Edmond Yoo
2018-10-12 dea64611730c84a59c711c61f7f80948f82bcd31
opencv_dnn.py
@@ -3,9 +3,13 @@
import pandas as pd
import imagehash as ih
import os
import ast
import sys
import math
import random
import collections
from operator import itemgetter
import time
from PIL import Image
import fetch_data
import transform_data
@@ -14,54 +18,53 @@
card_height = 440
def calc_image_hashes(card_pool, save_to=None):
    card_pool['art_hash'] = np.NaN
def calc_image_hashes(card_pool, save_to=None, hash_size=32, highfreq_factor=4):
    new_pool = pd.DataFrame(columns=list(card_pool.columns.values))
    new_pool['card_hash'] = np.NaN
    new_pool['art_hash'] = np.NaN
    for ind, card_info in card_pool.iterrows():
        if ind % 100 == 0:
            print(ind)
        img_name = '%s/card_img/png/%s/%s_%s.png' % (transform_data.data_dir, card_info['set'],
                                                     card_info['collector_number'],
                                                     fetch_data.get_valid_filename(card_info['name']))
        card_img = cv2.imread(img_name)
        if card_img is None:
            fetch_data.fetch_card_image(card_info,
                                        out_dir='%s/card_img/png/%s' % (transform_data.data_dir, card_info['set']))
        card_names = []
        if card_info['layout'] in ['transform', 'double_faced_token']:
            if isinstance(card_info['card_faces'], str):  # For some reason, dict isn't being parsed in the previous step
                card_faces = ast.literal_eval(card_info['card_faces'])
            else:
                card_faces = card_info['card_faces']
            for i in range(len(card_faces)):
                card_names.append(card_faces[i]['name'])
        else:  # if card_info['layout'] == 'normal':
            card_names.append(card_info['name'])
        for card_name in card_names:
            card_info['name'] = card_name
            img_name = '%s/card_img/png/%s/%s_%s.png' % (transform_data.data_dir, card_info['set'],
                                                         card_info['collector_number'],
                                                         fetch_data.get_valid_filename(card_info['name']))
            card_img = cv2.imread(img_name)
        if card_img is None:
            print('WARNING: card %s is not found!' % img_name)
        img_art = Image.fromarray(card_img[121:580, 63:685])
        art_hash = ih.phash(img_art, hash_size=32, highfreq_factor=4)
        card_pool.at[ind, 'art_hash'] = art_hash
        img_card = Image.fromarray(card_img)
        card_hash = ih.phash(img_card, hash_size=32, highfreq_factor=4)
        card_pool.at[ind, 'card_hash'] = card_hash
        card_pool = card_pool[['artist', 'border_color', 'collector_number', 'color_identity', 'colors', 'flavor_text',
                               'image_uris', 'mana_cost', 'legalities', 'name', 'oracle_text', 'rarity', 'type_line',
                               'set', 'set_name', 'power', 'toughness', 'art_hash', 'card_hash']]
            if card_img is None:
                fetch_data.fetch_card_image(card_info,
                                            out_dir='%s/card_img/png/%s' % (transform_data.data_dir, card_info['set']))
                card_img = cv2.imread(img_name)
            if card_img is None:
                print('WARNING: card %s is not found!' % img_name)
