AlexeyAB
2017-12-31 9d23aad8696268e8ce3a94fee9490fd1db000dc8
Added CUDA-streams to Darknet-Yolo forward inference
10 files modified
97 ■■■■■ changed files
build/darknet/yolo_console_dll.vcxproj 4 ●●●● patch | view | raw | blame | history
src/activation_kernels.cu 2 ●●● patch | view | raw | blame | history
src/blas_kernels.cu 28 ●●●● patch | view | raw | blame | history
src/cuda.c 25 ●●●● patch | view | raw | blame | history
src/cuda.h 1 ●●●● patch | view | raw | blame | history
src/gemm.c 1 ●●●● patch | view | raw | blame | history
src/im2col_kernels.cu 2 ●●● patch | view | raw | blame | history
src/maxpool_layer_kernels.cu 2 ●●● patch | view | raw | blame | history
src/region_layer.c 1 ●●●● patch | view | raw | blame | history
src/yolo_console_dll.cpp 31 ●●●● patch | view | raw | blame | history
build/darknet/yolo_console_dll.vcxproj
@@ -115,14 +115,14 @@
      <FunctionLevelLinking>true</FunctionLevelLinking>
      <IntrinsicFunctions>true</IntrinsicFunctions>
      <SDLCheck>true</SDLCheck>
      <AdditionalIncludeDirectories>C:\opencv_3.0\opencv\build\include</AdditionalIncludeDirectories>
      <AdditionalIncludeDirectories>C:\opencv_source\opencv\bin\install\include</AdditionalIncludeDirectories>
      <PreprocessorDefinitions>_CRT_SECURE_NO_WARNINGS;_MBCS;%(PreprocessorDefinitions)</PreprocessorDefinitions>
      <ExceptionHandling>Async</ExceptionHandling>
    </ClCompile>
    <Link>
      <EnableCOMDATFolding>true</EnableCOMDATFolding>
      <OptimizeReferences>true</OptimizeReferences>
      <AdditionalLibraryDirectories>C:\opencv_3.0\opencv\build\x64\vc14\lib;C:\opencv_2.4.13\opencv\build\x64\vc12\lib</AdditionalLibraryDirectories>
      <AdditionalLibraryDirectories>C:\opencv_source\opencv\bin\install\x64\vc14\lib;C:\opencv_3.0\opencv\build\x64\vc14\lib;C:\opencv_2.4.13\opencv\build\x64\vc12\lib</AdditionalLibraryDirectories>
    </Link>
  </ItemDefinitionGroup>
  <ItemGroup>
src/activation_kernels.cu
@@ -154,7 +154,7 @@
extern "C" void activate_array_ongpu(float *x, int n, ACTIVATION a) 
{
    activate_array_kernel<<<cuda_gridsize(n), BLOCK>>>(x, n, a);
    activate_array_kernel<<<cuda_gridsize(n), BLOCK, 0, get_cuda_stream()>>>(x, n, a);
    check_error(cudaPeekAtLastError());
}
src/blas_kernels.cu
@@ -23,7 +23,7 @@
    dim3 dimGrid((size-1)/BLOCK + 1, n, batch);
    dim3 dimBlock(BLOCK, 1, 1);
    scale_bias_kernel<<<dimGrid, dimBlock>>>(output, biases, n, size);
    scale_bias_kernel<<<dimGrid, dimBlock, 0, get_cuda_stream()>>>(output, biases, n, size);
    check_error(cudaPeekAtLastError());
}
@@ -67,7 +67,7 @@
    dim3 dimGrid((size-1)/BLOCK + 1, n, batch);
    dim3 dimBlock(BLOCK, 1, 1);
    add_bias_kernel<<<dimGrid, dimBlock>>>(output, biases, n, size);
    add_bias_kernel<<<dimGrid, dimBlock, 0, get_cuda_stream()>>>(output, biases, n, size);
    check_error(cudaPeekAtLastError());
}
@@ -427,7 +427,7 @@
extern "C" void normalize_gpu(float *x, float *mean, float *variance, int batch, int filters, int spatial)
{
    size_t N = batch*filters*spatial;
    normalize_kernel<<<cuda_gridsize(N), BLOCK>>>(N, x, mean, variance, batch, filters, spatial);
    normalize_kernel<<<cuda_gridsize(N), BLOCK, 0, get_cuda_stream()>>>(N, x, mean, variance, batch, filters, spatial);
    check_error(cudaPeekAtLastError());
}
@@ -490,13 +490,13 @@
extern "C" void fast_mean_gpu(float *x, int batch, int filters, int spatial, float *mean)
{
    fast_mean_kernel<<<filters, BLOCK>>>(x, batch, filters, spatial, mean);
    fast_mean_kernel<<<filters, BLOCK, 0, get_cuda_stream()>>>(x, batch, filters, spatial, mean);
    check_error(cudaPeekAtLastError());
}
extern "C" void fast_variance_gpu(float *x, float *mean, int batch, int filters, int spatial, float *variance)
{
    fast_variance_kernel<<<filters, BLOCK>>>(x, mean, batch, filters, spatial, variance);
