| | |
| | | return (x>=0); |
| | | } |
| | | |
| | | convolutional_layer make_convolutional_layer(int h, int w, int c, int n, int size, int stride) |
| | | convolutional_layer *make_convolutional_layer(int h, int w, int c, int n, int size, int stride) |
| | | { |
| | | int i; |
| | | convolutional_layer layer; |
| | | layer.n = n; |
| | | layer.stride = stride; |
| | | layer.kernels = calloc(n, sizeof(image)); |
| | | layer.kernel_updates = calloc(n, sizeof(image)); |
| | | convolutional_layer *layer = calloc(1, sizeof(convolutional_layer)); |
| | | layer->n = n; |
| | | layer->stride = stride; |
| | | layer->kernels = calloc(n, sizeof(image)); |
| | | layer->kernel_updates = calloc(n, sizeof(image)); |
| | | for(i = 0; i < n; ++i){ |
| | | layer.kernels[i] = make_random_kernel(size, c); |
| | | layer.kernel_updates[i] = make_random_kernel(size, c); |
| | | layer->kernels[i] = make_random_kernel(size, c); |
| | | layer->kernel_updates[i] = make_random_kernel(size, c); |
| | | } |
| | | layer.output = make_image((h-1)/stride+1, (w-1)/stride+1, n); |
| | | layer.upsampled = make_image(h,w,n); |
| | | layer->output = make_image((h-1)/stride+1, (w-1)/stride+1, n); |
| | | layer->upsampled = make_image(h,w,n); |
| | | return layer; |
| | | } |
| | | |
| | |
| | | for(i = 0; i < layer.n; ++i){ |
| | | convolve(input, layer.kernels[i], layer.stride, i, layer.output); |
| | | } |
| | | for(i = 0; i < input.h*input.w*input.c; ++i){ |
| | | input.data[i] = convolution_activation(input.data[i]); |
| | | for(i = 0; i < layer.output.h*layer.output.w*layer.output.c; ++i){ |
| | | layer.output.data[i] = convolution_activation(layer.output.data[i]); |
| | | } |
| | | } |
| | | |
| | | void backpropagate_layer(image input, convolutional_layer layer) |
| | | void backpropagate_convolutional_layer(image input, convolutional_layer layer) |
| | | { |
| | | int i; |
| | | zero_image(input); |
| | |
| | | } |
| | | } |
| | | |
| | | void backpropagate_layer_convolve(image input, convolutional_layer layer) |
| | | void backpropagate_convolutional_layer_convolve(image input, convolutional_layer layer) |
| | | { |
| | | int i,j; |
| | | for(i = 0; i < layer.n; ++i){ |
| | |
| | | } |
| | | } |
| | | |
| | | void error_convolutional_layer(image input, convolutional_layer layer) |
| | | void learn_convolutional_layer(image input, convolutional_layer layer) |
| | | { |
| | | int i; |
| | | for(i = 0; i < layer.n; ++i){ |
| | | kernel_update(input, layer.kernel_updates[i], layer.stride, i, layer.output); |
| | | } |
| | | image old_input = copy_image(input); |
| | | zero_image(input); |
| | | for(i = 0; i < layer.n; ++i){ |
| | | back_convolve(input, layer.kernels[i], layer.stride, i, layer.output); |
| | | } |
| | | backpropagate_convolutional_layer(input, layer); |
| | | for(i = 0; i < input.h*input.w*input.c; ++i){ |
| | | input.data[i] = input.data[i]*convolution_gradient(input.data[i]); |
| | | input.data[i] *= convolution_gradient(old_input.data[i]); |
| | | } |
| | | free_image(old_input); |
| | | } |
| | | |
| | | void update_convolutional_layer(convolutional_layer layer, double step) |
| | | { |
| | | int i,j; |
| | | for(i = 0; i < layer.n; ++i){ |
| | | int pixels = layer.kernels[i].h*layer.kernels[i].w*layer.kernels[i].c; |
| | | for(j = 0; j < pixels; ++j){ |
| | | layer.kernels[i].data[j] += step*layer.kernel_updates[i].data[j]; |
| | | } |
| | | zero_image(layer.kernel_updates[i]); |
| | | } |
| | | } |
| | | |