            #img_art = Image.fromarray(card_img[121:580, 63:685])  # For 745*1040 size card image
            #art_hash = ih.phash(img_art, hash_size=32, highfreq_factor=4)
            #card_pool.at[ind, 'art_hash'] = art_hash
            img_card = Image.fromarray(card_img)
            card_hash = ih.phash(img_card, hash_size=hash_size, highfreq_factor=highfreq_factor)
            #card_pool.at[ind, 'card_hash'] = card_hash
            card_info['card_hash'] = card_hash
            #print(new_pool.index.max())
            new_pool.loc[0 if new_pool.empty else new_pool.index.max() + 1] = card_info
    new_pool = new_pool[['artist', 'border_color', 'collector_number', 'color_identity', 'colors', 'flavor_text',
                         'image_uris', 'mana_cost', 'legalities', 'name', 'oracle_text', 'rarity', 'type_line',
                         'set', 'set_name', 'power', 'toughness', 'art_hash', 'card_hash']]
    if save_to is not None:
        card_pool.to_pickle(save_to)
    return card_pool
'''
df_list = []
for set_name in fetch_data.all_set_list:
    csv_name = '%s/csv/%s.csv' % (transform_data.data_dir, set_name)
    df = fetch_data.load_all_cards_text(csv_name)
    df_list.append(df)
    #print(df)
card_pool = pd.concat(df_list)
card_pool.reset_index(drop=True, inplace=True)
card_pool.drop('Unnamed: 0', axis=1, inplace=True, errors='ignore')
card_pool = calc_image_hashes(card_pool, save_to='card_pool.pck')
'''
#csv_name = '%s/csv/%s.csv' % (transform_data.data_dir, 'rtr')
#card_pool = fetch_data.load_all_cards_text(csv_name)
#card_pool = calc_image_hashes(card_pool)
card_pool = pd.read_pickle('card_pool.pck')
# Disclaimer: majority of the basic framework in this file is modified from the following tutorial:
# https://www.learnopencv.com/deep-learning-based-object-detection-using-yolov3-with-opencv-python-c/
        new_pool.to_pickle(save_to)
    return new_pool
# www.pyimagesearch.com/2014/08/25/4-point-opencv-getperspective-transform-example/
@@ -89,6 +92,7 @@
    return rect
# www.pyimagesearch.com/2014/08/25/4-point-opencv-getperspective-transform-example/
def four_point_transform(image, pts):
    # obtain a consistent order of the points and unpack them
    # individually
@@ -121,14 +125,14 @@
        [0, maxHeight - 1]], dtype="float32")
    # compute the perspective transform matrix and then apply it
    M = cv2.getPerspectiveTransform(rect, dst)
    warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight))
    mat = cv2.getPerspectiveTransform(rect, dst)
    warped = cv2.warpPerspective(image, mat, (maxWidth, maxHeight))
    # If the image is horizontally long, rotate it by 90
    if maxWidth > maxHeight:
        center = (maxHeight / 2, maxHeight / 2)
        M_rot = cv2.getRotationMatrix2D(center, 270, 1.0)
        warped = cv2.warpAffine(warped, M_rot, (maxHeight, maxWidth))
        mat_rot = cv2.getRotationMatrix2D(center, 270, 1.0)
        warped = cv2.warpAffine(warped, mat_rot, (maxHeight, maxWidth))
    # return the warped image
    return warped
@@ -143,11 +147,11 @@
# Remove the bounding boxes with low confidence using non-maxima suppression
# https://www.learnopencv.com/deep-learning-based-object-detection-using-yolov3-with-opencv-python-c/
def post_process(frame, outs, thresh_conf, thresh_nms):
    frame_height = frame.shape[0]
    frame_width = frame.shape[1]
