AlexeyAB
2018-08-08 d6162af210d9d5648d33bf0fda40f773ac200df5
src/gemm.c
@@ -1,5 +1,6 @@
#include "gemm.h"
#include "utils.h"
#include "im2col.h"
#include "cuda.h"
#include <stdlib.h>
#include <stdio.h>
@@ -426,7 +427,7 @@
// http://graphics.stanford.edu/~seander/bithacks.html
// https://stackoverflow.com/questions/17354971/fast-counting-the-number-of-set-bits-in-m128i-register
// https://arxiv.org/pdf/1611.07612.pdf
static inline int popcnt128(__m128i n) {
    const __m128i n_hi = _mm_unpackhi_epi64(n, n);
@@ -458,133 +459,61 @@
    return _mm256_sad_epu8(total, _mm256_setzero_si256());
}
static inline int popcnt256_custom(__m256i n) {
    return _mm_popcnt_u64(n.m256i_i64[0]) +
        _mm_popcnt_u64(n.m256i_i64[1]) +
        _mm_popcnt_u64(n.m256i_i64[2]) +
        _mm_popcnt_u64(n.m256i_i64[3]);
    __m256i val = count256(n);
    return val.m256i_i64[0] +
    val.m256i_i64[1] +
    val.m256i_i64[2] +
    val.m256i_i64[3];
}
static inline void CSA(__m256i * h, __m256i * l, __m256i a, __m256i b, __m256i c)
{
    __m256i u = _mm256_xor_si256(a, b);
    *h = _mm256_or_si256(_mm256_and_si256(a, b), _mm256_and_si256(u, c));
    *l = _mm256_xor_si256(u, c);
}
static inline __m256i xnor256(__m256i a_bit256, __m256i b_bit256) {
    __m256i all_1 = _mm256_set1_epi8(255);
    __m256i xor256 = _mm256_xor_si256(a_bit256, b_bit256);
    __m256i c_bit256 = _mm256_andnot_si256(xor256, all_1);
    return c_bit256;
}
// 2 x faster than popcnt: https://arxiv.org/pdf/1611.07612.pdf
// step = 16*256/8 = 512 bytes = 4096 bit (ldb, lda, bit_step, align - all should be aligned by 4096 bit)
static inline uint64_t avx_hs_custom(__m256i * A, __m256i * B, uint64_t size) {
    __m256i total = _mm256_setzero_si256();
    __m256i ones = _mm256_setzero_si256();
    __m256i twos = _mm256_setzero_si256();
    __m256i fours = _mm256_setzero_si256();
    __m256i eights = _mm256_setzero_si256();
    __m256i sixteens = _mm256_setzero_si256();
    __m256i twosA, twosB, foursA, foursB, eightsA, eightsB;
    for (uint64_t i = 0; i < size; i += 16) {
        //CSA(&twosA, &ones, ones, d[i], d[i + 1]);
        CSA(&twosA, &ones, ones, xnor256(A[i], B[i]), xnor256(A[i + 1], B[i + 1]));
        CSA(&twosB, &ones, ones, xnor256(A[i + 2], B[i + 2]), xnor256(A[i + 3], B[i + 3]));
        CSA(&foursA, &twos, twos, twosA, twosB);
        CSA(&twosA, &ones, ones, xnor256(A[i + 4], B[i + 4]), xnor256(A[i + 5], B[i + 5]));
        CSA(&twosB, &ones, ones, xnor256(A[i + 6], B[i + 6]), xnor256(A[i + 7], B[i + 7]));
        CSA(&foursB, &twos, twos, twosA, twosB);
        CSA(&eightsA, &fours, fours, foursA, foursB);
        CSA(&twosA, &ones, ones, xnor256(A[i + 8], B[i + 8]), xnor256(A[i + 9], B[i + 9]));
        CSA(&twosB, &ones, ones, xnor256(A[i + 10], B[i + 10]), xnor256(A[i + 11], B[i + 11]));
        CSA(&foursA, &twos, twos, twosA, twosB);
        CSA(&twosA, &ones, ones, xnor256(A[i + 12], B[i + 12]), xnor256(A[i + 13], B[i + 13]));
        CSA(&twosB, &ones, ones, xnor256(A[i + 14], B[i + 14]), xnor256(A[i + 15], B[i + 15]));
        CSA(&foursB, &twos, twos, twosA, twosB);
        CSA(&eightsB, &fours, fours, foursA, foursB);
        CSA(&sixteens, &eights, eights, eightsA, eightsB);
        total = _mm256_add_epi64(total, count256(sixteens));
    }
    total = _mm256_slli_epi64(total, 4);
    total = _mm256_add_epi64(total,
        _mm256_slli_epi64(count256(eights), 3));
    total = _mm256_add_epi64(total,
        _mm256_slli_epi64(count256(fours), 2));
    total = _mm256_add_epi64(total,
        _mm256_slli_epi64(count256(twos), 1));
    total = _mm256_add_epi64(total, count256(ones));
    return total.m256i_i64[0] +
            total.m256i_i64[1] +
            total.m256i_i64[2] +
