| | |
| | | show_image_layers(edge, "Test Convolve"); |
| | | } |
| | | |
| | | #ifdef GPU |
| | | |
| | | void test_convolutional_layer() |
| | | { |
| | | int i; |
| | | image dog = load_image("data/dog.jpg",224,224); |
| | | network net = parse_network_cfg("cfg/convolutional.cfg"); |
| | | // data test = load_cifar10_data("data/cifar10/test_batch.bin"); |
| | | // float *X = calloc(net.batch*test.X.cols, sizeof(float)); |
| | | // float *y = calloc(net.batch*test.y.cols, sizeof(float)); |
| | | int in_size = get_network_input_size(net)*net.batch; |
| | | int del_size = get_network_output_size_layer(net, 0)*net.batch; |
| | | int size = get_network_output_size(net)*net.batch; |
| | | float *X = calloc(in_size, sizeof(float)); |
| | | float *y = calloc(size, sizeof(float)); |
| | | for(i = 0; i < in_size; ++i){ |
| | | X[i] = dog.data[i%get_network_input_size(net)]; |
| | | } |
| | | // get_batch(test, net.batch, X, y); |
| | | clock_t start, end; |
| | | cl_mem input_cl = cl_make_array(X, in_size); |
| | | cl_mem truth_cl = cl_make_array(y, size); |
| | | |
| | | forward_network_gpu(net, input_cl, truth_cl, 1); |
| | | start = clock(); |
| | | forward_network_gpu(net, input_cl, truth_cl, 1); |
| | | end = clock(); |
| | | float gpu_sec = (float)(end-start)/CLOCKS_PER_SEC; |
| | | printf("forward gpu: %f sec\n", gpu_sec); |
| | | start = clock(); |
| | | backward_network_gpu(net, input_cl); |
| | | end = clock(); |
| | | gpu_sec = (float)(end-start)/CLOCKS_PER_SEC; |
| | | printf("backward gpu: %f sec\n", gpu_sec); |
| | | //float gpu_cost = get_network_cost(net); |
| | | float *gpu_out = calloc(size, sizeof(float)); |
| | | memcpy(gpu_out, get_network_output(net), size*sizeof(float)); |
| | | |
| | | float *gpu_del = calloc(del_size, sizeof(float)); |
| | | memcpy(gpu_del, get_network_delta_layer(net, 0), del_size*sizeof(float)); |
| | | |
| | | /* |
| | | start = clock(); |
| | | forward_network(net, X, y, 1); |
| | | backward_network(net, X); |
| | | float cpu_cost = get_network_cost(net); |
| | | end = clock(); |
| | | float cpu_sec = (float)(end-start)/CLOCKS_PER_SEC; |
| | | float *cpu_out = calloc(size, sizeof(float)); |
| | | memcpy(cpu_out, get_network_output(net), size*sizeof(float)); |
| | | float *cpu_del = calloc(del_size, sizeof(float)); |
| | | memcpy(cpu_del, get_network_delta_layer(net, 0), del_size*sizeof(float)); |
| | | |
| | | float sum = 0; |
| | | float del_sum = 0; |
| | | for(i = 0; i < size; ++i) sum += pow(gpu_out[i] - cpu_out[i], 2); |
| | | for(i = 0; i < del_size; ++i) { |
| | | //printf("%f %f\n", cpu_del[i], gpu_del[i]); |
| | | del_sum += pow(cpu_del[i] - gpu_del[i], 2); |
| | | } |
| | | printf("GPU cost: %f, CPU cost: %f\n", gpu_cost, cpu_cost); |
| | | printf("gpu: %f sec, cpu: %f sec, diff: %f, delta diff: %f, size: %d\n", gpu_sec, cpu_sec, sum, del_sum, size); |
| | | */ |
| | | } |
| | | |
| | | void test_col2im() |
| | | { |
| | | float col[] = {1,2,1,2, |
| | | 1,2,1,2, |
| | | 1,2,1,2, |
| | | 1,2,1,2, |
| | | 1,2,1,2, |
| | | 1,2,1,2, |
| | | 1,2,1,2, |
| | | 1,2,1,2, |
| | | 1,2,1,2}; |
| | | float im[16] = {0}; |
| | | int batch = 1; |
| | | int channels = 1; |
| | | int height=4; |
| | | int width=4; |
| | | int ksize = 3; |
| | | int stride = 1; |
| | | int pad = 0; |
| | | col2im_gpu(col, batch, |
| | | channels, height, width, |
| | | ksize, stride, pad, im); |
| | | int i; |
