10 files modified
1 files added
| | |
| | | GPU=0 |
| | | CUDNN=0 |
| | | OPENCV=0 |
| | | DEBUG=0 |
| | | |
| | |
| | | LDFLAGS+= -L/usr/local/cuda/lib64 -lcuda -lcudart -lcublas -lcurand |
| | | endif |
| | | |
| | | OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o darknet.o detection_layer.o imagenet.o captcha.o route_layer.o writing.o box.o nightmare.o normalization_layer.o avgpool_layer.o coco.o dice.o yolo.o layer.o compare.o classifier.o local_layer.o swag.o shortcut_layer.o activation_layer.o rnn_layer.o gru_layer.o rnn.o rnn_vid.o crnn_layer.o coco_demo.o tag.o cifar.o yolo_demo.o go.o batchnorm_layer.o |
| | | ifeq ($(CUDNN), 1) |
| | | COMMON+= -DCUDNN |
| | | CFLAGS+= -DCUDNN |
| | | LDFLAGS+= -lcudnn |
| | | endif |
| | | |
| | | OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o darknet.o detection_layer.o imagenet.o captcha.o route_layer.o writing.o box.o nightmare.o normalization_layer.o avgpool_layer.o coco.o dice.o yolo.o layer.o compare.o classifier.o local_layer.o swag.o shortcut_layer.o activation_layer.o rnn_layer.o gru_layer.o rnn.o rnn_vid.o crnn_layer.o coco_demo.o tag.o cifar.o yolo_demo.o go.o batchnorm_layer.o art.o |
| | | ifeq ($(GPU), 1) |
| | | LDFLAGS+= -lstdc++ |
| | | OBJ+=convolutional_kernels.o deconvolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o softmax_layer_kernels.o network_kernels.o avgpool_layer_kernels.o |
| New file |
| | |
| | | #include "network.h" |
| | | #include "utils.h" |
| | | #include "parser.h" |
| | | #include "option_list.h" |
| | | #include "blas.h" |
| | | #include "classifier.h" |
| | | #include <sys/time.h> |
| | | |
| | | #ifdef OPENCV |
| | | #include "opencv2/highgui/highgui_c.h" |
| | | #endif |
| | | |
| | | |
| | | void demo_art(char *cfgfile, char *weightfile, int cam_index) |
| | | { |
| | | #ifdef OPENCV |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | set_batch_network(&net, 1); |
| | | |
| | | srand(2222222); |
| | | CvCapture * cap; |
| | | |
| | | cap = cvCaptureFromCAM(cam_index); |
| | | |
| | | char *window = "ArtJudgementBot9000!!!"; |
| | | if(!cap) error("Couldn't connect to webcam.\n"); |
| | | cvNamedWindow(window, CV_WINDOW_NORMAL); |
| | | cvResizeWindow(window, 512, 512); |
| | | int i; |
| | | int idx[] = {37, 401, 434}; |
| | | int n = sizeof(idx)/sizeof(idx[0]); |
| | | |
| | | while(1){ |
| | | image in = get_image_from_stream(cap); |
| | | image in_s = resize_image(in, net.w, net.h); |
| | | show_image(in, window); |
| | | |
| | | float *p = network_predict(net, in_s.data); |
| | | |
| | | printf("\033[2J"); |
| | | printf("\033[1;1H"); |
| | | |
| | | float score = 0; |
| | | for(i = 0; i < n; ++i){ |
| | | float s = p[idx[i]]; |
| | | if (s > score) score = s; |
| | | } |
| | | score = score; |
| | | printf("I APPRECIATE THIS ARTWORK: %10.7f%%\n", score*100); |
| | | printf("["); |
| | | int upper = 30; |
| | | for(i = 0; i < upper; ++i){ |
| | | printf("%s", ((i+.5) < score*upper) ? "\u2588" : " "); |
| | | } |
| | | printf("]\n"); |