            total.m256i_i64[3];
    //return _mm256_extract_epi64(total, 0)
    //    + _mm256_extract_epi64(total, 1)
    //    + _mm256_extract_epi64(total, 2)
    //    + _mm256_extract_epi64(total, 3);
}
void gemm_nn_custom_bin_mean_transposed(int M, int N, int K, float ALPHA_UNUSED,
    unsigned char *A, int lda,
    unsigned char *B, int ldb,
    float *C, int ldc, float *mean_arr)
{
    __m256i all_1 = _mm256_set1_epi8(255);
    int i, j, k;
    int i;
    //printf("\n M = %d, N = %d, K = %d, ldb = %d, M*ldb/8 = %d, N*ldb/8= %d \n", M, N, K, ldb, M*ldb/8, N*ldb/8);
    //if (K > 4096)  printf("!!!avx_hs!!! \n\n");
    static int max_num_threads = 0;
    if (max_num_threads == 0) {
        max_num_threads = omp_get_max_threads();
        omp_set_num_threads(max_num_threads / 2);
    }
    #pragma omp parallel for
    for (i = 0; i < M; ++i) {   // l.n - filters [16 - 55 - 1024]
    for (i = 0; i < M; ++i)
    {   // l.n - filters [16 - 55 - 1024]
        float mean_val = mean_arr[i];
        int j, k;
        __m256i all_1 = _mm256_set1_epi8(255);
        for (j = 0; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056]
            int count = 0;
            const int bit_step = 256;
            __m256i count_sum = _mm256_set1_epi8(0);
            for (k = 0; k < K; k += bit_step) {   // l.size*l.size*l.c - one filter size [27 - 9216]
                __m256i a_bit256 = _mm256_loadu_si256((__m256i *)(A + (i*lda + k) / 8));
                __m256i b_bit256 = _mm256_loadu_si256((__m256i *)(B + (j*ldb + k) / 8));
                __m256i xor256 = _mm256_xor_si256(a_bit256, b_bit256);  // xnor = not(xor(a,b))
                __m256i c_bit256 = _mm256_andnot_si256(xor256, all_1);  // can be optimized - we can do other NOT for wegihts once and do not do this NOT
            int hs_count = 0;
            if (K > 4096) {
                hs_count = avx_hs_custom(A + (i*lda) / 8, B + (j*ldb) / 8, K / 256);
                count_sum = _mm256_add_epi64(count256(c_bit256), count_sum);    //  Mula’s algorithm
                int local_bit_step = 4096;
                //count += popcnt256(c_bit256);
                int f1 = (K % local_bit_step == 0) ? 0 : (local_bit_step - (K % local_bit_step));
                hs_count = hs_count - f1;    // remove extra bits
                count = hs_count;
                //binary_int64_printf(c_bit64);
                //printf(", count = %d \n\n", tmp_count);
            }
            else {
                for (k = 0; k < K; k += bit_step) {   // l.size*l.size*l.c - one filter size [27 - 9216]
                    //__m128i a_bit128 = _mm_loadu_si128((__m128i *)(A + (i*lda + k) / 8));
                    //__m128i b_bit128 = _mm_loadu_si128((__m128i *)(B + (j*ldb + k) / 8));
                    //__m128i xor128 = _mm_xor_si128(a_bit128, b_bit128);
                    //__m128i c_bit128 = _mm_andnot_si128(xor128, all_1);
                    //int tmp_count = popcnt128(c_bit128);
            // count of 1 bits
            count = count_sum.m256i_i64[0] +
                count_sum.m256i_i64[1] +
                count_sum.m256i_i64[2] +
                count_sum.m256i_i64[3];
                    __m256i a_bit256 = _mm256_loadu_si256((__m256i *)(A + (i*lda + k) / 8));
                    __m256i b_bit256 = _mm256_loadu_si256((__m256i *)(B + (j*ldb + k) / 8));
                    __m256i xor256 = _mm256_xor_si256(a_bit256, b_bit256);
                    __m256i c_bit256 = _mm256_andnot_si256(xor256, all_1); //we can do NOT for wegihts once and do not do this NOT
                    int tmp_count = popcnt256(c_bit256);
                    //int tmp_count = popcnt256_custom(c_bit256);
                    count += tmp_count;