    # Scan through all the bounding boxes output from the network and keep only the
    # ones with high confidence scores. Assign the box's class label as the class with the highest score.
    class_ids = []
@@ -221,7 +225,7 @@
    return corrected
def find_card(img, thresh_c=5, kernel_size=(3, 3), size_ratio=0.3):
def find_card(img, thresh_c=5, kernel_size=(3, 3), size_ratio=0.2):
    # Typical pre-processing - grayscale, blurring, thresholding
    img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    img_blur = cv2.medianBlur(img_gray, 5)
@@ -245,7 +249,7 @@
    # For each contours detected, check if they are large enough and are rectangle
    cnts_rect = []
    ind_sort = sorted(range(len(cnts)), key=lambda i: cv2.contourArea(cnts[i]), reverse=True)
    for i in range(len(cnts)):
    for i in range(min(len(cnts), 5)):  # The card should be within top 5 largest contour
        size = cv2.contourArea(cnts[ind_sort[i]])
        peri = cv2.arcLength(cnts[ind_sort[i]], True)
        approx = cv2.approxPolyDP(cnts[ind_sort[i]], 0.04 * peri, True)
@@ -255,8 +259,53 @@
    return cnts_rect
def detect_frame(net, classes, img, thresh_conf=0.5, thresh_nms=0.4, in_dim=(416, 416), display=True, out_path=None):
    img_copy = img.copy()
def draw_card_graph(exist_cards, card_pool, f_len):
    w_card = 63
    h_card = 88
    gap = 25
    gap_sm = 10
    w_bar = 300
    h_bar = 12
    txt_scale = 0.8
    n_cards_p_col = 4
    w_img = gap + (w_card + gap + w_bar + gap) * 2
    #h_img = gap + (h_card + gap) * n_cards_p_col
    h_img = 480
    img_graph = np.zeros((h_img, w_img, 3), dtype=np.uint8)
    x_anchor = gap
    y_anchor = gap
    i = 0
    for key, val in sorted(exist_cards.items(), key=itemgetter(1), reverse=True)[:n_cards_p_col * 2]:
        card_name = key[:key.find('(') - 1]
        card_set = key[key.find('(') + 1:key.find(')')]
        confidence = sum(val) / f_len
        card_info = card_pool[(card_pool['name'] == card_name) & (card_pool['set'] == card_set)].iloc[0]
        img_name = '%s/card_img/tiny/%s/%s_%s.png' % (transform_data.data_dir, card_info['set'],
                                                     card_info['collector_number'],
                                                     fetch_data.get_valid_filename(card_info['name']))
        card_img = cv2.imread(img_name)
        img_graph[y_anchor:y_anchor + h_card, x_anchor:x_anchor + w_card] = card_img
        cv2.putText(img_graph, '%s (%s)' % (card_name, card_set),
                    (x_anchor + w_card + gap, y_anchor + gap_sm + int(txt_scale * 25)), cv2.FONT_HERSHEY_SIMPLEX,
                    txt_scale, (255, 255, 255), 1)
        cv2.rectangle(img_graph, (x_anchor + w_card + gap, y_anchor + h_card - (gap_sm + h_bar)),
                      (x_anchor + w_card + gap + int(w_bar * confidence), y_anchor + h_card - gap_sm), (0, 255, 0),
                      thickness=cv2.FILLED)
        y_anchor += h_card + gap
        i += 1
        if i % n_cards_p_col == 0:
            x_anchor += w_card + gap + w_bar + gap
            y_anchor = gap
        pass
    return img_graph
def detect_frame(net, classes, img, card_pool, thresh_conf=0.5, thresh_nms=0.4, in_dim=(416, 416), out_path=None, display=True,
                 debug=False):
    start_1 = time.time()
    elapsed = []
    '''
    # Create a 4D blob from a frame.
    blob = cv2.dnn.blobFromImage(img, 1 / 255, in_dim, [0, 0, 0], 1, crop=False)
@@ -265,131 +314,167 @@
    # Runs the forward pass to get output of the output layers
    outs = net.forward(get_outputs_names(net))
    elapsed.append((time.time() - start_1) * 1000)
    start_2 = time.time()
    img_result = img.copy()
    # Remove the bounding boxes with low confidence
    obj_list = post_process(img, outs, thresh_conf, thresh_nms)
    for obj in obj_list:
        class_id, confidence, box = obj
        left, top, width, height = box
        draw_pred(img, class_id, classes, confidence, left, top, left + width, top + height)
        draw_pred(img_result, class_id, classes, confidence, left, top, left + width, top + height)
    elapsed.append((time.time() - start_2) * 1000)
    '''
    img_result = img.copy()
    obj_list = []
    # Put efficiency information. The function getPerfProfile returns the
    # overall time for inference(t) and the timings for each of the layers(in layersTimes)
    t, _ = net.getPerfProfile()
    label = 'Inference time: %.2f ms' % (t * 1000.0 / cv2.getTickFrequency())
    cv2.putText(img, label, (0, 15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255))
    #if display:
    #    t, _ = net.getPerfProfile()
    #    label = 'Inference time: %.2f ms' % (t * 1000.0 / cv2.getTickFrequency())
    #    cv2.putText(img_result, label, (0, 15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255))
    '''
    Assuming that the model has properly identified all cards, there should be 1 card that can be classified per
    bounding box. Find the largest rectangular contour from the region of interest, and identify the card by
    comparing the perceptual hashing of the image with the other cards' image from the database.