| | | for(i = 0; i < 16; ++i)printf("%f,", im[i]); |
| | | printf("\n"); |
| | | /* |
| | | float data_im[] = { |
| | | 1,2,3,4, |
| | | 5,6,7,8, |
| | | 9,10,11,12 |
| | | }; |
| | | float data_col[18] = {0}; |
| | | im2col_cpu(data_im, batch, |
| | | channels, height, width, |
| | | ksize, stride, pad, data_col) ; |
| | | for(i = 0; i < 18; ++i)printf("%f,", data_col[i]); |
| | | printf("\n"); |
| | | */ |
| | | } |
| | | |
| | | #endif |
| | | |
| | | void test_convolve_matrix() |
| | | { |
| | | image dog = load_image("dog.jpg",300,400); |
| | |
| | | free_data(train); |
| | | } |
| | | |
| | | void train_full() |
| | | void train_assira() |
| | | { |
| | | network net = parse_network_cfg("cfg/imagenet.cfg"); |
| | | network net = parse_network_cfg("cfg/assira.cfg"); |
| | | int imgs = 1000/net.batch+1; |
| | | //imgs = 1; |
| | | srand(2222222); |
| | | int i = 0; |
| | | char *labels[] = {"cat","dog"}; |
| | | float lr = .00001; |
| | | float momentum = .9; |
| | | float decay = 0.01; |
| | | clock_t time; |
| | | while(1){ |
| | | i += 1000; |
| | | data train = load_data_image_pathfile_random("images/assira/train.list", 1000, labels, 2, 256, 256); |
| | | //image im = float_to_image(256, 256, 3,train.X.vals[0]); |
| | | //visualize_network(net); |
| | | //cvWaitKey(100); |
| | | //show_image(im, "input"); |
| | | //cvWaitKey(100); |
| | | //scale_data_rows(train, 1./255.); |
| | | time=clock(); |
| | | data train = load_data_image_pathfile_random("data/assira/train.list", imgs*net.batch, labels, 2, 256, 256); |
| | | normalize_data_rows(train); |
| | | clock_t start = clock(), end; |
| | | float loss = train_network_sgd(net, train, 1000); |
| | | end = clock(); |
| | | printf("%d: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", i, loss, (float)(end-start)/CLOCKS_PER_SEC, lr, momentum, decay); |
| | | printf("Loaded: %lf seconds\n", sec(clock()-time)); |
| | | time=clock(); |
| | | float loss = train_network_sgd(net, train, imgs); |
| | | printf("%d: %f, Time: %lf seconds\n", i, loss, sec(clock()-time)); |
| | | free_data(train); |
| | | if(i%10000==0){ |
| | | char buff[256]; |
| | |
| | | } |
| | | } |
| | | |
| | | void train_imagenet() |
| | | { |
| | | network net = parse_network_cfg("/home/pjreddie/imagenet_backup/imagenet_backup_slower_larger_870.cfg"); |
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | int imgs = 1000/net.batch+1; |
| | | srand(986987); |
| | | int i = 0; |
| | | char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list"); |
| | | list *plist = get_paths("/data/imagenet/cls.train.list"); |
| | | char **paths = (char **)list_to_array(plist); |
| | | printf("%d\n", plist->size); |
| | | clock_t time; |
| | | while(1){ |
| | | i += 1; |
| | | time=clock(); |
| | | data train = load_data_random(imgs*net.batch, paths, plist->size, labels, 1000, 256, 256); |
| | | normalize_data_rows(train); |
| | | printf("Loaded: %lf seconds\n", sec(clock()-time)); |
| | | time=clock(); |
| | | #ifdef GPU |
| | | float loss = train_network_data_gpu(net, train, imgs); |
| | | printf("%d: %f, %lf seconds, %d images\n", i, loss, sec(clock()-time), i*imgs*net.batch); |
| | | #endif |
| | | free_data(train); |
| | | if(i%10==0){ |
| | | char buff[256]; |
| | | sprintf(buff, "/home/pjreddie/imagenet_backup/imagenet_backup_larger_%d.cfg", i); |
| | | save_network(net, buff); |
| | | } |
| | | } |
| | | } |
| | | |
| | | void train_imagenet_small() |