                    //binary_int64_printf(c_bit64);
                    //printf(", count = %d \n\n", tmp_count);
                }
                int f1 = (K % bit_step == 0) ? 0 : (bit_step - (K % bit_step));
                count = count - f1;    // remove extra bits
           }
            int f1 = (K % bit_step == 0) ? 0 : (bit_step - (K % bit_step));
            count = count - f1;    // remove extra bits (from empty space for align only)
            C[i*ldc + j] = (2 * count - K) * mean_val;
        }
@@ -592,6 +521,142 @@
}
static inline float im2col_get_pixel(float *im, int height, int width, int channels,
    int row, int col, int channel, int pad)
{
    row -= pad;
    col -= pad;
    if (row < 0 || col < 0 ||
        row >= height || col >= width) return 0;
    return im[col + width*(row + height*channel)];
}
//From Berkeley Vision's Caffe!
//https://github.com/BVLC/caffe/blob/master/LICENSE
void im2col_cpu_custom(float* data_im,
    int channels, int height, int width,
    int ksize, int stride, int pad, float* data_col)
{
    int c, h, w;
    int height_col = (height + 2 * pad - ksize) / stride + 1;
    int width_col = (width + 2 * pad - ksize) / stride + 1;
    int channels_col = channels * ksize * ksize;
    // optimized version
    if (height_col == height && width_col == width && stride == 1 && pad == 1)
    {
        #pragma omp parallel for
        for (c = 0; c < channels_col; ++c) {
            int w_offset = c % ksize;
            int h_offset = (c / ksize) % ksize;
            int c_im = c / ksize / ksize;
            for (h = pad; h < height_col-pad; ++h) {
                for (w = pad; w < width_col-pad-8; w += 8) {
                    int im_row = h_offset + h - pad;
                    int im_col = w_offset + w - pad;
                    int col_index = (c * height_col + h) * width_col + w;
                    //data_col[col_index] = data_im[im_col + width*(im_row + height*c_im)];
                    __m256 src256 = _mm256_loadu_ps((__m256i *)(&data_im[im_col + width*(im_row + height*c_im)]));
                    _mm256_storeu_ps(&data_col[col_index], src256);
                }
                for (; w < width_col - pad; ++w) {
                    int im_row = h_offset + h - pad;
                    int im_col = w_offset + w - pad;
                    int col_index = (c * height_col + h) * width_col + w;
                    data_col[col_index] = data_im[im_col + width*(im_row + height*c_im)];
                }
            }
            {
                w = 0;
                for (h = 0; h < height_col; ++h) {
                    int im_row = h_offset + h;
                    int im_col = w_offset + w;
                    int col_index = (c * height_col + h) * width_col + w;
                    data_col[col_index] = im2col_get_pixel(data_im, height, width, channels,
                        im_row, im_col, c_im, pad);
                }
            }
            {
                w = width_col-1;
                for (h = 0; h < height_col; ++h) {
                    int im_row = h_offset + h;
                    int im_col = w_offset + w;
                    int col_index = (c * height_col + h) * width_col + w;
                    data_col[col_index] = im2col_get_pixel(data_im, height, width, channels,
                        im_row, im_col, c_im, pad);
                }
            }
            {
                h = 0;
                for (w = 0; w < width_col; ++w) {
                    int im_row = h_offset + h;
                    int im_col = w_offset + w;
                    int col_index = (c * height_col + h) * width_col + w;
                    data_col[col_index] = im2col_get_pixel(data_im, height, width, channels,