    '''
    det_cards = []
    for i in range(len(obj_list)):
        start_3 = time.time()
        _, _, box = obj_list[i]
        left, top, width, height = box
        # Just in case the bounding box trimmed the edge of the cards, give it a bit of offset around the edge
        offset_ratio = 0.1
        x1 = max(0, int(left - offset_ratio * width))
        x2 = min(img.shape[1], int(left + (1 + offset_ratio) * width))
        y1 = max(0, int(top - offset_ratio * height))
        y2 = min(img.shape[0], int(top + (1 + offset_ratio) * height))
        img_snip = img[y1:y2, x1:x2]
        cnts = find_card(img_snip)
        elapsed.append((time.time() - start_3) * 1000)
        if len(cnts) > 0:
            start_4 = time.time()
            cnt = cnts[0]  # The largest (rectangular) contour
            pts = np.float32([p[0] for p in cnt])
            img_warp = four_point_transform(img_snip, pts)
            img_warp = cv2.resize(img_warp, (card_width, card_height))
            elapsed.append((time.time() - start_4) * 1000)
            '''
            img_art = img_warp[47:249, 22:294]
            img_art = Image.fromarray(img_art.astype('uint8'), 'RGB')
            art_hash = ih.phash(img_art, hash_size=32, highfreq_factor=4)
            card_pool['hash_diff'] = card_pool['art_hash'] - art_hash
            min_cards = card_pool[card_pool['hash_diff'] == min(card_pool['hash_diff'])]
            card_name = min_cards.iloc[0]['name']
            '''
            start_5 = time.time()
            img_card = Image.fromarray(img_warp.astype('uint8'), 'RGB')
            card_hash = ih.phash(img_card, hash_size=32, highfreq_factor=4).hash.flatten()
            card_pool['hash_diff'] = card_pool['card_hash'].apply(lambda x: np.count_nonzero(x != card_hash))
            min_cards = card_pool[card_pool['hash_diff'] == min(card_pool['hash_diff'])]
            card_name = min_cards.iloc[0]['name']
            card_set = min_cards.iloc[0]['set']
            det_cards.append((card_name, card_set))
            hash_diff = min_cards.iloc[0]['hash_diff']
            elapsed.append((time.time() - start_5) * 1000)
            # Display the result
            if debug:
                # cv2.rectangle(img_warp, (22, 47), (294, 249), (0, 255, 0), 2)
                cv2.putText(img_warp, card_name + ', ' + str(hash_diff), (0, 50),
                            cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)
            cv2.putText(img_result, card_name, (x1, y1), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2)
            if debug:
                cv2.imshow('card#%d' % i, img_warp)
        elif debug:
            cv2.imshow('card#%d' % i, np.zeros((1, 1), dtype=np.uint8))
    if out_path is not None:
        cv2.imwrite(out_path, img.astype(np.uint8))
    if display:
        #no_glare = remove_glare(img_copy)
        #img_concat = np.concatenate((img, no_glare), axis=1)
        cv2.imshow('result', img)
        '''
        for i in range(len(obj_list)):
            class_id, confidence, box = obj_list[i]
            left, top, width, height = box
            img_snip = img_copy[max(0, top):min(img.shape[0], top + height),
                                max(0, left):min(img.shape[1], left + width)]
            img_thresh, img_dilate, img_canny, img_hough = find_card(img_snip)
            img_concat = np.concatenate((img_snip, img_thresh, img_dilate, img_canny, img_hough), axis=1)
            cv2.imshow('feature#%d' % i, img_concat)
        '''
        cv2.waitKey(0)
        cv2.destroyAllWindows()
    return obj_list
        cv2.imwrite(out_path, img_result.astype(np.uint8))
    elapsed = [(time.time() - start_1) * 1000] + elapsed
    #print(', '.join(['%.2f' % t for t in elapsed]))
    return obj_list, det_cards, img_result
def detect_video(net, classes, capture, thresh_conf=0.5, thresh_nms=0.4, in_dim=(416, 416), display=True, out_path=None):