| | | { |
| | | network net = parse_network_cfg("cfg/imagenet_small.cfg"); |
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | int imgs=1; |
| | | srand(111222); |
| | | int i = 0; |
| | | char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list"); |
| | | list *plist = get_paths("/data/imagenet/cls.train.list"); |
| | | char **paths = (char **)list_to_array(plist); |
| | | printf("%d\n", plist->size); |
| | | clock_t time; |
| | | |
| | | i += 1; |
| | | time=clock(); |
| | | data train = load_data_random(imgs*net.batch, paths, plist->size, labels, 1000, 256, 256); |
| | | normalize_data_rows(train); |
| | | printf("Loaded: %lf seconds\n", sec(clock()-time)); |
| | | time=clock(); |
| | | #ifdef GPU |
| | | float loss = train_network_data_gpu(net, train, imgs); |
| | | printf("%d: %f, %lf seconds, %d images\n", i, loss, sec(clock()-time), i*imgs*net.batch); |
| | | #endif |
| | | free_data(train); |
| | | char buff[256]; |
| | | sprintf(buff, "/home/pjreddie/imagenet_backup/imagenet_backup_slower_larger_%d.cfg", i); |
| | | save_network(net, buff); |
| | | } |
| | | |
| | | void test_imagenet() |
| | | { |
| | | network net = parse_network_cfg("cfg/imagenet_test.cfg"); |
| | | //imgs=1; |
| | | srand(2222222); |
| | | int i = 0; |
| | | char **names = get_labels("cfg/shortnames.txt"); |
| | | clock_t time; |
| | | char filename[256]; |
| | | int indexes[10]; |
| | | while(1){ |
| | | gets(filename); |
| | | image im = load_image_color(filename, 256, 256); |
| | | normalize_image(im); |
| | | printf("%d %d %d\n", im.h, im.w, im.c); |
| | | float *X = im.data; |
| | | time=clock(); |
| | | float *predictions = network_predict(net, X); |
| | | top_predictions(net, 10, indexes); |
| | | printf("%s: Predicted in %f seconds.\n", filename, sec(clock()-time)); |
| | | for(i = 0; i < 10; ++i){ |
| | | int index = indexes[i]; |
| | | printf("%s: %f\n", names[index], predictions[index]); |
| | | } |
| | | free_image(im); |
| | | } |
| | | } |
| | | |
| | | void test_visualize() |
| | | { |
| | | network net = parse_network_cfg("cfg/voc_imagenet.cfg"); |
| | | srand(2222222); |
| | | visualize_network(net); |
| | | cvWaitKey(0); |
| | | network net = parse_network_cfg("cfg/imagenet_test.cfg"); |
| | | visualize_network(net); |
| | | cvWaitKey(0); |
| | | } |
| | | void test_full() |
| | | { |
| | | network net = parse_network_cfg("cfg/backup_1300.cfg"); |
| | | srand(2222222); |
| | | int i,j; |
| | | int total = 100; |
| | | char *labels[] = {"cat","dog"}; |
| | | FILE *fp = fopen("preds.txt","w"); |
| | | for(i = 0; i < total; ++i){ |
| | | visualize_network(net); |
| | | cvWaitKey(100); |
| | | data test = load_data_image_pathfile_part("images/assira/test.list", i, total, labels, 2, 256, 256); |
| | | image im = float_to_image(256, 256, 3,test.X.vals[0]); |
| | | show_image(im, "input"); |
| | | cvWaitKey(100); |
| | | normalize_data_rows(test); |
| | | for(j = 0; j < test.X.rows; ++j){ |
| | | float *x = test.X.vals[j]; |
| | | forward_network(net, x, 0); |
| | | int class = get_predicted_class_network(net); |
| | | fprintf(fp, "%d\n", class); |
| | | } |
| | | free_data(test); |
| | | } |
| | | fclose(fp); |
| | | network net = parse_network_cfg("cfg/backup_1300.cfg"); |
| | | srand(2222222); |
| | | int i,j; |
| | | int total = 100; |
| | | char *labels[] = {"cat","dog"}; |
| | | FILE *fp = fopen("preds.txt","w"); |
| | | for(i = 0; i < total; ++i){ |
