Joseph Redmon
2014-08-08 d9f1b0b16edeb59281355a855e18a8be343fc33c
src/network.c
@@ -9,6 +9,7 @@
#include "maxpool_layer.h"
#include "normalization_layer.h"
#include "softmax_layer.h"
#include "dropout_layer.h"
network make_network(int n, int batch)
{
@@ -25,98 +26,9 @@
    return net;
}
void print_convolutional_cfg(FILE *fp, convolutional_layer *l, int first)
{
    int i;
    fprintf(fp, "[convolutional]\n");
    if(first) fprintf(fp,   "batch=%d\n"
                            "height=%d\n"
                            "width=%d\n"
                            "channels=%d\n",
                            l->batch,l->h, l->w, l->c);
    fprintf(fp, "filters=%d\n"
                "size=%d\n"
                "stride=%d\n"
                "activation=%s\n",
                l->n, l->size, l->stride,
                get_activation_string(l->activation));
    fprintf(fp, "data=");
    for(i = 0; i < l->n; ++i) fprintf(fp, "%g,", l->biases[i]);
    for(i = 0; i < l->n*l->c*l->size*l->size; ++i) fprintf(fp, "%g,", l->filters[i]);
    fprintf(fp, "\n\n");
}
void print_connected_cfg(FILE *fp, connected_layer *l, int first)
{
    int i;
    fprintf(fp, "[connected]\n");
    if(first) fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs);
    fprintf(fp, "output=%d\n"
            "activation=%s\n",
            l->outputs,
            get_activation_string(l->activation));
    fprintf(fp, "data=");
    for(i = 0; i < l->outputs; ++i) fprintf(fp, "%g,", l->biases[i]);
    for(i = 0; i < l->inputs*l->outputs; ++i) fprintf(fp, "%g,", l->weights[i]);
    fprintf(fp, "\n\n");
}
void print_maxpool_cfg(FILE *fp, maxpool_layer *l, int first)
{
    fprintf(fp, "[maxpool]\n");
    if(first) fprintf(fp,   "batch=%d\n"
            "height=%d\n"
            "width=%d\n"
            "channels=%d\n",
            l->batch,l->h, l->w, l->c);
    fprintf(fp, "stride=%d\n\n", l->stride);
}
void print_normalization_cfg(FILE *fp, normalization_layer *l, int first)
{
    fprintf(fp, "[localresponsenormalization]\n");
    if(first) fprintf(fp,   "batch=%d\n"
            "height=%d\n"
            "width=%d\n"
            "channels=%d\n",
            l->batch,l->h, l->w, l->c);
    fprintf(fp, "size=%d\n"
                "alpha=%g\n"
                "beta=%g\n"
                "kappa=%g\n\n", l->size, l->alpha, l->beta, l->kappa);
}
void print_softmax_cfg(FILE *fp, softmax_layer *l, int first)
{
    fprintf(fp, "[softmax]\n");
    if(first) fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs);
    fprintf(fp, "\n");
}
void save_network(network net, char *filename)
{
    FILE *fp = fopen(filename, "w");
    if(!fp) file_error(filename);
    int i;
    for(i = 0; i < net.n; ++i)
    {
        if(net.types[i] == CONVOLUTIONAL)
            print_convolutional_cfg(fp, (convolutional_layer *)net.layers[i], i==0);
        else if(net.types[i] == CONNECTED)
            print_connected_cfg(fp, (connected_layer *)net.layers[i], i==0);
        else if(net.types[i] == MAXPOOL)
            print_maxpool_cfg(fp, (maxpool_layer *)net.layers[i], i==0);
        else if(net.types[i] == NORMALIZATION)
            print_normalization_cfg(fp, (normalization_layer *)net.layers[i], i==0);
        else if(net.types[i] == SOFTMAX)
            print_softmax_cfg(fp, (softmax_layer *)net.layers[i], i==0);
    }
    fclose(fp);
}
#ifdef GPU
void forward_network(network net, float *input, int train)
{
    int i;
    #ifdef GPU
    cl_setup();
    size_t size = get_network_input_size(net);
    if(!net.input_cl){
@@ -126,16 +38,12 @@
    }
    cl_write_array(net.input_cl, input, size);
    cl_mem input_cl = net.input_cl;
    #endif
    int i;
    for(i = 0; i < net.n; ++i){
        if(net.types[i] == CONVOLUTIONAL){
            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
            #ifdef GPU
            forward_convolutional_layer_gpu(layer, input_cl);
            input_cl = layer.output_cl;
            #else
            forward_convolutional_layer(layer, input);
            #endif
            input = layer.output;
        }
        else if(net.types[i] == CONNECTED){
@@ -161,13 +69,53 @@
    }
}
void update_network(network net, float step, float momentum, float decay)
#else
void forward_network(network net, float *input, int train)
{
    int i;
    for(i = 0; i < net.n; ++i){
        if(net.types[i] == CONVOLUTIONAL){