    fast_variance_kernel<<<filters, BLOCK, 0, get_cuda_stream() >>>(x, mean, batch, filters, spatial, variance);
    check_error(cudaPeekAtLastError());
}
@@ -520,13 +520,13 @@
extern "C" void pow_ongpu(int N, float ALPHA, float * X, int INCX, float * Y, int INCY)
{
    pow_kernel<<<cuda_gridsize(N), BLOCK>>>(N, ALPHA, X, INCX, Y, INCY);
    pow_kernel<<<cuda_gridsize(N), BLOCK, 0, get_cuda_stream() >>>(N, ALPHA, X, INCX, Y, INCY);
    check_error(cudaPeekAtLastError());
}
extern "C" void axpy_ongpu_offset(int N, float ALPHA, float * X, int OFFX, int INCX, float * Y, int OFFY, int INCY)
{
    axpy_kernel<<<cuda_gridsize(N), BLOCK>>>(N, ALPHA, X, OFFX, INCX, Y, OFFY, INCY);
    axpy_kernel<<<cuda_gridsize(N), BLOCK, 0, get_cuda_stream()>>>(N, ALPHA, X, OFFX, INCX, Y, OFFY, INCY);
    check_error(cudaPeekAtLastError());
}
@@ -543,7 +543,7 @@
extern "C" void copy_ongpu_offset(int N, float * X, int OFFX, int INCX, float * Y, int OFFY, int INCY)
{
    copy_kernel<<<cuda_gridsize(N), BLOCK>>>(N, X, OFFX, INCX, Y, OFFY, INCY);
    copy_kernel<<<cuda_gridsize(N), BLOCK, 0, get_cuda_stream()>>>(N, X, OFFX, INCX, Y, OFFY, INCY);
    check_error(cudaPeekAtLastError());
}
@@ -567,20 +567,20 @@
extern "C" void flatten_ongpu(float *x, int spatial, int layers, int batch, int forward, float *out)
{
    int size = spatial*batch*layers;
    flatten_kernel<<<cuda_gridsize(size), BLOCK>>>(size, x, spatial, layers, batch, forward, out);
    flatten_kernel<<<cuda_gridsize(size), BLOCK, 0, get_cuda_stream()>>>(size, x, spatial, layers, batch, forward, out);
    check_error(cudaPeekAtLastError());
}
extern "C" void reorg_ongpu(float *x, int w, int h, int c, int batch, int stride, int forward, float *out)
{
    int size = w*h*c*batch;
    reorg_kernel<<<cuda_gridsize(size), BLOCK>>>(size, x, w, h, c, batch, stride, forward, out);
    reorg_kernel<<<cuda_gridsize(size), BLOCK, 0, get_cuda_stream()>>>(size, x, w, h, c, batch, stride, forward, out);
    check_error(cudaPeekAtLastError());
}
extern "C" void mask_ongpu(int N, float * X, float mask_num, float * mask)
{
    mask_kernel<<<cuda_gridsize(N), BLOCK>>>(N, X, mask_num, mask);
    mask_kernel<<<cuda_gridsize(N), BLOCK, 0, get_cuda_stream() >>>(N, X, mask_num, mask);
    check_error(cudaPeekAtLastError());
}
@@ -599,7 +599,7 @@
extern "C" void scal_ongpu(int N, float ALPHA, float * X, int INCX)
{
    scal_kernel<<<cuda_gridsize(N), BLOCK>>>(N, ALPHA, X, INCX);
    scal_kernel<<<cuda_gridsize(N), BLOCK, 0, get_cuda_stream()>>>(N, ALPHA, X, INCX);
    check_error(cudaPeekAtLastError());
}
@@ -611,7 +611,7 @@
extern "C" void fill_ongpu(int N, float ALPHA, float * X, int INCX)
{
    fill_kernel<<<cuda_gridsize(N), BLOCK>>>(N, ALPHA, X, INCX);
    fill_kernel<<<cuda_gridsize(N), BLOCK, 0, get_cuda_stream()>>>(N, ALPHA, X, INCX);
    check_error(cudaPeekAtLastError());
}
@@ -766,6 +766,6 @@
{
    int inputs = n;
    int batch = groups;
    softmax_kernel<<<cuda_gridsize(batch), BLOCK>>>(inputs, offset, batch, input, temp, output);
    softmax_kernel<<<cuda_gridsize(batch), BLOCK, 0, get_cuda_stream()>>>(inputs, offset, batch, input, temp, output);
    check_error(cudaPeekAtLastError());
}
src/cuda.c
@@ -61,6 +61,19 @@
    return d;
}
static cudaStream_t streamsArray[16];   // cudaStreamSynchronize( get_cuda_stream() );
static int streamInit[16] = { 0 };
cudaStream_t get_cuda_stream() {
    int i = cuda_get_device();
    if (!streamInit[i]) {
        cudaStreamCreate(&streamsArray[i]);
        streamInit[i] = 1;
    }
    return streamsArray[i];
}
#ifdef CUDNN
cudnnHandle_t cudnn_handle()
{
@@ -70,6 +83,7 @@
    if(!init[i]) {
        cudnnCreate(&handle[i]);
        init[i] = 1;
        cudnnStatus_t status = cudnnSetStream(handle[i], get_cuda_stream());
    }
    return handle[i];
}
@@ -94,7 +108,8 @@
    cudaError_t status = cudaMalloc((void **)&x_gpu, size);
    check_error(status);
    if(x){