| | | visualize_network(net); |
| | | cvWaitKey(100); |
| | | data test = load_data_image_pathfile_part("data/assira/test.list", i, total, labels, 2, 256, 256); |
| | | image im = float_to_image(256, 256, 3,test.X.vals[0]); |
| | | show_image(im, "input"); |
| | | cvWaitKey(100); |
| | | normalize_data_rows(test); |
| | | for(j = 0; j < test.X.rows; ++j){ |
| | | float *x = test.X.vals[j]; |
| | | forward_network(net, x, 0, 0); |
| | | int class = get_predicted_class_network(net); |
| | | fprintf(fp, "%d\n", class); |
| | | } |
| | | free_data(test); |
| | | } |
| | | fclose(fp); |
| | | } |
| | | |
| | | void test_cifar10() |
| | | { |
| | | srand(222222); |
| | | network net = parse_network_cfg("cfg/cifar10_part5.cfg"); |
| | | data test = load_cifar10_data("data/cifar10/test_batch.bin"); |
| | | clock_t start = clock(), end; |
| | | float test_acc = network_accuracy(net, test); |
| | | end = clock(); |
| | | printf("%f in %f Sec\n", test_acc, (float)(end-start)/CLOCKS_PER_SEC); |
| | | visualize_network(net); |
| | | cvWaitKey(0); |
| | | } |
| | | |
| | | void train_cifar10() |
| | | { |
| | | srand(555555); |
| | | network net = parse_network_cfg("cfg/cifar10.cfg"); |
| | | //data test = load_cifar10_data("data/cifar10/test_batch.bin"); |
| | | data test = load_cifar10_data("data/cifar10/test_batch.bin"); |
| | | int count = 0; |
| | | int iters = 10000/net.batch; |
| | | data train = load_all_cifar10(); |
| | |
| | | float loss = train_network_sgd(net, train, iters); |
| | | end = clock(); |
| | | //visualize_network(net); |
| | | //cvWaitKey(1000); |
| | | //cvWaitKey(5000); |
| | | |
| | | //float test_acc = network_accuracy(net, test); |
| | | //printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay); |
| | | printf("%d: Loss: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, (float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay); |
| | | if(count%10 == 0){ |
| | | float test_acc = network_accuracy(net, test); |
| | | printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay); |
| | | char buff[256]; |
| | | sprintf(buff, "/home/pjreddie/cifar/cifar10_2_%d.cfg", count); |
| | | save_network(net, buff); |
| | | }else{ |
| | | printf("%d: Loss: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, (float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay); |
| | | } |
| | | } |
| | | free_data(train); |
| | | } |
| | |
| | | void test_nist_single() |
| | | { |
| | | srand(222222); |
| | | network net = parse_network_cfg("cfg/nist.cfg"); |
| | | network net = parse_network_cfg("cfg/nist_single.cfg"); |
| | | data train = load_categorical_data_csv("data/mnist/mnist_tiny.csv", 0, 10); |
| | | normalize_data_rows(train); |
| | | float loss = train_network_sgd(net, train, 5); |
| | | float loss = train_network_sgd(net, train, 1); |
| | | printf("Loss: %f, LR: %f, Momentum: %f, Decay: %f\n", loss, net.learning_rate, net.momentum, net.decay); |
| | | |
| | | } |
| | |
| | | void test_nist() |
| | | { |
| | | srand(222222); |
| | | network net = parse_network_cfg("cfg/nist_final.cfg"); |
| | | data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10); |
| | | translate_data_rows(test, -144); |
| | | clock_t start = clock(), end; |
| | | float test_acc = network_accuracy_multi(net, test,16); |
| | | end = clock(); |
| | | printf("Accuracy: %f, Time: %lf seconds\n", test_acc,(float)(end-start)/CLOCKS_PER_SEC); |