| | | |
| | | free_image(in_s); |
| | | free_image(in); |
| | | |
| | | cvWaitKey(1); |
| | | } |
| | | #endif |
| | | } |
| | | |
| | | |
| | | void run_art(int argc, char **argv) |
| | | { |
| | | int cam_index = find_int_arg(argc, argv, "-c", 0); |
| | | char *cfg = argv[2]; |
| | | char *weights = argv[3]; |
| | | demo_art(cfg, weights, cam_index); |
| | | } |
| | | |
| | |
| | | |
| | | if(l.xnor){ |
| | | binarize_filters_gpu(l.filters_gpu, l.n, l.c*l.size*l.size, l.binary_filters_gpu); |
| | | //binarize_gpu(l.filters_gpu, l.n*l.c*l.size*l.size, l.binary_filters_gpu); |
| | | swap_binary(&l); |
| | | for(i = 0; i < l.batch; ++i){ |
| | | binarize_input_gpu(state.input + i*l.inputs, l.c, l.h*l.w, l.binary_input_gpu + i*l.inputs); |
| | |
| | | state.input = l.binary_input_gpu; |
| | | } |
| | | |
| | | #ifdef CUDNN |
| | | float one = 1; |
| | | cudnnConvolutionForward(cudnn_handle(), |
| | | &one, |
| | | l.srcTensorDesc, |
| | | state.input, |
| | | l.filterDesc, |
| | | l.filters_gpu, |
| | | l.convDesc, |
| | | l.fw_algo, |
| | | state.workspace, |
| | | l.workspace_size, |
| | | &one, |
| | | l.dstTensorDesc, |
| | | l.output_gpu); |
| | | |
| | | #else |
| | | for(i = 0; i < l.batch; ++i){ |
| | | im2col_ongpu(state.input + i*l.c*l.h*l.w, l.c, l.h, l.w, l.size, l.stride, l.pad, l.col_image_gpu); |
| | | im2col_ongpu(state.input + i*l.c*l.h*l.w, l.c, l.h, l.w, l.size, l.stride, l.pad, state.workspace); |
| | | float * a = l.filters_gpu; |
| | | float * b = l.col_image_gpu; |
| | | float * b = state.workspace; |
| | | float * c = l.output_gpu; |
| | | gemm_ongpu(0,0,m,n,k,1.,a,k,b,n,1.,c+i*m*n,n); |
| | | } |
| | | #endif |
| | | |
| | | if (l.batch_normalize) { |
| | | forward_batchnorm_layer_gpu(l, state); |
| | |
| | | |
| | | void backward_convolutional_layer_gpu(convolutional_layer l, network_state state) |
| | | { |
| | | int i; |
| | | int m = l.n; |
| | | int n = l.size*l.size*l.c; |
| | | int k = convolutional_out_height(l)* |
| | |
| | | } |
| | | |
| | | if(l.xnor) state.input = l.binary_input_gpu; |
| | | #ifdef CUDNN |
| | | float one = 1; |
| | | cudnnConvolutionBackwardFilter(cudnn_handle(), |
| | | &one, |
| | | l.srcTensorDesc, |
| | | state.input, |
| | | l.ddstTensorDesc, |
| | | l.delta_gpu, |
| | | l.convDesc, |
| | | l.bf_algo, |
| | | state.workspace, |
| | | l.workspace_size, |
| | | &one, |
| | | l.dfilterDesc, |
| | | l.filter_updates_gpu); |
| | | |
| | | if(state.delta){ |
| | | cudnnConvolutionBackwardData(cudnn_handle(), |
| | | &one, |
| | | l.filterDesc, |
| | | l.filters_gpu, |
| | | l.ddstTensorDesc, |
| | | l.delta_gpu, |
| | | l.convDesc, |
| | | l.bd_algo, |
| | | state.workspace, |
| | | l.workspace_size, |
| | | &one, |
| | | l.dsrcTensorDesc, |
| | | state.delta); |
| | | } |
| | | |
| | | #else |
| | | int i; |
| | | for(i = 0; i < l.batch; ++i){ |
| | | float * a = l.delta_gpu; |
| | | float * b = l.col_image_gpu; |
| | | float * b = state.workspace; |
| | | float * c = l.filter_updates_gpu; |