        status = cudaMemcpy(x_gpu, x, size, cudaMemcpyHostToDevice);
        //status = cudaMemcpy(x_gpu, x, size, cudaMemcpyHostToDevice);
        status = cudaMemcpyAsync(x_gpu, x, size, cudaMemcpyHostToDevice, get_cuda_stream());
        check_error(status);
    }
    if(!x_gpu) error("Cuda malloc failed\n");
@@ -139,6 +154,7 @@
void cuda_free(float *x_gpu)
{
    //cudaStreamSynchronize(get_cuda_stream());
    cudaError_t status = cudaFree(x_gpu);
    check_error(status);
}
@@ -146,15 +162,18 @@
void cuda_push_array(float *x_gpu, float *x, size_t n)
{
    size_t size = sizeof(float)*n;
    cudaError_t status = cudaMemcpy(x_gpu, x, size, cudaMemcpyHostToDevice);
    //cudaError_t status = cudaMemcpy(x_gpu, x, size, cudaMemcpyHostToDevice);
    cudaError_t status = cudaMemcpyAsync(x_gpu, x, size, cudaMemcpyHostToDevice, get_cuda_stream());
    check_error(status);
}
void cuda_pull_array(float *x_gpu, float *x, size_t n)
{
    size_t size = sizeof(float)*n;
    cudaError_t status = cudaMemcpy(x, x_gpu, size, cudaMemcpyDeviceToHost);
    //cudaError_t status = cudaMemcpy(x, x_gpu, size, cudaMemcpyDeviceToHost);
    cudaError_t status = cudaMemcpyAsync(x, x_gpu, size, cudaMemcpyDeviceToHost, get_cuda_stream());
    check_error(status);
    cudaStreamSynchronize(get_cuda_stream());
}
#endif
src/cuda.h
@@ -30,6 +30,7 @@
void cuda_random(float *x_gpu, size_t n);
float cuda_compare(float *x_gpu, float *x, size_t n, char *s);
dim3 cuda_gridsize(size_t n);
cudaStream_t get_cuda_stream();
#ifdef CUDNN
cudnnHandle_t cudnn_handle();
src/gemm.c
@@ -177,6 +177,7 @@
        float *C_gpu, int ldc)
{
    cublasHandle_t handle = blas_handle();
    cudaError_t stream_status = cublasSetStream(handle, get_cuda_stream());
    cudaError_t status = cublasSgemm(handle, (TB ? CUBLAS_OP_T : CUBLAS_OP_N), 
            (TA ? CUBLAS_OP_T : CUBLAS_OP_N), N, M, K, &ALPHA, B_gpu, ldb, A_gpu, lda, &BETA, C_gpu, ldc);
    check_error(status);
src/im2col_kernels.cu
@@ -54,7 +54,7 @@
    int width_col = (width + 2 * pad - ksize) / stride + 1;
    int num_kernels = channels * height_col * width_col;
    im2col_gpu_kernel<<<(num_kernels+BLOCK-1)/BLOCK,
        BLOCK>>>(
        BLOCK, 0, get_cuda_stream()>>>(
                num_kernels, im, height, width, ksize, pad,
                stride, height_col,
                width_col, data_col);
src/maxpool_layer_kernels.cu
@@ -92,7 +92,7 @@
    size_t n = h*w*c*layer.batch;
    forward_maxpool_layer_kernel<<<cuda_gridsize(n), BLOCK>>>(n, layer.h, layer.w, layer.c, layer.stride, layer.size, layer.pad, state.input, layer.output_gpu, layer.indexes_gpu);
    forward_maxpool_layer_kernel<<<cuda_gridsize(n), BLOCK, 0, get_cuda_stream()>>>(n, layer.h, layer.w, layer.c, layer.stride, layer.size, layer.pad, state.input, layer.output_gpu, layer.indexes_gpu);
    check_error(cudaPeekAtLastError());
}
src/region_layer.c
@@ -409,6 +409,7 @@
        cuda_pull_array(state.truth, truth_cpu, num_truth);
    }
    cuda_pull_array(l.output_gpu, in_cpu, l.batch*l.inputs);
    cudaStreamSynchronize(get_cuda_stream());
    network_state cpu_state = state;
    cpu_state.train = state.train;
    cpu_state.truth = truth_cpu;
src/yolo_console_dll.cpp
@@ -169,8 +169,8 @@
                            //if (x > 10) return;
                            if (result_vec.size() == 0) return;
                            bbox_t i = result_vec[0];
                            //cv::Rect r(i.x, i.y, i.w, i.h);
                            cv::Rect r(i.x + (i.w-31)/2, i.y + (i.h - 31)/2, 31, 31);
                            cv::Rect r(i.x, i.y, i.w, i.h);
                            //cv::Rect r(i.x + (i.w-31)/2, i.y + (i.h - 31)/2, 31, 31);
                            cv::Rect img_rect(cv::Point2i(0, 0), src_frame.size());
                            cv::Rect rect_roi = r & img_rect;
                            if (rect_roi.width < 1 || rect_roi.height < 1) return;