| | | } |
| | | |
| | | void train_nist() |
| | | { |
| | | srand(222222); |
| | | network net = parse_network_cfg("cfg/nist.cfg"); |
| | | data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10); |
| | | data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10); |
| | | translate_data_rows(train, -144); |
| | | scale_data_rows(train, 1./128); |
| | | translate_data_rows(test, -144); |
| | | scale_data_rows(test, 1./128); |
| | | translate_data_rows(train, -144); |
| | | //scale_data_rows(train, 1./128); |
| | | translate_data_rows(test, -144); |
| | | //scale_data_rows(test, 1./128); |
| | | //randomize_data(train); |
| | | int count = 0; |
| | | //clock_t start = clock(), end; |
| | | int iters = 10000/net.batch; |
| | | while(++count <= 100){ |
| | | while(++count <= 2000){ |
| | | clock_t start = clock(), end; |
| | | float loss = train_network_sgd(net, train, iters); |
| | | end = clock(); |
| | | float test_acc = network_accuracy(net, test); |
| | | //float test_acc = 0; |
| | | printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay); |
| | | //save_network(net, "cfg/nist_basic_trained.cfg"); |
| | | /*printf("%f %f %f %f %f\n", mean_array(get_network_output_layer(net,0), 100), |
| | | mean_array(get_network_output_layer(net,1), 100), |
| | | mean_array(get_network_output_layer(net,2), 100), |
| | | mean_array(get_network_output_layer(net,3), 100), |
| | | mean_array(get_network_output_layer(net,4), 100)); |
| | | */ |
| | | //save_network(net, "cfg/nist_final2.cfg"); |
| | | |
| | | //printf("%5d Training Loss: %lf, Params: %f %f %f, ",count*1000, loss, lr, momentum, decay); |
| | | //end = clock(); |
| | |
| | | int index = rand()%m.rows; |
| | | //image p = float_to_image(1690,1,1,m.vals[index]); |
| | | //normalize_image(p); |
| | | forward_network(net, m.vals[index], 1); |
| | | forward_network(net, m.vals[index], 0, 1); |
| | | float *out = get_network_output(net); |
| | | float *delta = get_network_delta(net); |
| | | //printf("%f\n", out[0]); |
| | |
| | | matrix test = csv_to_matrix("test.csv"); |
| | | truth = pop_column(&test, 0); |
| | | for(i = 0; i < test.rows; ++i){ |
| | | forward_network(net, test.vals[i], 0); |
| | | forward_network(net, test.vals[i],0, 0); |
| | | float *out = get_network_output(net); |
| | | if(fabs(out[0]) < .5) fprintf(fp, "0\n"); |
| | | else fprintf(fp, "1\n"); |
| | |
| | | //normalize_array(im.data, im.h*im.w*im.c); |
| | | translate_image(im, -144); |
| | | resize_network(net, im.h, im.w, im.c); |
| | | forward_network(net, im.data, 0); |
| | | forward_network(net, im.data, 0, 0); |
| | | image out = get_network_image(net); |
| | | free_image(im); |
| | | cvReleaseImage(&sized); |
| | |
| | | resize_network(net, im.h, im.w, im.c); |
| | | //scale_image(im, 1./255); |
| | | translate_image(im, -144); |
| | | forward_network(net, im.data, 0); |
| | | forward_network(net, im.data, 0, 0); |
| | | image out = get_network_image(net); |
| | | |
| | | int dh = (im.h - h)/(out.h-1); |
| | |
| | | image im = load_image(image_path, 0, 0); |
| | | printf("Processing %dx%d image\n", im.h, im.w); |
| | | resize_network(net, im.h, im.w, im.c); |
| | | forward_network(net, im.data, 0); |
| | | forward_network(net, im.data, 0, 0); |
| | | image out = get_network_image(net); |
| | | |
| | | int dh = (im.h - h)/h; |
| | |
| | | image im = load_image("data/cat.png", 0, 0); |