                            im_row, im_col, c_im, pad);
                }
            }
            {
                h = height_col-1;
                for (w = 0; w < width_col; ++w) {
                    int im_row = h_offset + h;
                    int im_col = w_offset + w;
                    int col_index = (c * height_col + h) * width_col + w;
                    data_col[col_index] = im2col_get_pixel(data_im, height, width, channels,
                        im_row, im_col, c_im, pad);
                }
            }
        }
    }
    else {
        //printf("\n Error: is no non-optimized version \n");
        im2col_cpu(data_im, channels, height, width, ksize, stride, pad, data_col);
    }
}
void activate_array_cpu_custom(float *x, const int n, const ACTIVATION a)
{
    int i;
    if (a == LINEAR)
    {}
    else if (a == LEAKY)
    {
        __m256i all256_sing1 = _mm256_set_epi32(0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000);
        __m256 all256_01 = _mm256_set1_ps(0.1F);
        for (i = 0; i < n; i += 8) {
            //x[i] = (x[i]>0) ? x[i] : .1*x[i];
            __m256 src256 = _mm256_loadu_ps((__m256 *)(&x[i]));
            __m256 mult256 = _mm256_mul_ps((src256), all256_01); // mult * 0.1
            __m256i sign256 = _mm256_and_si256(_mm256_castps_si256(src256), all256_sing1); // check sign in 8 x 32-bit floats
            __m256 result256 = _mm256_blendv_ps(src256, mult256, _mm256_castsi256_ps(sign256)); // (sign>0) ? src : mult;
            _mm256_storeu_ps((__m256 *)(&x[i]), result256);
        }
        for (; i < n; ++i) {
            x[i] = (x[i]>0) ? x[i] : .1*x[i];
        }
    }
    else {
        for (i = 0; i < n; ++i) {
            x[i] = activate(x[i], a);
        }
    }
}
void float_to_bit(float *src, unsigned char *dst, size_t size)
{
    size_t dst_size = size / 8 + 1;
@@ -612,6 +677,56 @@
    }
}
static inline void transpose4x4_SSE(float *A, float *B, const int lda, const int ldb)
{
    __m128 row1 = _mm_load_ps(&A[0 * lda]);
    __m128 row2 = _mm_load_ps(&A[1 * lda]);
    __m128 row3 = _mm_load_ps(&A[2 * lda]);
    __m128 row4 = _mm_load_ps(&A[3 * lda]);
    _MM_TRANSPOSE4_PS(row1, row2, row3, row4);
    _mm_store_ps(&B[0 * ldb], row1);
    _mm_store_ps(&B[1 * ldb], row2);
    _mm_store_ps(&B[2 * ldb], row3);
    _mm_store_ps(&B[3 * ldb], row4);
}
void transpose_block_SSE4x4(float *A, float *B, const int n, const int m,
    const int lda, const int ldb, const int block_size)
{
    int i;
    if (block_size % 4 == 0) {
        #pragma omp parallel for
        for (i = 0; i < n; i += block_size) {
            int j, i2, j2;
            for (j = 0; j < m; j += block_size) {
                int max_i2 = i + block_size < n ? i + block_size : n;
                int max_j2 = j + block_size < m ? j + block_size : m;
                for (i2 = i; i2 < max_i2; i2 += 4) {
                    for (j2 = j; j2 < max_j2; j2 += 4) {
                        transpose4x4_SSE(&A[i2*lda + j2], &B[j2*ldb + i2], lda, ldb);
                    }
                }
            }
        }
    }
    else {
        #pragma omp parallel for
        for (i = 0; i < n; i += block_size) {
            int j, i2, j2;
            for (j = 0; j < m; j += block_size) {
                int max_i2 = i + block_size < n ? i + block_size : n;
                int max_j2 = j + block_size < m ? j + block_size : m;
                for (i2 = i; i2 < max_i2; ++i2) {
                    for (j2 = j; j2 < max_j2; ++j2) {
                        B[j2*ldb + i2] = A[i2*lda + j2];
                    }
                }
            }
        }
    }
}
#else
void gemm_nn(int M, int N, int K, float ALPHA,
@@ -666,6 +781,115 @@
    }
}
//From Berkeley Vision's Caffe!