| | | |
| | | im2col_ongpu(state.input + i*l.c*l.h*l.w, l.c, l.h, l.w, l.size, l.stride, l.pad, l.col_image_gpu); |
| | | im2col_ongpu(state.input + i*l.c*l.h*l.w, l.c, l.h, l.w, l.size, l.stride, l.pad, state.workspace); |
| | | gemm_ongpu(0,1,m,n,k,1,a + i*m*k,k,b,k,1,c,n); |
| | | |
| | | if(state.delta){ |
| | | if(l.binary || l.xnor) swap_binary(&l); |
| | | float * a = l.filters_gpu; |
| | | float * b = l.delta_gpu; |
| | | float * c = l.col_image_gpu; |
| | | float * c = state.workspace; |
| | | |
| | | gemm_ongpu(1,0,n,k,m,1,a,n,b + i*k*m,k,0,c,k); |
| | | |
| | | col2im_ongpu(l.col_image_gpu, l.c, l.h, l.w, l.size, l.stride, l.pad, state.delta + i*l.c*l.h*l.w); |
| | | col2im_ongpu(state.workspace, l.c, l.h, l.w, l.size, l.stride, l.pad, state.delta + i*l.c*l.h*l.w); |
| | | if(l.binary || l.xnor) swap_binary(&l); |
| | | } |
| | | } |
| | | #endif |
| | | } |
| | | |
| | | void pull_convolutional_layer(convolutional_layer layer) |
| | |
| | | return float_to_image(w,h,c,l.delta); |
| | | } |
| | | |
| | | #ifdef CUDNN |
| | | size_t get_workspace_size(layer l){ |
| | | size_t most = 0; |
| | | size_t s = 0; |
| | | cudnnGetConvolutionForwardWorkspaceSize(cudnn_handle(), |
| | | l.srcTensorDesc, |
| | | l.filterDesc, |
| | | l.convDesc, |
| | | l.dstTensorDesc, |
| | | l.fw_algo, |
| | | &s); |
| | | if (s > most) most = s; |
| | | cudnnGetConvolutionBackwardFilterWorkspaceSize(cudnn_handle(), |
| | | l.srcTensorDesc, |
| | | l.ddstTensorDesc, |
| | | l.convDesc, |
| | | l.dfilterDesc, |
| | | l.bf_algo, |
| | | &s); |
| | | if (s > most) most = s; |
| | | cudnnGetConvolutionBackwardDataWorkspaceSize(cudnn_handle(), |
| | | l.filterDesc, |
| | | l.ddstTensorDesc, |
| | | l.convDesc, |
| | | l.dsrcTensorDesc, |
| | | l.bd_algo, |
| | | &s); |
| | | if (s > most) most = s; |
| | | return most; |
| | | } |
| | | #endif |
| | | |
| | | convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation, int batch_normalize, int binary, int xnor) |
| | | { |
| | | int i; |
| | |
| | | l.scales_gpu = cuda_make_array(l.scales, n); |
| | | l.scale_updates_gpu = cuda_make_array(l.scale_updates, n); |
| | | |
| | | l.col_image_gpu = cuda_make_array(l.col_image, out_h*out_w*size*size*c); |
| | | l.workspace_size = out_h*out_w*size*size*c; |
| | | l.delta_gpu = cuda_make_array(l.delta, l.batch*out_h*out_w*n); |
| | | l.output_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n); |
| | | |
| | |
| | | l.x_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n); |
| | | l.x_norm_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n); |
| | | } |
| | | #ifdef CUDNN |
| | | cudnnCreateTensorDescriptor(&l.srcTensorDesc); |
| | | cudnnCreateTensorDescriptor(&l.dstTensorDesc); |
| | | cudnnCreateFilterDescriptor(&l.filterDesc); |
| | | cudnnCreateTensorDescriptor(&l.dsrcTensorDesc); |
| | | cudnnCreateTensorDescriptor(&l.ddstTensorDesc); |
| | | cudnnCreateFilterDescriptor(&l.dfilterDesc); |
| | | cudnnCreateConvolutionDescriptor(&l.convDesc); |