| | | printf("Processing %dx%d image\n", im.h, im.w); |
| | | resize_network(net, im.h, im.w, im.c); |
| | | forward_network(net, im.data, 0); |
| | | forward_network(net, im.data, 0, 0); |
| | | |
| | | visualize_network(net); |
| | | cvWaitKey(0); |
| | |
| | | cvWaitKey(0); |
| | | } |
| | | |
| | | void test_gpu_net() |
| | | { |
| | | srand(222222); |
| | | network net = parse_network_cfg("cfg/nist.cfg"); |
| | | data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10); |
| | | data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10); |
| | | translate_data_rows(train, -144); |
| | | translate_data_rows(test, -144); |
| | | int count = 0; |
| | | int iters = 10000/net.batch; |
| | | while(++count <= 5){ |
| | | clock_t start = clock(), end; |
| | | float loss = train_network_sgd(net, train, iters); |
| | | end = clock(); |
| | | float test_acc = network_accuracy(net, test); |
| | | printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay); |
| | | } |
| | | count = 0; |
| | | srand(222222); |
| | | net = parse_network_cfg("cfg/nist.cfg"); |
| | | while(++count <= 5){ |
| | | clock_t start = clock(), end; |
| | | float loss = train_network_sgd_gpu(net, train, iters); |
| | | end = clock(); |
| | | float test_acc = network_accuracy(net, test); |
| | | printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay); |
| | | } |
| | | } |
| | | |
| | | |
| | | int main(int argc, char *argv[]) |
| | | { |
| | | //train_full(); |
| | | //test_distribution(); |
| | | //feenableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW); |
| | | |
| | | //test_blas(); |
| | | //test_visualize(); |
| | | if(argc != 2){ |
| | | fprintf(stderr, "usage: %s <function>\n", argv[0]); |
| | | return 0; |
| | | } |
| | | if(0==strcmp(argv[1], "train")) train_imagenet(); |
| | | else if(0==strcmp(argv[1], "train_small")) train_imagenet_small(); |
| | | else if(0==strcmp(argv[1], "test_gpu")) test_gpu_blas(); |
| | | else if(0==strcmp(argv[1], "test")) test_gpu_net(); |
| | | //test_gpu_blas(); |
| | | //test_blas(); |
| | | //test_convolve_matrix(); |
| | | // test_im2row(); |
| | | //test_split(); |
| | | //test_ensemble(); |
| | | //test_nist_single(); |
| | | test_nist(); |
| | | //test_cifar10(); |
| | | //test_vince(); |
| | | //test_full(); |
| | | //tune_VOC(); |
| | | //features_VOC_image(argv[1], argv[2], argv[3], 0); |
| | | //features_VOC_image(argv[1], argv[2], argv[3], 1); |
| | | //train_VOC(); |
| | | //features_VOC_image(argv[1], argv[2], argv[3], 0, 4); |
| | | //features_VOC_image(argv[1], argv[2], argv[3], 1, 4); |
| | | //features_VOC_image_size(argv[1], atoi(argv[2]), atoi(argv[3])); |
| | | //visualize_imagenet_features("data/assira/train.list"); |
| | | //visualize_imagenet_topk("data/VOC2012.list"); |
| | | //visualize_cat(); |
| | | //flip_network(); |
| | | //train_imagenet_small(); |
| | | //test_imagenet(); |
| | | //train_nist(); |
| | | //test_visualize(); |
| | | //test_parser(); |
| | | fprintf(stderr, "Success!\n"); |
| | | //test_random_preprocess(); |
| | | //test_random_classify(); |
| | | //test_parser(); |
| | | //test_backpropagate(); |
| | | //test_ann(); |
| | | //test_convolve(); |
| | | //test_upsample(); |
| | | //test_rotate(); |
| | | //test_load(); |
| | | //test_network(); |
| | | //test_convolutional_layer(); |
| | | //verify_convolutional_layer(); |
| | | //test_color(); |
| | | //cvWaitKey(0); |
| | | return 0; |
| | | } |