def detect_video(net, classes, capture, card_pool, thresh_conf=0.5, thresh_nms=0.4, in_dim=(416, 416), out_path=None,
                 display=True, debug=False):
    if out_path is not None:
        vid_writer = cv2.VideoWriter(out_path, cv2.VideoWriter_fourcc('M', 'J', 'P', 'G'), 30,
                                     (round(capture.get(cv2.CAP_PROP_FRAME_WIDTH)),
                                      round(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))))
        img_graph = draw_card_graph({}, None, -1)  # Black image of the graph just to get the dimension
        width = round(capture.get(cv2.CAP_PROP_FRAME_WIDTH)) + img_graph.shape[1]
        height = max(round(capture.get(cv2.CAP_PROP_FRAME_HEIGHT)), img_graph.shape[0])
        vid_writer = cv2.VideoWriter(out_path, cv2.VideoWriter_fourcc(*'MJPG'), 10.0, (width, height))
    max_num_obj = 0
    while True:
        ret, frame = capture.read()
        if not ret:
            # End of video
            print("End of video. Press any key to exit")
            cv2.waitKey(0)
            break
        img = frame.copy()
        obj_list = detect_frame(net, classes, frame, thresh_conf=thresh_conf, thresh_nms=thresh_nms, in_dim=in_dim,
                                display=False, out_path=None)
        #cnts_rect = find_card(img)
        max_num_obj = max(max_num_obj, len(obj_list))
        if display:
            img_result = frame.copy()
            #img_result = cv2.drawContours(img_result, cnts_rect, -1, (0, 255, 0), 2)
            #for i in range(len(cnts_rect)):
            #    pts = np.float32([p[0] for p in cnts_rect[i]])
            #    img_warp = four_point_transform(img, pts)
            #    cv2.imshow('card#%d' % i, img_warp)
            #for i in range(len(cnts_rect), max_num_obj):
            #    cv2.imshow('card#%d' % i, np.zeros((1, 1), dtype=np.uint8))
            #no_glare = remove_glare(img)
            #img_thresh, img_erode, img_contour = find_card(no_glare)
            #img_concat = np.concatenate((no_glare, img_contour), axis=1)
            for i in range(len(obj_list)):
                class_id, confidence, box = obj_list[i]
                left, top, width, height = box
                offset_ratio = 0.1
                x1 = max(0, int(left - offset_ratio * width))
                x2 = min(img.shape[1], int(left + (1 + offset_ratio) * width))
                y1 = max(0, int(top - offset_ratio * height))
                y2 = min(img.shape[0], int(top + (1 + offset_ratio) * height))
                img_snip = img[y1:y2, x1:x2]
                cnts = find_card(img_snip)
                if len(cnts) > 0:
                    cnt = cnts[-1]
                    pts = np.float32([p[0] for p in cnt])
                    img_warp = four_point_transform(img_snip, pts)
                    img_warp = cv2.resize(img_warp, (card_width, card_height))
                    '''
                    img_art = img_warp[47:249, 22:294]
                    img_art = Image.fromarray(img_art.astype('uint8'), 'RGB')
                    art_hash = ih.phash(img_art, hash_size=32, highfreq_factor=4)
                    card_pool['hash_diff'] = card_pool['art_hash'] - art_hash
                    min_cards = card_pool[card_pool['hash_diff'] == min(card_pool['hash_diff'])]
                    guttersnipe = card_pool[card_pool['name'] == 'Cyclonic Rift']
                    diff = guttersnipe['art_hash'] - art_hash
                    print(diff)
                    card_name = min_cards.iloc[0]['name']
                    #print(min_cards.iloc[0]['name'], min_cards.iloc[0]['hash_diff'])
                    '''
                    img_card = Image.fromarray(img_warp.astype('uint8'), 'RGB')
                    card_hash = ih.phash(img_card, hash_size=32, highfreq_factor=4)
                    card_pool['hash_diff'] = card_pool['card_hash'] - card_hash