| | | cudnnSetTensor4dDescriptor(l.dsrcTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l.batch, l.c, l.h, l.w); |
| | | cudnnSetTensor4dDescriptor(l.ddstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l.batch, l.out_c, l.out_h, l.out_w); |
| | | cudnnSetFilter4dDescriptor(l.dfilterDesc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, l.n, l.c, l.size, l.size); |
| | | |
| | | cudnnSetTensor4dDescriptor(l.srcTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l.batch, l.c, l.h, l.w); |
| | | cudnnSetTensor4dDescriptor(l.dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l.batch, l.out_c, l.out_h, l.out_w); |
| | | cudnnSetFilter4dDescriptor(l.filterDesc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, l.n, l.c, l.size, l.size); |
| | | int padding = l.pad ? l.size/2 : 0; |
| | | cudnnSetConvolution2dDescriptor(l.convDesc, padding, padding, l.stride, l.stride, 1, 1, CUDNN_CROSS_CORRELATION); |
| | | cudnnGetConvolutionForwardAlgorithm(cudnn_handle(), |
| | | l.srcTensorDesc, |
| | | l.filterDesc, |
| | | l.convDesc, |
| | | l.dstTensorDesc, |
| | | CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, |
| | | 0, |
| | | &l.fw_algo); |
| | | cudnnGetConvolutionBackwardDataAlgorithm(cudnn_handle(), |
| | | l.filterDesc, |
| | | l.ddstTensorDesc, |
| | | l.convDesc, |
| | | l.dsrcTensorDesc, |
| | | CUDNN_CONVOLUTION_BWD_DATA_PREFER_FASTEST, |
| | | 0, |
| | | &l.bd_algo); |
| | | cudnnGetConvolutionBackwardFilterAlgorithm(cudnn_handle(), |
| | | l.srcTensorDesc, |
| | | l.ddstTensorDesc, |
| | | l.convDesc, |
| | | l.dfilterDesc, |
| | | CUDNN_CONVOLUTION_BWD_FILTER_PREFER_FASTEST, |
| | | 0, |
| | | &l.bf_algo); |
| | | l.workspace_size = get_workspace_size(l); |
| | | |
| | | #endif |
| | | #endif |
| | | l.activation = activation; |
| | | |
| | |
| | | l->batch*out_h * out_w * l->n*sizeof(float)); |
| | | |
| | | #ifdef GPU |
| | | cuda_free(l->col_image_gpu); |
| | | cuda_free(l->delta_gpu); |
| | | cuda_free(l->output_gpu); |
| | | |
| | | l->col_image_gpu = cuda_make_array(l->col_image, out_h*out_w*l->size*l->size*l->c); |
| | | l->delta_gpu = cuda_make_array(l->delta, l->batch*out_h*out_w*l->n); |
| | | l->output_gpu = cuda_make_array(l->output, l->batch*out_h*out_w*l->n); |
| | | #endif |
| | |
| | | |
| | | fill_cpu(l.outputs*l.batch, 0, l.output, 1); |
| | | /* |
| | | if(l.binary){ |
| | | binarize_filters(l.filters, l.n, l.c*l.size*l.size, l.binary_filters); |
| | | binarize_filters2(l.filters, l.n, l.c*l.size*l.size, l.cfilters, l.scales); |
| | | swap_binary(&l); |
| | | } |
| | | */ |
| | | if(l.binary){ |
| | | binarize_filters(l.filters, l.n, l.c*l.size*l.size, l.binary_filters); |
| | | binarize_filters2(l.filters, l.n, l.c*l.size*l.size, l.cfilters, l.scales); |
| | | swap_binary(&l); |
| | | } |
| | | */ |
| | | |
| | | if(l.binary){ |
| | | int m = l.n; |
| | |
| | | return d; |
| | | } |
| | | |
| | | #ifdef CUDNN |
| | | cudnnHandle_t cudnn_handle() |
| | | { |
| | | static int init = 0; |
