| | |
| | | #include "cuda.h" |
| | | } |
| | | |
| | | __global__ void bias(int n, int size, float *biases, float *output) |
| | | __global__ void bias_output_kernel(float *output, float *biases, int n, int size) |
| | | { |
| | | int offset = blockIdx.x * blockDim.x + threadIdx.x; |
| | | int filter = blockIdx.y; |
| | |
| | | if(offset < size) output[(batch*n+filter)*size + offset] = biases[filter]; |
| | | } |
| | | |
| | | extern "C" void bias_output_gpu(const convolutional_layer layer) |
| | | extern "C" void bias_output_gpu(float *output, float *biases, int batch, int n, int size) |
| | | { |
| | | int size = convolutional_out_height(layer)*convolutional_out_width(layer); |
| | | |
| | | dim3 dimBlock(BLOCK, 1, 1); |
| | | dim3 dimGrid((size-1)/BLOCK + 1, layer.n, layer.batch); |
| | | dim3 dimGrid((size-1)/BLOCK + 1, n, batch); |
| | | |
| | | bias<<<dimGrid, dimBlock>>>(layer.n, size, layer.biases_gpu, layer.output_gpu); |
| | | bias_output_kernel<<<dimGrid, dimBlock>>>(output, biases, n, size); |
| | | check_error(cudaPeekAtLastError()); |
| | | } |
| | | |
| | | __global__ void learn_bias(int batch, int n, int size, float *delta, float *bias_updates) |
| | | __global__ void backward_bias_kernel(float *bias_updates, float *delta, int batch, int n, int size, float scale) |
| | | { |
| | | __shared__ float part[BLOCK]; |
| | | int i,b; |
| | | int filter = (blockIdx.x + blockIdx.y*gridDim.x); |
| | | int filter = blockIdx.x; |
| | | int p = threadIdx.x; |
| | | float sum = 0; |
| | | for(b = 0; b < batch; ++b){ |
| | |
| | | part[p] = sum; |
| | | __syncthreads(); |
| | | if(p == 0){ |
| | | for(i = 0; i < BLOCK; ++i) bias_updates[filter] += part[i]; |
| | | for(i = 0; i < BLOCK; ++i) bias_updates[filter] += scale * part[i]; |
| | | } |
| | | } |
| | | |
| | | extern "C" void learn_bias_convolutional_layer_ongpu(convolutional_layer layer) |
| | | extern "C" void backward_bias_gpu(float *bias_updates, float *delta, int batch, int n, int size) |
| | | { |
| | | int size = convolutional_out_height(layer)*convolutional_out_width(layer); |
| | | float alpha = 1./batch; |
| | | |
| | | |
| | | learn_bias<<<cuda_gridsize(layer.n), BLOCK>>>(layer.batch, layer.n, size, layer.delta_gpu, layer.bias_updates_gpu); |
| | | backward_bias_kernel<<<n, BLOCK>>>(bias_updates, delta, batch, n, size, alpha); |
| | | check_error(cudaPeekAtLastError()); |
| | | } |
| | | |
| | | extern "C" void test_learn_bias(convolutional_layer l) |
| | | { |
| | | int i; |
| | | int size = convolutional_out_height(l) * convolutional_out_width(l); |
| | | for(i = 0; i < size*l.batch*l.n; ++i){ |
| | | l.delta[i] = rand_uniform(); |
| | | } |
| | | for(i = 0; i < l.n; ++i){ |
| | | l.bias_updates[i] = rand_uniform(); |
| | | } |
| | | cuda_push_array(l.delta_gpu, l.delta, size*l.batch*l.n); |
| | | cuda_push_array(l.bias_updates_gpu, l.bias_updates, l.n); |
| | | float *gpu = (float *) calloc(l.n, sizeof(float)); |
| | | cuda_pull_array(l.bias_updates_gpu, gpu, l.n); |
| | | for(i = 0; i < l.n; ++i) printf("%.9g %.9g\n", l.bias_updates[i], gpu[i]); |
| | | learn_bias_convolutional_layer_ongpu(l); |
| | | learn_bias_convolutional_layer(l); |
| | | cuda_pull_array(l.bias_updates_gpu, gpu, l.n); |
| | | for(i = 0; i < l.n; ++i) printf("%.9g %.9g\n", l.bias_updates[i], gpu[i]); |
| | | } |
| | | |