@@ -188,16 +188,25 @@
                        // track optical flow
                        if (track_optflow_queue.size() > 0) {
                            //show_flow = track_optflow_queue.front().clone();
                            //draw_boxes(show_flow, result_vec, obj_names, 3, current_det_fps, current_cap_fps);
                            std::queue<cv::Mat> new_track_optflow_queue;
                            std::cout << "\n !!!! all = " << track_optflow_queue.size() << ", cur = " << passed_flow_frames << std::endl;
                            //draw_boxes(track_optflow_queue.front().clone(), result_vec, obj_names, 3, current_det_fps, current_cap_fps);
                            //cv::waitKey(10);
                            //std::cout << "\n !!!! all = " << track_optflow_queue.size() << ", cur = " << passed_flow_frames << std::endl;
                            if (result_vec.size() > 0) {
                                draw_boxes(track_optflow_queue.front().clone(), result_vec, obj_names, 3, current_det_fps, current_cap_fps);
                                std::cout << "\n frame_size = " << track_optflow_queue.size() << std::endl;
                                cv::waitKey(1000);
                            }
                            tracker_flow.update_tracking_flow(track_optflow_queue.front());
                            lambda(show_flow, track_optflow_queue.front(), result_vec);
                            track_optflow_queue.pop();
                            while(track_optflow_queue.size() > 0) {
                                //draw_boxes(track_optflow_queue.front().clone(), result_vec, obj_names, 3, current_det_fps, current_cap_fps);
                                //cv::waitKey(10);
                                if (result_vec.size() > 0) {
                                    draw_boxes(track_optflow_queue.front().clone(), result_vec, obj_names, 3, current_det_fps, current_cap_fps);
                                    std::cout << "\n frame_size = " << track_optflow_queue.size() << std::endl;
                                    cv::waitKey(1000);
                                }
                                result_vec = tracker_flow.tracking_flow(track_optflow_queue.front(), result_vec);
                                if (track_optflow_queue.size() <= passed_flow_frames && new_track_optflow_queue.size() == 0)
                                    new_track_optflow_queue = track_optflow_queue;
@@ -207,10 +216,13 @@
                            track_optflow_queue = new_track_optflow_queue;
                            new_track_optflow_queue.swap(std::queue<cv::Mat>());
                            passed_flow_frames = 0;
                            std::cout << "\n !!!! now = " << track_optflow_queue.size() << ", cur = " << passed_flow_frames << std::endl;
                            //std::cout << "\n !!!! now = " << track_optflow_queue.size() << ", cur = " << passed_flow_frames << std::endl;
                            cv::imshow("flow", show_flow);
                            cv::waitKey(3);
                            //if (result_vec.size() > 0) {
                            //  cv::waitKey(1000);
                            //}
                        }
#endif
@@ -222,7 +234,8 @@
                            consumed = true;
                            while (current_image.use_count() > 0) {
                                auto result = detector.detect_resized(*current_image, frame_size, 0.24, false); // true
                                Sleep(500);
                                //Sleep(200);
                                Sleep(50);
                                ++fps_det_counter;
                                std::unique_lock<std::mutex> lock(mtx);
                                thread_result_vec = result;