Loading may or may not work. But probably.
| | |
| | | images/ |
| | | opencv/ |
| | | convnet/ |
| | | decaf/ |
| | | cnn |
| | | |
| | | # OS Generated # |
| | |
| | | LDFLAGS=`pkg-config --libs opencv` -lm |
| | | VPATH=./src/ |
| | | |
| | | OBJ=network.o image.o tests.o convolutional_layer.o connected_layer.o maxpool_layer.o activations.o |
| | | OBJ=network.o image.o tests.o convolutional_layer.o connected_layer.o maxpool_layer.o activations.o list.o option_list.o parser.o utils.o |
| | | |
| | | all: cnn |
| | | |
| | |
| | | #include "activations.h" |
| | | |
| | | #include <math.h> |
| | | #include <stdio.h> |
| | | #include <string.h> |
| | | |
| | | ACTIVATION get_activation(char *s) |
| | | { |
| | | if (strcmp(s, "sigmoid")==0) return SIGMOID; |
| | | if (strcmp(s, "relu")==0) return RELU; |
| | | if (strcmp(s, "identity")==0) return IDENTITY; |
| | | fprintf(stderr, "Couldn't find activation function %s, going with ReLU\n", s); |
| | | return RELU; |
| | | } |
| | | |
| | | double identity_activation(double x) |
| | | { |
| | |
| | | #ifndef ACTIVATIONS_H |
| | | #define ACTIVATIONS_H |
| | | |
| | | typedef enum{ |
| | | SIGMOID, RELU, IDENTITY |
| | | }ACTIVATOR_TYPE; |
| | | }ACTIVATION; |
| | | |
| | | ACTIVATION get_activation(char *s); |
| | | double relu_activation(double x); |
| | | double relu_gradient(double x); |
| | | double sigmoid_activation(double x); |
| | | double sigmoid_gradient(double x); |
| | | double identity_activation(double x); |
| | | double identity_gradient(double x); |
| | | |
| | | #endif |
| | | |
| | |
| | | #include <stdlib.h> |
| | | #include <string.h> |
| | | |
| | | connected_layer make_connected_layer(int inputs, int outputs, ACTIVATOR_TYPE activator) |
| | | connected_layer *make_connected_layer(int inputs, int outputs, ACTIVATION activator) |
| | | { |
| | | int i; |
| | | connected_layer layer; |
| | | layer.inputs = inputs; |
| | | layer.outputs = outputs; |
| | | connected_layer *layer = calloc(1, sizeof(connected_layer)); |
| | | layer->inputs = inputs; |
| | | layer->outputs = outputs; |
| | | |
| | | layer.output = calloc(outputs, sizeof(double*)); |
| | | layer->output = calloc(outputs, sizeof(double*)); |
| | | |
| | | layer.weight_updates = calloc(inputs*outputs, sizeof(double)); |
| | | layer.weights = calloc(inputs*outputs, sizeof(double)); |
| | | layer->weight_updates = calloc(inputs*outputs, sizeof(double)); |
| | | layer->weights = calloc(inputs*outputs, sizeof(double)); |
| | | for(i = 0; i < inputs*outputs; ++i) |
| | | layer.weights[i] = .5 - (double)rand()/RAND_MAX; |
| | | layer->weights[i] = .5 - (double)rand()/RAND_MAX; |
| | | |
| | | layer.bias_updates = calloc(outputs, sizeof(double)); |
| | | layer.biases = calloc(outputs, sizeof(double)); |
| | | layer->bias_updates = calloc(outputs, sizeof(double)); |
| | | layer->biases = calloc(outputs, sizeof(double)); |
| | | for(i = 0; i < outputs; ++i) |
| | | layer.biases[i] = (double)rand()/RAND_MAX; |
| | | layer->biases[i] = (double)rand()/RAND_MAX; |
| | | |
| | | if(activator == SIGMOID){ |
| | | layer.activation = sigmoid_activation; |
| | | layer.gradient = sigmoid_gradient; |
| | | layer->activation = sigmoid_activation; |
| | | layer->gradient = sigmoid_gradient; |
| | | }else if(activator == RELU){ |
| | | layer.activation = relu_activation; |
| | | layer.gradient = relu_gradient; |
| | | layer->activation = relu_activation; |
| | | layer->gradient = relu_gradient; |
| | | }else if(activator == IDENTITY){ |
| | | layer.activation = identity_activation; |
| | | layer.gradient = identity_gradient; |
| | | layer->activation = identity_activation; |
| | | layer->gradient = identity_gradient; |
| | | } |
| | | |
| | | return layer; |
| | |