                    min_cards = card_pool[card_pool['hash_diff'] == min(card_pool['hash_diff'])]
                    card_name = min_cards.iloc[0]['name']
                    hash_diff = min_cards.iloc[0]['hash_diff']
                    #guttersnipe = card_pool[card_pool['name'] == 'Cyclonic Rift']
                    #diff = guttersnipe['card_hash'] - card_hash
                    #print(diff)
                    #img_thresh, img_dilate, img_contour = find_card(img_snip)
                    #img_concat = np.concatenate((img_snip, img_contour), axis=1)
                    cv2.rectangle(img_warp, (22, 47), (294, 249), (0, 255, 0), 2)
                    cv2.putText(img_warp, card_name + ', ' + str(hash_diff), (0, 50),
                                cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)
                    cv2.imshow('card#%d' % i, img_warp)
    f_len = 10  # number of frames to consider to check for existing cards
    exist_cards = {}
    try:
        while True:
            ret, frame = capture.read()
            start_time = time.time()
            if not ret:
                # End of video
                print("End of video. Press any key to exit")
                cv2.waitKey(0)
                break
            # Use the YOLO model to identify each cards annonymously
            start_yolo = time.time()
            obj_list, det_cards, img_result = detect_frame(net, classes, frame, card_pool, thresh_conf=thresh_conf,
                                                           thresh_nms=thresh_nms, in_dim=in_dim, out_path=None,
                                                           display=display, debug=debug)
            elapsed_yolo = (time.time() - start_yolo) * 1000
            # If the card was already detected in the previous frame, append 1 to the list
            # If the card previously detected was not found in this trame, append 0 to the list
            # If the card wasn't previously detected, make a new list and add 1 to it
            # If the same card is detected multiple times in the same frame, keep track of the duplicates
            # The confidence will be calculated based on the number of frames the card was detected for
            det_cards_count = collections.Counter(det_cards).items()
            det_cards_list = []
            for card, count in det_cards_count:
                card_name, card_set = card
                for i in range(count): 1
                key = '%s (%s) #%d' % (card_name, card_set, i + 1)
                det_cards_list.append(key)
            gone = []
            for key, val in exist_cards.items():
                if key in det_cards_list:
                    exist_cards[key] = exist_cards[key][1 - f_len:] + [1]
                else:
                    exist_cards[key] = exist_cards[key][1 - f_len:] + [0]
                if len(val) == f_len and sum(val) == 0:
                    gone.append(key)
            for key in det_cards_list:
                if key not in exist_cards.keys():
                    exist_cards[key] = [1]
            for key in gone:
                exist_cards.pop(key)
            start_graph = time.time()
            img_graph = draw_card_graph(exist_cards, card_pool, f_len)
            elapsed_graph = (time.time() - start_graph) * 1000
            if debug:
                max_num_obj = max(max_num_obj, len(obj_list))
                for i in range(len(obj_list), max_num_obj):
                    cv2.imshow('card#%d' % i, np.zeros((1, 1), dtype=np.uint8))
            for i in range(len(obj_list), max_num_obj):
                cv2.imshow('card#%d' % i, np.zeros((1, 1), dtype=np.uint8))
            cv2.imshow('result', img_result)
            #if len(obj_list) > 0:
            #    cv2.waitKey(0)
            start_display = time.time()
            img_save = np.zeros((height, width, 3), dtype=np.uint8)
            img_save[0:img_result.shape[0], 0:img_result.shape[1]] = img_result