            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
            update_convolutional_layer(layer, step, momentum, decay);
            forward_convolutional_layer(layer, input);
            input = layer.output;
        }
        else if(net.types[i] == CONNECTED){
            connected_layer layer = *(connected_layer *)net.layers[i];
            forward_connected_layer(layer, input);
            input = layer.output;
        }
        else if(net.types[i] == SOFTMAX){
            softmax_layer layer = *(softmax_layer *)net.layers[i];
            forward_softmax_layer(layer, input);
            input = layer.output;
        }
        else if(net.types[i] == MAXPOOL){
            maxpool_layer layer = *(maxpool_layer *)net.layers[i];
            forward_maxpool_layer(layer, input);
            input = layer.output;
        }
        else if(net.types[i] == NORMALIZATION){
            normalization_layer layer = *(normalization_layer *)net.layers[i];
            forward_normalization_layer(layer, input);
            input = layer.output;
        }
        else if(net.types[i] == DROPOUT){
            if(!train) continue;
            dropout_layer layer = *(dropout_layer *)net.layers[i];
            forward_dropout_layer(layer, input);
        }
    }
}
#endif
void update_network(network net)
{
    int i;
    for(i = 0; i < net.n; ++i){
        if(net.types[i] == CONVOLUTIONAL){
            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
            update_convolutional_layer(layer);
        }
        else if(net.types[i] == MAXPOOL){
            //maxpool_layer layer = *(maxpool_layer *)net.layers[i];
@@ -180,7 +128,7 @@
        }
        else if(net.types[i] == CONNECTED){
            connected_layer layer = *(connected_layer *)net.layers[i];
            update_connected_layer(layer, step, momentum, decay);
            update_connected_layer(layer);
        }
    }
}
@@ -196,6 +144,8 @@
    } else if(net.types[i] == SOFTMAX){
        softmax_layer layer = *(softmax_layer *)net.layers[i];
        return layer.output;
    } else if(net.types[i] == DROPOUT){
        return get_network_output_layer(net, i-1);
    } else if(net.types[i] == CONNECTED){
        connected_layer layer = *(connected_layer *)net.layers[i];
        return layer.output;
@@ -221,6 +171,8 @@
    } else if(net.types[i] == SOFTMAX){
        softmax_layer layer = *(softmax_layer *)net.layers[i];
        return layer.delta;
    } else if(net.types[i] == DROPOUT){
        return get_network_delta_layer(net, i-1);
    } else if(net.types[i] == CONNECTED){
        connected_layer layer = *(connected_layer *)net.layers[i];
        return layer.delta;
@@ -238,10 +190,13 @@
    float sum = 0;
    float *delta = get_network_delta(net);
    float *out = get_network_output(net);
    int i, k = get_network_output_size(net);
    for(i = 0; i < k; ++i){
        //printf("%f, ", out[i]);
    int i;
    for(i = 0; i < get_network_output_size(net)*net.batch; ++i){
        //if(i %get_network_output_size(net) == 0) printf("\n");
        //printf("%5.2f %5.2f, ", out[i], truth[i]);
        //if(i == get_network_output_size(net)) printf("\n");
        delta[i] = truth[i] - out[i];
        //printf("%.10f, ", out[i]);
        sum += delta[i]*delta[i];
    }
    //printf("\n");
@@ -293,32 +248,50 @@
    return error;
}
float train_network_datum(network net, float *x, float *y, float step, float momentum, float decay)
float train_network_datum(network net, float *x, float *y)
{
    forward_network(net, x, 1);
    //int class = get_predicted_class_network(net);
    float error = backward_network(net, x, y);
    update_network(net, step, momentum, decay);
    update_network(net);
    //return (y[class]?1:0);
    return error;
}
float train_network_sgd(network net, data d, int n, float step, float momentum,float decay)
float train_network_sgd(network net, data d, int n)
{
    int i;
    float error = 0;
    int correct = 0;
    int pos = 0;
    int batch = net.batch;
    float *X = calloc(batch*d.X.cols, sizeof(float));
    float *y = calloc(batch*d.y.cols, sizeof(float));
    int i,j;
    float sum = 0;
    for(i = 0; i < n; ++i){
        int index = rand()%d.X.rows;
        float err = train_network_datum(net, d.X.vals[index], d.y.vals[index], step, momentum, decay);
        for(j = 0; j < batch; ++j){