| | | extern "C" void forward_convolutional_layer_gpu(convolutional_layer layer, float *in) |
| | | { |
| | | int i; |
| | |
| | | int n = convolutional_out_height(layer)* |
| | | convolutional_out_width(layer); |
| | | |
| | | bias_output_gpu(layer); |
| | | bias_output_gpu(layer.output_gpu, layer.biases_gpu, layer.batch, layer.n, n); |
| | | |
| | | for(i = 0; i < layer.batch; ++i){ |
| | | im2col_ongpu(in, i*layer.c*layer.h*layer.w, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, layer.col_image_gpu); |
| | | im2col_ongpu(in + i*layer.c*layer.h*layer.w, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, layer.col_image_gpu); |
| | | float * a = layer.filters_gpu; |
| | | float * b = layer.col_image_gpu; |
| | | float * c = layer.output_gpu; |
| | | gemm_ongpu(0,0,m,n,k,1.,a,k,b,n,1.,c+i*m*n,n); |
| | | } |
| | | activate_array_ongpu(layer.output_gpu, m*n*layer.batch, layer.activation); |
| | | cuda_pull_array(layer.output_gpu, layer.output, m*n*layer.batch); |
| | | //for(i = 0; i < m*n*layer.batch; ++i) printf("%f, ", layer.output[i]); |
| | | //printf("\n"); |
| | | } |
| | | |
| | | extern "C" void backward_convolutional_layer_gpu(convolutional_layer layer, float *in, float *delta_gpu) |
| | | { |
| | | float alpha = 1./layer.batch; |
| | | int i; |
| | | int m = layer.n; |
| | | int n = layer.size*layer.size*layer.c; |
| | | int k = convolutional_out_height(layer)* |
| | | convolutional_out_width(layer); |
| | | |
| | | gradient_array_ongpu(layer.output_gpu, m*k*layer.batch, layer.activation, layer.delta_gpu); |
| | | learn_bias_convolutional_layer_ongpu(layer); |
| | | backward_bias_gpu(layer.bias_updates_gpu, layer.delta_gpu, layer.batch, layer.n, k); |
| | | |
| | | if(delta_gpu) scal_ongpu(layer.batch*layer.h*layer.w*layer.c, 0, delta_gpu, 1); |
| | | |
| | |
| | | float * b = layer.col_image_gpu; |
| | | float * c = layer.filter_updates_gpu; |
| | | |
| | | im2col_ongpu(in, i*layer.c*layer.h*layer.w, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, layer.col_image_gpu); |
| | | gemm_ongpu(0,1,m,n,k,1,a + i*m*k,k,b,k,1,c,n); |
| | | im2col_ongpu(in + i*layer.c*layer.h*layer.w, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, layer.col_image_gpu); |
| | | gemm_ongpu(0,1,m,n,k,alpha,a + i*m*k,k,b,k,1,c,n); |
| | | |
| | | if(delta_gpu){ |
| | | |
| | |
| | | |
| | | gemm_ongpu(1,0,n,k,m,1,a,n,b + i*k*m,k,0,c,k); |
| | | |
| | | col2im_ongpu(layer.col_image_gpu, i*layer.c*layer.h*layer.w, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, delta_gpu); |
| | | col2im_ongpu(layer.col_image_gpu, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, delta_gpu + i*layer.c*layer.h*layer.w); |
| | | } |
| | | } |
| | | } |
| | |
| | | extern "C" void update_convolutional_layer_gpu(convolutional_layer layer) |
| | | { |
| | | int size = layer.size*layer.size*layer.c*layer.n; |
| | | |
| | | /* |
| | | cuda_pull_array(layer.filter_updates_gpu, layer.filter_updates, size); |
| | | cuda_pull_array(layer.filters_gpu, layer.filters, size); |
| | | printf("Filter: %f updates: %f\n", mag_array(layer.filters, size), layer.learning_rate*mag_array(layer.filter_updates, size)); |
| | | */ |
| | | |
| | | axpy_ongpu(layer.n, layer.learning_rate, layer.bias_updates_gpu, 1, layer.biases_gpu, 1); |
| | | scal_ongpu(layer.n,layer.momentum, layer.bias_updates_gpu, 1); |
| | | |