| | | double (* gradient)(); |
| | | } connected_layer; |
| | | |
| | | connected_layer make_connected_layer(int inputs, int outputs, ACTIVATOR_TYPE activator); |
| | | connected_layer *make_connected_layer(int inputs, int outputs, ACTIVATION activator); |
| | | |
| | | void run_connected_layer(double *input, connected_layer layer); |
| | | void learn_connected_layer(double *input, connected_layer layer); |
| | |
| | | return (x>=0); |
| | | } |
| | | |
| | | convolutional_layer make_convolutional_layer(int h, int w, int c, int n, int size, int stride) |
| | | convolutional_layer *make_convolutional_layer(int h, int w, int c, int n, int size, int stride) |
| | | { |
| | | int i; |
| | | convolutional_layer layer; |
| | | layer.n = n; |
| | | layer.stride = stride; |
| | | layer.kernels = calloc(n, sizeof(image)); |
| | | layer.kernel_updates = calloc(n, sizeof(image)); |
| | | convolutional_layer *layer = calloc(1, sizeof(convolutional_layer)); |
| | | layer->n = n; |
| | | layer->stride = stride; |
| | | layer->kernels = calloc(n, sizeof(image)); |
| | | layer->kernel_updates = calloc(n, sizeof(image)); |
| | | for(i = 0; i < n; ++i){ |
| | | layer.kernels[i] = make_random_kernel(size, c); |
| | | layer.kernel_updates[i] = make_random_kernel(size, c); |
| | | layer->kernels[i] = make_random_kernel(size, c); |
| | | layer->kernel_updates[i] = make_random_kernel(size, c); |
| | | } |
| | | layer.output = make_image((h-1)/stride+1, (w-1)/stride+1, n); |
| | | layer.upsampled = make_image(h,w,n); |
| | | layer->output = make_image((h-1)/stride+1, (w-1)/stride+1, n); |
| | | layer->upsampled = make_image(h,w,n); |
| | | return layer; |
| | | } |
| | | |
| | |
| | | image output; |
| | | } convolutional_layer; |
| | | |
| | | convolutional_layer make_convolutional_layer(int w, int h, int c, int n, int size, int stride); |
| | | convolutional_layer *make_convolutional_layer(int h, int w, int c, int n, int size, int stride); |
| | | void run_convolutional_layer(const image input, const convolutional_layer layer); |
| | | void learn_convolutional_layer(image input, convolutional_layer layer); |
| | | void update_convolutional_layer(convolutional_layer layer, double step); |
| | | void backpropagate_convolutional_layer(image input, convolutional_layer layer); |
| | | void backpropagate_convolutional_layer_convolve(image input, convolutional_layer layer); |
| | | |
| | | #endif |
| | | |
| | |
| | | void threshold_image(image p, double t); |
| | | void zero_image(image m); |
| | | void rotate_image(image m); |
| | | void subtract_image(image a, image b); |
| | | |
| | | void show_image(image p, char *name); |
| | | void show_image_layers(image p, char *name); |
| | |
| | | #include "maxpool_layer.h" |
| | | |
| | | maxpool_layer make_maxpool_layer(int h, int w, int c, int stride) |
| | | maxpool_layer *make_maxpool_layer(int h, int w, int c, int stride) |
| | | { |
| | | maxpool_layer layer; |
| | | layer.stride = stride; |
| | | layer.output = make_image((h-1)/stride+1, (w-1)/stride+1, c); |
| | | maxpool_layer *layer = calloc(1, sizeof(maxpool_layer)); |
| | | layer->stride = stride; |
| | | layer->output = make_image((h-1)/stride+1, (w-1)/stride+1, c); |
| | | return layer; |
| | | } |
| | | |
| | |
| | | image output; |
| | | } maxpool_layer; |
| | | |
| | | maxpool_layer make_maxpool_layer(int h, int w, int c, int stride); |
| | | maxpool_layer *make_maxpool_layer(int h, int w, int c, int stride); |
| | | void run_maxpool_layer(const image input, const maxpool_layer layer); |
| | | |
| | | #endif |
| | |
| | | #include "convolutional_layer.h" |
| | | #include "maxpool_layer.h" |
| | | |
| | | network make_network(int n) |
| | | { |
| | | network net; |
| | | net.n = n; |