            int index = rand()%d.X.rows;
            memcpy(X+j*d.X.cols, d.X.vals[index], d.X.cols*sizeof(float));
            memcpy(y+j*d.y.cols, d.y.vals[index], d.y.cols*sizeof(float));
        }
        float err = train_network_datum(net, X, y);
        sum += err;
        //train_network_datum(net, X, y);
        /*
        float *y = d.y.vals[index];
        int class = get_predicted_class_network(net);
        correct += (y[class]?1:0);
        if(y[1]){
            error += err;
            ++pos;
        */
/*
        for(j = 0; j < d.y.cols*batch; ++j){
            printf("%6.3f ", y[j]);
        }
        printf("\n");
        for(j = 0; j < d.y.cols*batch; ++j){
            printf("%6.3f ", get_network_output(net)[j]);
        }
        printf("\n");
        printf("\n");
        */
        //printf("%d %f %f\n", i,net.output[0], d.y.vals[index][0]);
@@ -327,33 +300,35 @@
        //}
    }
    //printf("Accuracy: %f\n",(float) correct/n);
    return error/pos;
    free(X);
    free(y);
    return (float)sum/(n*batch);
}
float train_network_batch(network net, data d, int n, float step, float momentum,float decay)
float train_network_batch(network net, data d, int n)
{
    int i;
    int correct = 0;
    int i,j;
    float sum = 0;
    int batch = 2;
    for(i = 0; i < n; ++i){
        int index = rand()%d.X.rows;
        float *x = d.X.vals[index];
        float *y = d.y.vals[index];
        forward_network(net, x, 1);
        int class = get_predicted_class_network(net);
        backward_network(net, x, y);
        correct += (y[class]?1:0);
        for(j = 0; j < batch; ++j){
            int index = rand()%d.X.rows;
            float *x = d.X.vals[index];
            float *y = d.y.vals[index];
            forward_network(net, x, 1);
            sum += backward_network(net, x, y);
        }
        update_network(net);
    }
    update_network(net, step, momentum, decay);
    return (float)correct/n;
    return (float)sum/(n*batch);
}
void train_network(network net, data d, float step, float momentum, float decay)
void train_network(network net, data d)
{
    int i;
    int correct = 0;
    for(i = 0; i < d.X.rows; ++i){
        correct += train_network_datum(net, d.X.vals[i], d.y.vals[i], step, momentum, decay);
        correct += train_network_datum(net, d.X.vals[i], d.y.vals[i]);
        if(i%100 == 0){
            visualize_network(net);
            cvWaitKey(10);
@@ -377,6 +352,9 @@
    else if(net.types[i] == CONNECTED){
        connected_layer layer = *(connected_layer *)net.layers[i];
        return layer.inputs;
    } else if(net.types[i] == DROPOUT){
        dropout_layer layer = *(dropout_layer *) net.layers[i];
        return layer.inputs;
    }
    else if(net.types[i] == SOFTMAX){
        softmax_layer layer = *(softmax_layer *)net.layers[i];
@@ -400,6 +378,9 @@
    else if(net.types[i] == CONNECTED){
        connected_layer layer = *(connected_layer *)net.layers[i];
        return layer.outputs;
    } else if(net.types[i] == DROPOUT){
        dropout_layer layer = *(dropout_layer *) net.layers[i];
        return layer.inputs;
    }
    else if(net.types[i] == SOFTMAX){
        softmax_layer layer = *(softmax_layer *)net.layers[i];
@@ -448,7 +429,7 @@
int get_network_input_size(network net)
{
    return get_network_output_size_layer(net, 0);
    return get_network_input_size_layer(net, 0);
}
image get_network_image_layer(network net, int i)
@@ -505,15 +486,24 @@
matrix network_predict_data(network net, data test)
{
    int i,j;
    int i,j,b;
    int k = get_network_output_size(net);
    matrix pred = make_matrix(test.X.rows, k);
    for(i = 0; i < test.X.rows; ++i){
        float *out = network_predict(net, test.X.vals[i]);
        for(j = 0; j < k; ++j){
            pred.vals[i][j] = out[j];
    float *X = calloc(net.batch*test.X.rows, sizeof(float));
    for(i = 0; i < test.X.rows; i += net.batch){
        for(b = 0; b < net.batch; ++b){
            if(i+b == test.X.rows) break;
            memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float));
        }
        float *out = network_predict(net, X);
        for(b = 0; b < net.batch; ++b){
            if(i+b == test.X.rows) break;
            for(j = 0; j < k; ++j){
                pred.vals[i+b][j] = out[j+b*k];
            }
        }
    }
    free(X);
    return pred;   
}