//https://github.com/BVLC/caffe/blob/master/LICENSE
void im2col_cpu_custom(float* data_im,
    int channels, int height, int width,
    int ksize, int stride, int pad, float* data_col)
{
    int c, h, w;
    int height_col = (height + 2 * pad - ksize) / stride + 1;
    int width_col = (width + 2 * pad - ksize) / stride + 1;
    int channels_col = channels * ksize * ksize;
    // optimized version
    if (height_col == height && width_col == width && stride == 1 && pad == 1)
    {
        #pragma omp parallel for
        for (c = 0; c < channels_col; ++c) {
            int w_offset = c % ksize;
            int h_offset = (c / ksize) % ksize;
            int c_im = c / ksize / ksize;
            for (h = pad; h < height_col - pad; ++h) {
                for (w = pad; w < width_col - pad; ++w) {
                    int im_row = h_offset + h - pad;
                    int im_col = w_offset + w - pad;
                    int col_index = (c * height_col + h) * width_col + w;
                    data_col[col_index] = data_im[im_col + width*(im_row + height*c_im)];
    }
                for (; w < width_col - pad; ++w) {
                    int im_row = h_offset + h - pad;
                    int im_col = w_offset + w - pad;
                    int col_index = (c * height_col + h) * width_col + w;
                    data_col[col_index] = data_im[im_col + width*(im_row + height*c_im)];
                }
}
            {
                w = 0;
                for (h = 0; h < height_col; ++h) {
                    int im_row = h_offset + h;
                    int im_col = w_offset + w;
                    int col_index = (c * height_col + h) * width_col + w;
                    data_col[col_index] = im2col_get_pixel(data_im, height, width, channels,
                        im_row, im_col, c_im, pad);
                }
            }
            {
                w = width_col - 1;
                for (h = 0; h < height_col; ++h) {
                    int im_row = h_offset + h;
                    int im_col = w_offset + w;
                    int col_index = (c * height_col + h) * width_col + w;
                    data_col[col_index] = im2col_get_pixel(data_im, height, width, channels,
                        im_row, im_col, c_im, pad);
                }
            }
            {
                h = 0;
                for (w = 0; w < width_col; ++w) {
                    int im_row = h_offset + h;
                    int im_col = w_offset + w;
                    int col_index = (c * height_col + h) * width_col + w;
                    data_col[col_index] = im2col_get_pixel(data_im, height, width, channels,
                        im_row, im_col, c_im, pad);
                }
            }
            {
                h = height_col - 1;
                for (w = 0; w < width_col; ++w) {
                    int im_row = h_offset + h;
                    int im_col = w_offset + w;
                    int col_index = (c * height_col + h) * width_col + w;
                    data_col[col_index] = im2col_get_pixel(data_im, height, width, channels,
                        im_row, im_col, c_im, pad);
                }
            }
        }
    }
    else {
        //printf("\n Error: is no non-optimized version \n");
        im2col_cpu(data_im, channels, height, width, ksize, stride, pad, data_col);
    }
}
void activate_array_cpu_custom(float *x, const int n, const ACTIVATION a)
{
    int i;
    if (a == LINEAR)
    {
    }
    else if (a == LEAKY)
    {
        for (i = 0; i < n; ++i) {
            x[i] = (x[i]>0) ? x[i] : .1*x[i];
        }
    }
    else {
        for (i = 0; i < n; ++i) {
            x[i] = activate(x[i], a);
        }
    }
}
void float_to_bit(float *src, unsigned char *dst, size_t size)
{
    size_t dst_size = size / 8 + 1;
@@ -695,6 +919,36 @@
    }
    free(byte_arr);
}
static inline void transpose_scalar_block(float *A, float *B, const int lda, const int ldb, const int block_size)
{
    int i, j;
    //#pragma omp parallel for
    for (i = 0; i<block_size; i++) {
        for (j = 0; j<block_size; j++) {
            B[j*ldb + i] = A[i*lda + j];
        }
    }
}
void transpose_block_SSE4x4(float *A, float *B, const int n, const int m,
    const int lda, const int ldb, const int block_size)
{
    int i;
    #pragma omp parallel for
    for (i = 0; i < n; i += block_size) {
        int j, i2, j2;
        for (j = 0; j < m; j += block_size) {
            int max_i2 = i + block_size < n ? i + block_size : n;
            int max_j2 = j + block_size < m ? j + block_size : m;
            for (i2 = i; i2 < max_i2; ++i2) {
                for (j2 = j; j2 < max_j2; ++j2) {
                    B[j2*ldb + i2] = A[i2*lda + j2];
                }
                }
            }
        }
}
#endif    // __x86_64
void gemm_nt(int M, int N, int K, float ALPHA,