| | | net.layers = calloc(net.n, sizeof(void *)); |
| | | net.types = calloc(net.n, sizeof(LAYER_TYPE)); |
| | | return net; |
| | | } |
| | | |
| | | void run_network(image input, network net) |
| | | { |
| | | int i; |
| | |
| | | } |
| | | } |
| | | |
| | | double *get_network_output(network net) |
| | | |
| | | double *get_network_output_layer(network net, int i) |
| | | { |
| | | int i = net.n-1; |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | return layer.output.data; |
| | |
| | | } |
| | | return 0; |
| | | } |
| | | |
| | | int get_network_output_size_layer(network net, int i) |
| | | { |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | return layer.output.h*layer.output.w*layer.output.c; |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | return layer.output.h*layer.output.w*layer.output.c; |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | return layer.outputs; |
| | | } |
| | | return 0; |
| | | } |
| | | |
| | | double *get_network_output(network net) |
| | | { |
| | | int i = net.n-1; |
| | | return get_network_output_layer(net, i); |
| | | } |
| | | |
| | | image get_network_image_layer(network net, int i) |
| | | { |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | return layer.output; |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | return layer.output; |
| | | } |
| | | return make_image(0,0,0); |
| | | } |
| | | |
| | | image get_network_image(network net) |
| | | { |
| | | int i; |
| | |
| | | LAYER_TYPE *types; |
| | | } network; |
| | | |
| | | network make_network(int n); |
| | | void run_network(image input, network net); |
| | | double *get_network_output(network net); |
| | | void learn_network(image input, network net); |
| | | void update_network(network net, double step); |
| | | double *get_network_output(network net); |
| | | double *get_network_output_layer(network net, int i); |
| | | int get_network_output_size_layer(network net, int i); |
| | | image get_network_image(network net); |
| | | image get_network_image_layer(network net, int i); |
| | | |
| | | #endif |
| | | |
| | |
| | | #include "maxpool_layer.h" |
| | | #include "network.h" |
| | | #include "image.h" |
| | | #include "parser.h" |
| | | |
| | | #include <time.h> |
| | | #include <stdlib.h> |
| | |
| | | int n = 3; |
| | | int stride = 1; |
| | | int size = 3; |
| | | convolutional_layer layer = make_convolutional_layer(dog.h, dog.w, dog.c, n, size, stride); |
| | | convolutional_layer layer = *make_convolutional_layer(dog.h, dog.w, dog.c, n, size, stride); |
| | | char buff[256]; |
| | | for(i = 0; i < n; ++i) { |
| | | sprintf(buff, "Kernel %d", i); |
| | |
| | | } |
| | | run_convolutional_layer(dog, layer); |
| | | |
| | | maxpool_layer mlayer = make_maxpool_layer(layer.output.h, layer.output.w, layer.output.c, 2); |
| | | maxpool_layer mlayer = *make_maxpool_layer(layer.output.h, layer.output.w, layer.output.c, 2); |
| | | run_maxpool_layer(layer.output,mlayer); |
| | | |
| | | show_image_layers(mlayer.output, "Test Maxpool Layer"); |
| | |
| | | int n = 48; |
| | | int stride = 4; |
| | | int size = 11; |
| | | convolutional_layer cl = make_convolutional_layer(dog.h, dog.w, dog.c, n, size, stride); |
| | | maxpool_layer ml = make_maxpool_layer(cl.output.h, cl.output.w, cl.output.c, 2); |
| | | convolutional_layer cl = *make_convolutional_layer(dog.h, dog.w, dog.c, n, size, stride); |
| | | maxpool_layer ml = *make_maxpool_layer(cl.output.h, cl.output.w, cl.output.c, 2); |
| | | |
| | | n = 128; |
| | | size = 5; |
| | | stride = 1; |
| | | convolutional_layer cl2 = make_convolutional_layer(ml.output.h, ml.output.w, ml.output.c, n, size, stride); |
| | | maxpool_layer ml2 = make_maxpool_layer(cl2.output.h, cl2.output.w, cl2.output.c, 2); |
