| | |
| | | return net; |
| | | } |
| | | |
| | | void print_convolutional_cfg(FILE *fp, convolutional_layer *l) |
| | | void print_convolutional_cfg(FILE *fp, convolutional_layer *l, int first) |
| | | { |
| | | int i; |
| | | fprintf(fp, "[convolutional]\n" |
| | | "height=%d\n" |
| | | "width=%d\n" |
| | | "channels=%d\n" |
| | | "filters=%d\n" |
| | | fprintf(fp, "[convolutional]\n"); |
| | | if(first) fprintf(fp, "height=%d\n" |
| | | "width=%d\n" |
| | | "channels=%d\n", |
| | | l->h, l->w, l->c); |
| | | fprintf(fp, "filters=%d\n" |
| | | "size=%d\n" |
| | | "stride=%d\n" |
| | | "activation=%s\n", |
| | | l->h, l->w, l->c, |
| | | l->n, l->size, l->stride, |
| | | get_activation_string(l->activation)); |
| | | fprintf(fp, "data="); |
| | |
| | | for(i = 0; i < l->n*l->c*l->size*l->size; ++i) fprintf(fp, "%g,", l->filters[i]); |
| | | fprintf(fp, "\n\n"); |
| | | } |
| | | void print_connected_cfg(FILE *fp, connected_layer *l) |
| | | void print_connected_cfg(FILE *fp, connected_layer *l, int first) |
| | | { |
| | | int i; |
| | | fprintf(fp, "[connected]\n" |
| | | "input=%d\n" |
| | | "output=%d\n" |
| | | fprintf(fp, "[connected]\n"); |
| | | if(first) fprintf(fp, "input=%d\n", l->inputs); |
| | | fprintf(fp, "output=%d\n" |
| | | "activation=%s\n", |
| | | l->inputs, l->outputs, |
| | | l->outputs, |
| | | get_activation_string(l->activation)); |
| | | fprintf(fp, "data="); |
| | | for(i = 0; i < l->outputs; ++i) fprintf(fp, "%g,", l->biases[i]); |
| | |
| | | fprintf(fp, "\n\n"); |
| | | } |
| | | |
| | | void print_maxpool_cfg(FILE *fp, maxpool_layer *l) |
| | | void print_maxpool_cfg(FILE *fp, maxpool_layer *l, int first) |
| | | { |
| | | fprintf(fp, "[maxpool]\n" |
| | | "height=%d\n" |
| | | "width=%d\n" |
| | | "channels=%d\n" |
| | | "stride=%d\n\n", |
| | | l->h, l->w, l->c, |
| | | l->stride); |
| | | fprintf(fp, "[maxpool]\n"); |
| | | if(first) fprintf(fp, "height=%d\n" |
| | | "width=%d\n" |
| | | "channels=%d\n", |
| | | l->h, l->w, l->c); |
| | | fprintf(fp, "stride=%d\n\n", l->stride); |
| | | } |
| | | |
| | | void print_softmax_cfg(FILE *fp, softmax_layer *l) |
| | | void print_softmax_cfg(FILE *fp, softmax_layer *l, int first) |
| | | { |
| | | fprintf(fp, "[softmax]\n" |
| | | "input=%d\n\n", |
| | | l->inputs); |
| | | fprintf(fp, "[softmax]\n"); |
| | | if(first) fprintf(fp, "input=%d\n", l->inputs); |
| | | fprintf(fp, "\n"); |
| | | } |
| | | |
| | | void save_network(network net, char *filename) |
| | |
| | | for(i = 0; i < net.n; ++i) |
| | | { |
| | | if(net.types[i] == CONVOLUTIONAL) |
| | | print_convolutional_cfg(fp, (convolutional_layer *)net.layers[i]); |
| | | print_convolutional_cfg(fp, (convolutional_layer *)net.layers[i], i==0); |
| | | else if(net.types[i] == CONNECTED) |
| | | print_connected_cfg(fp, (connected_layer *)net.layers[i]); |
| | | print_connected_cfg(fp, (connected_layer *)net.layers[i], i==0); |
| | | else if(net.types[i] == MAXPOOL) |
| | | print_maxpool_cfg(fp, (maxpool_layer *)net.layers[i]); |
| | | print_maxpool_cfg(fp, (maxpool_layer *)net.layers[i], i==0); |
| | | else if(net.types[i] == SOFTMAX) |
| | | print_softmax_cfg(fp, (softmax_layer *)net.layers[i]); |
| | | print_softmax_cfg(fp, (softmax_layer *)net.layers[i], i==0); |
| | | } |
| | | fclose(fp); |
| | | } |