| | |
| | | #include "maxpool_layer.h" |
| | | #include "network.h" |
| | | #include "image.h" |
| | | #include "parser.h" |
| | | |
| | | #include <time.h> |
| | | #include <stdlib.h> |
| | |
| | | int n = 3; |
| | | int stride = 1; |
| | | int size = 3; |
| | | convolutional_layer layer = make_convolutional_layer(dog.h, dog.w, dog.c, n, size, stride); |
| | | convolutional_layer layer = *make_convolutional_layer(dog.h, dog.w, dog.c, n, size, stride); |
| | | char buff[256]; |
| | | for(i = 0; i < n; ++i) { |
| | | sprintf(buff, "Kernel %d", i); |
| | |
| | | } |
| | | run_convolutional_layer(dog, layer); |
| | | |
| | | maxpool_layer mlayer = make_maxpool_layer(layer.output.h, layer.output.w, layer.output.c, 2); |
| | | maxpool_layer mlayer = *make_maxpool_layer(layer.output.h, layer.output.w, layer.output.c, 2); |
| | | run_maxpool_layer(layer.output,mlayer); |
| | | |
| | | show_image_layers(mlayer.output, "Test Maxpool Layer"); |
| | |
| | | int n = 48; |
| | | int stride = 4; |
| | | int size = 11; |
| | | convolutional_layer cl = make_convolutional_layer(dog.h, dog.w, dog.c, n, size, stride); |
| | | maxpool_layer ml = make_maxpool_layer(cl.output.h, cl.output.w, cl.output.c, 2); |
| | | convolutional_layer cl = *make_convolutional_layer(dog.h, dog.w, dog.c, n, size, stride); |
| | | maxpool_layer ml = *make_maxpool_layer(cl.output.h, cl.output.w, cl.output.c, 2); |
| | | |
| | | n = 128; |
| | | size = 5; |
| | | stride = 1; |
| | | convolutional_layer cl2 = make_convolutional_layer(ml.output.h, ml.output.w, ml.output.c, n, size, stride); |
| | | maxpool_layer ml2 = make_maxpool_layer(cl2.output.h, cl2.output.w, cl2.output.c, 2); |
| | | convolutional_layer cl2 = *make_convolutional_layer(ml.output.h, ml.output.w, ml.output.c, n, size, stride); |
| | | maxpool_layer ml2 = *make_maxpool_layer(cl2.output.h, cl2.output.w, cl2.output.c, 2); |
| | | |
| | | n = 192; |
| | | size = 3; |
| | | convolutional_layer cl3 = make_convolutional_layer(ml2.output.h, ml2.output.w, ml2.output.c, n, size, stride); |
| | | convolutional_layer cl4 = make_convolutional_layer(cl3.output.h, cl3.output.w, cl3.output.c, n, size, stride); |
| | | convolutional_layer cl3 = *make_convolutional_layer(ml2.output.h, ml2.output.w, ml2.output.c, n, size, stride); |
| | | convolutional_layer cl4 = *make_convolutional_layer(cl3.output.h, cl3.output.w, cl3.output.c, n, size, stride); |
| | | n = 128; |
| | | convolutional_layer cl5 = make_convolutional_layer(cl4.output.h, cl4.output.w, cl4.output.c, n, size, stride); |
| | | maxpool_layer ml3 = make_maxpool_layer(cl5.output.h, cl5.output.w, cl5.output.c, 4); |
| | | connected_layer nl = make_connected_layer(ml3.output.h*ml3.output.w*ml3.output.c, 4096, RELU); |
| | | connected_layer nl2 = make_connected_layer(4096, 4096, RELU); |
| | | connected_layer nl3 = make_connected_layer(4096, 1000, RELU); |
| | | convolutional_layer cl5 = *make_convolutional_layer(cl4.output.h, cl4.output.w, cl4.output.c, n, size, stride); |
| | | maxpool_layer ml3 = *make_maxpool_layer(cl5.output.h, cl5.output.w, cl5.output.c, 4); |
| | | connected_layer nl = *make_connected_layer(ml3.output.h*ml3.output.w*ml3.output.c, 4096, RELU); |
| | | connected_layer nl2 = *make_connected_layer(4096, 4096, RELU); |
| | | connected_layer nl3 = *make_connected_layer(4096, 1000, RELU); |
| | | |
| | | net.layers[0] = &cl; |
| | | net.layers[1] = &ml; |
| | |
| | | image dog = load_image("dog.jpg"); |
| | | show_image(dog, "Test Backpropagate Input"); |
| | | image dog_copy = copy_image(dog); |
| | | convolutional_layer cl = make_convolutional_layer(dog.h, dog.w, dog.c, n, size, stride); |
| | | convolutional_layer cl = *make_convolutional_layer(dog.h, dog.w, dog.c, n, size, stride); |
| | | run_convolutional_layer(dog, cl); |
| | | show_image(cl.output, "Test Backpropagate Output"); |
| | | int i; |
| | |
| | | net.types[1] = CONNECTED; |
| | | net.types[2] = CONNECTED; |
| | | |
| | | connected_layer nl = make_connected_layer(1, 20, RELU); |
| | | connected_layer nl2 = make_connected_layer(20, 20, RELU); |
| | | connected_layer nl3 = make_connected_layer(20, 1, RELU); |
| | | connected_layer nl = *make_connected_layer(1, 20, RELU); |
| | | connected_layer nl2 = *make_connected_layer(20, 20, RELU); |
| | | connected_layer nl3 = *make_connected_layer(20, 1, RELU); |
| | | |
| | | net.layers[0] = &nl; |
| | | net.layers[1] = &nl2; |
| | |
| | | |
| | | } |
| | | |
| | | void test_parser() |
| | | { |
| | | network net = parse_network_cfg("test.cfg"); |
| | | image t = make_image(1,1,1); |
| | | int count = 0; |
| | | |
| | | double avgerr = 0; |
| | | while(1){ |
| | | double v = ((double)rand()/RAND_MAX); |
| | | double truth = v*v; |
| | | set_pixel(t,0,0,0,v); |
| | | run_network(t, net); |
| | | double *out = get_network_output(net); |
| | | double err = pow((out[0]-truth),2.); |
| | | avgerr = .99 * avgerr + .01 * err; |
| | | //if(++count % 100000 == 0) printf("%f\n", avgerr); |
| | | if(++count % 100000 == 0) printf("%f %f :%f AVG %f \n", truth, out[0], err, avgerr); |
| | | out[0] = truth - out[0]; |
| | | learn_network(t, net); |
| | | update_network(net, .001); |
| | | } |
| | | } |
| | | |
| | | int main() |
| | | { |
| | | test_parser(); |
| | | //test_backpropagate(); |
| | | test_ann(); |
| | | //test_ann(); |
| | | //test_convolve(); |
| | | //test_upsample(); |
| | | //test_rotate(); |