu.rows != dst_grey_gpu.rows || src_grey_gpu.cols != dst_grey_gpu.cols) { |
| | | stream.waitForCompletion(); |
| | | src_grey_gpu = dst_grey_gpu.clone(); |
| | | cv::cuda::setDevice(old_gpu_id); |
| | | return cur_bbox_vec; |
| | | } |
| | | |
| | | cv::Mat prev_pts, prev_pts_flow_cpu, cur_pts_flow_cpu; |
| | | |
| | | for (auto &i : cur_bbox_vec) { |
| | | float x_center = (i.x + i.w / 2); |
| | | float y_center = (i.y + i.h / 2); |
| | | prev_pts.push_back(cv::Point2f(x_center, y_center)); |
| | | } |
| | | |
| | | |
| | | if (prev_pts.rows == 0) |
| | | prev_pts_flow_cpu = cv::Mat(); |
| | | else |
| | | cv::transpose(prev_pts, prev_pts_flow_cpu); |
| | | |
| | | |
| | | if (prev_pts_flow_gpu.cols < prev_pts_flow_cpu.cols) { |
| | | prev_pts_flow_gpu = cv::cuda::GpuMat(prev_pts_flow_cpu.size(), prev_pts_flow_cpu.type()); |
| | | cur_pts_flow_gpu = cv::cuda::GpuMat(prev_pts_flow_cpu.size(), prev_pts_flow_cpu.type()); |
| | | |
| | | status_gpu = cv::cuda::GpuMat(prev_pts_flow_cpu.size(), CV_8UC1); |
| | | err_gpu = cv::cuda::GpuMat(prev_pts_flow_cpu.size(), CV_32FC1); |
| | | } |
| | | |
| | | prev_pts_flow_gpu.upload(cv::Mat(prev_pts_flow_cpu), stream); |
| | | |
| | | |
| | | dst_grey_gpu.copyTo(tmp_grey_gpu, stream); |
| | | |
| | | //sync_PyrLKOpticalFlow_gpu.sparse(src_grey_gpu, dst_grey_gpu, prev_pts_flow_gpu, cur_pts_flow_gpu, status_gpu, &err_gpu); // OpenCV 2.4.x |
| | | sync_PyrLKOpticalFlow_gpu->calc(src_grey_gpu, dst_grey_gpu, prev_pts_flow_gpu, cur_pts_flow_gpu, status_gpu, err_gpu, stream); // OpenCV 3.x |
| | | //std::cout << "\n 1-e \n"; |
| | | |
| | | cur_pts_flow_gpu.download(cur_pts_flow_cpu, stream); |
| | | |
| | | tmp_grey_gpu.copyTo(src_grey_gpu, stream); |
| | | |
| | | cv::Mat err_cpu, status_cpu; |
| | | err_gpu.download(err_cpu, stream); |
| | | status_gpu.download(status_cpu, stream); |
| | | |
| | | stream.waitForCompletion(); |
| | | |
| | | std::vector<bbox_t> result_bbox_vec; |
| | | |
| | | for (size_t i = 0; i < cur_bbox_vec.size(); ++i) |
| | | { |
| | | cv::Point2f cur_key_pt = cur_pts_flow_cpu.at<cv::Point2f>(0, i); |
| | | cv::Point2f prev_key_pt = prev_pts_flow_cpu.at<cv::Point2f>(0, i); |
| | | |
| | | float moved_x = cur_key_pt.x - prev_key_pt.x; |
| | | float moved_y = cur_key_pt.y - prev_key_pt.y; |
| | | |
| | | if (err_cpu.cols > i && status_cpu.cols > i) |
| | | if (abs(moved_x) < 100 && abs(moved_y) < 100) |
| | | //if (err_cpu.at<float>(0, i) < 60 && status_cpu.at<unsigned char>(0, i) != 0) |
| | | { |
| | | cur_bbox_vec[i].x += moved_x + 0.5; |
| | | cur_bbox_vec[i].y += moved_y + 0.5; |
| | | result_bbox_vec.push_back(cur_bbox_vec[i]); |
| | | } |
| | | } |
| | | |
| | | cv::cuda::setDevice(old_gpu_id); |
| | | |
| | | return result_bbox_vec; |
| | | } |
| | | |
| | | }; |
| | | #else |
| | | |
| | | class Tracker_optflow {}; |
| | | |
| | | #endif // defined(TRACK_OPTFLOW) && defined(OPENCV) |
| | | |