| | | static cudnnHandle_t handle; |
| | | if(!init) { |
| | | cudnnCreate(&handle); |
| | | init = 1; |
| | | } |
| | | return handle; |
| | | } |
| | | #endif |
| | | |
| | | cublasHandle_t blas_handle() |
| | | { |
| | | static int init = 0; |
| | |
| | | return handle; |
| | | } |
| | | |
| | | float *cuda_make_array(float *x, int n) |
| | | float *cuda_make_array(float *x, size_t n) |
| | | { |
| | | float *x_gpu; |
| | | size_t size = sizeof(float)*n; |
| | |
| | | return x_gpu; |
| | | } |
| | | |
| | | void cuda_random(float *x_gpu, int n) |
| | | void cuda_random(float *x_gpu, size_t n) |
| | | { |
| | | static curandGenerator_t gen; |
| | | static int init = 0; |
| | |
| | | check_error(cudaPeekAtLastError()); |
| | | } |
| | | |
| | | float cuda_compare(float *x_gpu, float *x, int n, char *s) |
| | | float cuda_compare(float *x_gpu, float *x, size_t n, char *s) |
| | | { |
| | | float *tmp = calloc(n, sizeof(float)); |
| | | cuda_pull_array(x_gpu, tmp, n); |
| | |
| | | return err; |
| | | } |
| | | |
| | | int *cuda_make_int_array(int n) |
| | | int *cuda_make_int_array(size_t n) |
| | | { |
| | | int *x_gpu; |
| | | size_t size = sizeof(int)*n; |
| | |
| | | check_error(status); |
| | | } |
| | | |
| | | void cuda_push_array(float *x_gpu, float *x, int n) |
| | | void cuda_push_array(float *x_gpu, float *x, size_t n) |
| | | { |
| | | size_t size = sizeof(float)*n; |
| | | cudaError_t status = cudaMemcpy(x_gpu, x, size, cudaMemcpyHostToDevice); |
| | | check_error(status); |
| | | } |
| | | |
| | | void cuda_pull_array(float *x_gpu, float *x, int n) |
| | | void cuda_pull_array(float *x_gpu, float *x, size_t n) |
| | | { |
| | | size_t size = sizeof(float)*n; |
| | | cudaError_t status = cudaMemcpy(x, x_gpu, size, cudaMemcpyDeviceToHost); |
| | |
| | | #include "curand.h" |
| | | #include "cublas_v2.h" |
| | | |
| | | #ifdef CUDNN |
| | | #include "cudnn.h" |
| | | #endif |
| | | |
| | | void check_error(cudaError_t status); |
| | | cublasHandle_t blas_handle(); |
| | | float *cuda_make_array(float *x, int n); |
| | | int *cuda_make_int_array(int n); |
| | | void cuda_push_array(float *x_gpu, float *x, int n); |
| | | void cuda_pull_array(float *x_gpu, float *x, int n); |
| | | float *cuda_make_array(float *x, size_t n); |
| | | int *cuda_make_int_array(size_t n); |
| | | void cuda_push_array(float *x_gpu, float *x, size_t n); |
| | | void cuda_pull_array(float *x_gpu, float *x, size_t n); |
| | | void cuda_free(float *x_gpu); |
| | | void cuda_random(float *x_gpu, int n); |
| | | float cuda_compare(float *x_gpu, float *x, int n, char *s); |
| | | void cuda_random(float *x_gpu, size_t n); |
| | | float cuda_compare(float *x_gpu, float *x, size_t n, char *s); |
| | | dim3 cuda_gridsize(size_t n); |
| | | |
| | | #ifdef CUDNN |
| | | cudnnHandle_t cudnn_handle(); |
| | | #endif |
| | | |
| | | #endif |
| | | #endif |
| | |
| | | extern void run_tag(int argc, char **argv); |
| | | extern void run_cifar(int argc, char **argv); |