| | | convolutional_layer cl2 = *make_convolutional_layer(ml.output.h, ml.output.w, ml.output.c, n, size, stride); |
| | | maxpool_layer ml2 = *make_maxpool_layer(cl2.output.h, cl2.output.w, cl2.output.c, 2); |
| | | |
| | | n = 192; |
| | | size = 3; |
| | | convolutional_layer cl3 = make_convolutional_layer(ml2.output.h, ml2.output.w, ml2.output.c, n, size, stride); |
| | | convolutional_layer cl4 = make_convolutional_layer(cl3.output.h, cl3.output.w, cl3.output.c, n, size, stride); |
| | | convolutional_layer cl3 = *make_convolutional_layer(ml2.output.h, ml2.output.w, ml2.output.c, n, size, stride); |
| | | convolutional_layer cl4 = *make_convolutional_layer(cl3.output.h, cl3.output.w, cl3.output.c, n, size, stride); |
| | | n = 128; |
| | | convolutional_layer cl5 = make_convolutional_layer(cl4.output.h, cl4.output.w, cl4.output.c, n, size, stride); |
| | | maxpool_layer ml3 = make_maxpool_layer(cl5.output.h, cl5.output.w, cl5.output.c, 4); |
| | | connected_layer nl = make_connected_layer(ml3.output.h*ml3.output.w*ml3.output.c, 4096, RELU); |
| | | connected_layer nl2 = make_connected_layer(4096, 4096, RELU); |
| | | connected_layer nl3 = make_connected_layer(4096, 1000, RELU); |
| | | convolutional_layer cl5 = *make_convolutional_layer(cl4.output.h, cl4.output.w, cl4.output.c, n, size, stride); |
| | | maxpool_layer ml3 = *make_maxpool_layer(cl5.output.h, cl5.output.w, cl5.output.c, 4); |
| | | connected_layer nl = *make_connected_layer(ml3.output.h*ml3.output.w*ml3.output.c, 4096, RELU); |
| | | connected_layer nl2 = *make_connected_layer(4096, 4096, RELU); |
| | | connected_layer nl3 = *make_connected_layer(4096, 1000, RELU); |
| | | |
| | | net.layers[0] = &cl; |
| | | net.layers[1] = &ml; |
| | |
| | | image dog = load_image("dog.jpg"); |
| | | show_image(dog, "Test Backpropagate Input"); |
| | | image dog_copy = copy_image(dog); |
| | | convolutional_layer cl = make_convolutional_layer(dog.h, dog.w, dog.c, n, size, stride); |
| | | convolutional_layer cl = *make_convolutional_layer(dog.h, dog.w, dog.c, n, size, stride); |
| | | run_convolutional_layer(dog, cl); |
| | | show_image(cl.output, "Test Backpropagate Output"); |
| | | int i; |
| | |
| | | net.types[1] = CONNECTED; |
| | | net.types[2] = CONNECTED; |
| | | |
| | | connected_layer nl = make_connected_layer(1, 20, RELU); |
| | | connected_layer nl2 = make_connected_layer(20, 20, RELU); |
| | | connected_layer nl3 = make_connected_layer(20, 1, RELU); |
| | | connected_layer nl = *make_connected_layer(1, 20, RELU); |
| | | connected_layer nl2 = *make_connected_layer(20, 20, RELU); |
| | | connected_layer nl3 = *make_connected_layer(20, 1, RELU); |
| | | |
| | | net.layers[0] = &nl; |
| | | net.layers[1] = &nl2; |
| | |
| | | |
| | | } |
| | | |
| | | void test_parser() |
| | | { |
| | | network net = parse_network_cfg("test.cfg"); |
| | | image t = make_image(1,1,1); |
| | | int count = 0; |
| | | |
| | | double avgerr = 0; |
| | | while(1){ |
| | | double v = ((double)rand()/RAND_MAX); |
| | | double truth = v*v; |
| | | set_pixel(t,0,0,0,v); |
| | | run_network(t, net); |
| | | double *out = get_network_output(net); |
| | | double err = pow((out[0]-truth),2.); |
| | | avgerr = .99 * avgerr + .01 * err; |
| | | //if(++count % 100000 == 0) printf("%f\n", avgerr); |
| | | if(++count % 100000 == 0) printf("%f %f :%f AVG %f \n", truth, out[0], err, avgerr); |
| | | out[0] = truth - out[0]; |
| | | learn_network(t, net); |
| | | update_network(net, .001); |
| | | } |
| | | } |
| | | |
| | | int main() |
| | | { |
| | | test_parser(); |
| | | //test_backpropagate(); |
| | | test_ann(); |
| | | //test_ann(); |
| | | //test_convolve(); |
| | | //test_upsample(); |
| | | //test_rotate(); |