            img_save[0:img_graph.shape[0], img_result.shape[1]:img_result.shape[1] + img_graph.shape[1]] = img_graph
            if display:
                cv2.imshow('result', img_save)
            elapsed_display = (time.time() - start_display) * 1000
            elapsed_ms = (time.time() - start_time) * 1000
            #print('Elapsed time: %.2f ms, %.2f, %.2f, %.2f' % (elapsed_ms, elapsed_yolo, elapsed_graph, elapsed_display))
            if out_path is not None:
                vid_writer.write(img_save.astype(np.uint8))
            cv2.waitKey(1)
    except KeyboardInterrupt:
        capture.release()
        if out_path is not None:
            vid_writer.write(frame.astype(np.uint8))
        cv2.waitKey(1)
    if out_path is not None:
        vid_writer.release()
    cv2.destroyAllWindows()
            vid_writer.release()
        cv2.destroyAllWindows()
def main():
@@ -399,7 +484,7 @@
    #cfg_path = 'cfg/tiny_yolo_10.cfg'
    #class_path = "data/obj_10.names"
    weight_path = 'weights/second_general/tiny_yolo_final.weights'
    cfg_path = 'cfg/tiny_yolo.cfg'
    cfg_path = 'cfg/tiny_yolo_old.cfg'
    class_path = 'data/obj.names'
    out_dir = 'out'
    if not os.path.isfile(test_path):
@@ -415,6 +500,36 @@
        print('The class file %s doesn\'t exist!' % os.path.abspath(test_path))
        return
    '''
    df_list = []
    for set_name in fetch_data.all_set_list:
        csv_name = '%s/csv/%s.csv' % (transform_data.data_dir, set_name)
        df = fetch_data.load_all_cards_text(csv_name)
        df_list.append(df)
        #print(df)
    card_pool = pd.concat(df_list, sort=True)
    card_pool.reset_index(drop=True, inplace=True)
    card_pool.drop('Unnamed: 0', axis=1, inplace=True, errors='ignore')
    for hash_size in [8, 16, 32, 64]:
        for highfreq_factor in [4, 8, 16, 32]:
            pck_name = 'card_pool_%d_%d.pck' % (hash_size, highfreq_factor)
            if not os.path.exists(pck_name):
                print(pck_name)
                calc_image_hashes(card_pool, save_to=pck_name, hash_size=hash_size, highfreq_factor=highfreq_factor)
    '''
    #csv_name = '%s/csv/%s.csv' % (transform_data.data_dir, 'rtr')
    #card_pool = fetch_data.load_all_cards_text(csv_name)
    #card_pool = calc_image_hashes(card_pool, save_to='card_pool.pck')
    #return
    card_pool = pd.read_pickle('card_pool_32_4.pck')
    #card_pool = card_pool[(card_pool['set'] == 'rtr') | (card_pool['set'] == 'isd')]
    card_pool = card_pool[['name', 'set', 'collector_number', 'card_hash']]
    # ImageHash is basically just one numpy.ndarray with (hash_size)^2 number of bits. pre-emptively flattening it
    # significantly increases speed for subtracting hashes in the future.
    card_pool['card_hash'] = card_pool['card_hash'].apply(lambda x: x.hash.flatten())
    thresh_conf = 0.01
    thresh_nms = 0.8
@@ -431,16 +546,18 @@
    if out_dir is None or out_dir == '':
        out_path = None
    else:
        out_path = out_dir + '/' + os.path.split(test_path)[1]
        f_name = os.path.split(test_path)[1]
        out_path = out_dir + '/' + f_name[:f_name.find('.')] + '.avi'
    # Check if test file is image or video
    test_ext = test_path[test_path.find('.') + 1:]
    if test_ext in ['jpg', 'jpeg', 'bmp', 'png', 'tiff']:
        img = cv2.imread(test_path)
        detect_frame(net, classes, img, out_path=out_path, thresh_conf=thresh_conf, thresh_nms=thresh_nms)
        detect_frame(net, classes, img, card_pool, out_path=out_path, thresh_conf=thresh_conf, thresh_nms=thresh_nms)
    else:
        capture = cv2.VideoCapture(0)
        detect_video(net, classes, capture, out_path=out_path, thresh_conf=thresh_conf, thresh_nms=thresh_nms)
        detect_video(net, classes, capture, card_pool, out_path=out_path, thresh_conf=thresh_conf, thresh_nms=thresh_nms,
                     display=True, debug=False)
        capture.release()
    pass