| | | extern void run_go(int argc, char **argv); |
| | | extern void run_art(int argc, char **argv); |
| | | |
| | | void change_rate(char *filename, float scale, float add) |
| | | { |
| | |
| | | run_coco(argc, argv); |
| | | } else if (0 == strcmp(argv[1], "classifier")){ |
| | | run_classifier(argc, argv); |
| | | } else if (0 == strcmp(argv[1], "art")){ |
| | | run_art(argc, argv); |
| | | } else if (0 == strcmp(argv[1], "tag")){ |
| | | run_tag(argc, argv); |
| | | } else if (0 == strcmp(argv[1], "compare")){ |
| | |
| | | #define BASE_LAYER_H |
| | | |
| | | #include "activations.h" |
| | | #include "stddef.h" |
| | | |
| | | struct layer; |
| | | typedef struct layer layer; |
| | |
| | | struct layer *input_h_layer; |
| | | struct layer *state_h_layer; |
| | | |
| | | size_t workspace_size; |
| | | |
| | | #ifdef GPU |
| | | float *z_gpu; |
| | | float *r_gpu; |
| | |
| | | float * rand_gpu; |
| | | float * squared_gpu; |
| | | float * norms_gpu; |
| | | #ifdef CUDNN |
| | | cudnnTensorDescriptor_t srcTensorDesc, dstTensorDesc; |
| | | cudnnTensorDescriptor_t dsrcTensorDesc, ddstTensorDesc; |
| | | cudnnFilterDescriptor_t filterDesc; |
| | | cudnnFilterDescriptor_t dfilterDesc; |
| | | cudnnConvolutionDescriptor_t convDesc; |
| | | cudnnConvolutionFwdAlgo_t fw_algo; |
| | | cudnnConvolutionBwdDataAlgo_t bd_algo; |
| | | cudnnConvolutionBwdFilterAlgo_t bf_algo; |
| | | #endif |
| | | #endif |
| | | }; |
| | | |
| | |
| | | } learning_rate_policy; |
| | | |
| | | typedef struct network{ |
| | | float *workspace; |
| | | int n; |
| | | int batch; |
| | | int *seen; |
| | |
| | | float *truth; |
| | | float *input; |
| | | float *delta; |
| | | float *workspace; |
| | | int train; |
| | | int index; |
| | | network net; |
| | |
| | | |
| | | void forward_network_gpu(network net, network_state state) |
| | | { |
| | | state.workspace = net.workspace; |
| | | int i; |
| | | for(i = 0; i < net.n; ++i){ |
| | | state.index = i; |
| | |
| | | |
| | | void backward_network_gpu(network net, network_state state) |
| | | { |
| | | state.workspace = net.workspace; |
| | | int i; |
| | | float * original_input = state.input; |
| | | float * original_delta = state.delta; |
| | |
| | | params.batch = net.batch; |
| | | params.time_steps = net.time_steps; |
| | | |
| | | size_t workspace_size = 0; |
| | | n = n->next; |
| | | int count = 0; |
| | | free_section(s); |
| | |
| | | l.dontloadscales = option_find_int_quiet(options, "dontloadscales", 0); |
| | | option_unused(options); |
| | | net.layers[count] = l; |
| | | if (l.workspace_size > workspace_size) workspace_size = l.workspace_size; |
| | | free_section(s); |
| | | n = n->next; |
| | | ++count; |
| | |
| | | free_list(sections); |
| | | net.outputs = get_network_output_size(net); |
| | | net.output = get_network_output(net); |
| | | if(workspace_size){ |
| | | #ifdef GPU |
| | | net.workspace = cuda_make_array(0, (workspace_size-1)/sizeof(float)+1); |
| | | #endif |
| | | } |
| | | return net; |
| | | } |
| | | |