Joseph Redmon
2015-11-09 eaf033c0570308dfcd381ed61d274c7f5add7cfc
src/network_kernels.cu
@@ -13,7 +13,6 @@
#include "crop_layer.h"
#include "connected_layer.h"
#include "detection_layer.h"
#include "region_layer.h"
#include "convolutional_layer.h"
#include "deconvolutional_layer.h"
#include "maxpool_layer.h"
@@ -36,7 +35,7 @@
    for(i = 0; i < net.n; ++i){
        layer l = net.layers[i];
        if(l.delta_gpu){
            scal_ongpu(l.outputs * l.batch, 0, l.delta_gpu, 1);
            fill_ongpu(l.outputs * l.batch, 0, l.delta_gpu, 1);
        }
        if(l.type == CONVOLUTIONAL){
            forward_convolutional_layer_gpu(l, state);
@@ -44,8 +43,6 @@
            forward_deconvolutional_layer_gpu(l, state);
        } else if(l.type == DETECTION){
            forward_detection_layer_gpu(l, state);
        } else if(l.type == REGION){
            forward_region_layer_gpu(l, state);
        } else if(l.type == CONNECTED){
            forward_connected_layer_gpu(l, state);
        } else if(l.type == CROP){
@@ -96,8 +93,6 @@
            backward_dropout_layer_gpu(l, state);
        } else if(l.type == DETECTION){
            backward_detection_layer_gpu(l, state);
        } else if(l.type == REGION){
            backward_region_layer_gpu(l, state);
        } else if(l.type == NORMALIZATION){
            backward_normalization_layer_gpu(l, state);
        } else if(l.type == SOFTMAX){
@@ -134,7 +129,7 @@
    network_state state;
    int x_size = get_network_input_size(net)*net.batch;
    int y_size = get_network_output_size(net)*net.batch;
    if(net.layers[net.n-1].type == REGION) y_size = net.layers[net.n-1].truths*net.batch;
    if(net.layers[net.n-1].type == DETECTION) y_size = net.layers[net.n-1].truths*net.batch;
    if(!*net.input_gpu){
        *net.input_gpu = cuda_make_array(x, x_size);
        *net.truth_gpu = cuda_make_array(y, y_size);