15 files modified
2 files added
| | |
| | | CC=gcc |
| | | GPU=0 |
| | | GPU=1 |
| | | COMMON=-Wall -Wfatal-errors `pkg-config --cflags opencv` -I/usr/local/cuda/include/ |
| | | ifeq ($(GPU), 1) |
| | | COMMON+=-DGPU |
| | |
| | | void train_assira() |
| | | { |
| | | network net = parse_network_cfg("cfg/assira.cfg"); |
| | | int imgs = 1000/net.batch+1; |
| | | //imgs = 1; |
| | | srand(2222222); |
| | | int i = 0; |
| | | char *labels[] = {"cat","dog"}; |
| | | while(1){ |
| | | i += 1000; |
| | | data train = load_data_image_pathfile_random("data/assira/train.list", 1000, labels, 2, 256, 256); |
| | | data train = load_data_image_pathfile_random("data/assira/train.list", imgs*net.batch, labels, 2, 256, 256); |
| | | normalize_data_rows(train); |
| | | clock_t start = clock(), end; |
| | | float loss = train_network_sgd_gpu(net, train, 10); |
| | | float loss = train_network_sgd_gpu(net, train, imgs); |
| | | end = clock(); |
| | | printf("%d: %f, Time: %lf seconds\n", i, loss, (float)(end-start)/CLOCKS_PER_SEC ); |
| | | free_data(train); |
| | |
| | | data train = load_all_cifar10(); |
| | | while(++count <= 10000){ |
| | | clock_t start = clock(), end; |
| | | float loss = train_network_sgd_gpu(net, train, iters); |
| | | float loss = train_network_sgd(net, train, iters); |
| | | end = clock(); |
| | | //visualize_network(net); |
| | | //cvWaitKey(5000); |
| | |
| | | float test_acc = network_accuracy(net, test); |
| | | printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay); |
| | | char buff[256]; |
| | | sprintf(buff, "/home/pjreddie/cifar/cifar2_%d.cfg", count); |
| | | sprintf(buff, "/home/pjreddie/cifar/cifar10_2_%d.cfg", count); |
| | | save_network(net, buff); |
| | | }else{ |
| | | printf("%d: Loss: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, (float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay); |
| | |
| | | int iters = 10000/net.batch; |
| | | while(++count <= 2000){ |
| | | clock_t start = clock(), end; |
| | | float loss = train_network_sgd(net, train, iters); |
| | | float loss = train_network_sgd_gpu(net, train, iters); |
| | | end = clock(); |
| | | float test_acc = network_accuracy(net, test); |
| | | //float test_acc = 0; |
| | |
| | | |
| | | int main(int argc, char *argv[]) |
| | | { |
| | | //train_assira(); |
| | | //test_blas(); |
| | | train_assira(); |
| | | //test_distribution(); |
| | | //feenableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW); |
| | | |
| | |
| | | //test_ensemble(); |
| | | //test_nist_single(); |
| | | //test_nist(); |
| | | train_nist(); |
| | | //train_nist(); |
| | | //test_convolutional_layer(); |
| | | //test_col2im(); |
| | | //test_cifar10(); |
| | |
| | | |
| | | #ifdef GPU |
| | | |
| | | void pull_connected_layer(connected_layer layer) |
| | | { |
| | | cl_read_array(layer.weights_cl, layer.weights, layer.inputs*layer.outputs); |
| | | cl_read_array(layer.biases_cl, layer.biases, layer.outputs); |
| | | } |
| | | |
| | | void update_connected_layer_gpu(connected_layer layer) |
| | | { |
| | | axpy_ongpu(layer.outputs, layer.learning_rate, layer.bias_updates_cl, 1, layer.biases_cl, 1); |
| | |
| | | scal_ongpu(layer.inputs*layer.outputs, 1.-layer.learning_rate*layer.decay, layer.weights_cl, 1); |
| | | axpy_ongpu(layer.inputs*layer.outputs, layer.learning_rate, layer.weight_updates_cl, 1, layer.weights_cl, 1); |
| | | scal_ongpu(layer.inputs*layer.outputs, layer.momentum, layer.weight_updates_cl, 1); |
| | | pull_connected_layer(layer); |
| | | } |
| | | |
| | | void forward_connected_layer_gpu(connected_layer layer, cl_mem input) |
| | |
| | | #include "utils.h" |
| | | #include "mini_blas.h" |
| | | #include <stdio.h> |
| | | #include <time.h> |
| | | |
| | | int convolutional_out_height(convolutional_layer layer) |
| | | { |
| | |
| | | check_error(cl); |
| | | } |
| | | |
| | | //#define TIMEIT |
| | | |
| | | void forward_convolutional_layer_gpu(convolutional_layer layer, cl_mem in) |
| | | { |
| | | int i; |
| | |
| | | int n = convolutional_out_height(layer)* |
| | | convolutional_out_width(layer); |
| | | |
| | | //cl_write_array(layer.filters_cl, layer.filters, m*k); |
| | | //cl_write_array(layer.biases_cl, layer.biases, m); |
| | | bias_output_gpu(layer); |
| | | |
| | | #ifdef TIMEIT |
| | | clock_t time = clock(); |
| | | printf("Forward\n"); |
| | | #endif |
| | | |
| | | im2col_ongpu(in, layer.batch, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, layer.col_image_cl); |
| | | |
| | | #ifdef TIMEIT |
| | | clFinish(cl.queue); |
| | | printf("Im2col %f\n", sec(clock()-time)); |
| | | time = clock(); |
| | | #endif |
| | | |
| | | for(i = 0; i < layer.batch; ++i){ |
| | | cl_mem a = layer.filters_cl; |
| | | cl_mem b = cl_sub_array(layer.col_image_cl, i*k*n, k*n); |
| | |
| | | clReleaseMemObject(b); |
| | | clReleaseMemObject(c); |
| | | } |
| | | #ifdef TIMEIT |
| | | clFinish(cl.queue); |
| | | printf("Gemm %f\n", sec(clock()-time)); |
| | | #endif |
| | | activate_array_ongpu(layer.output_cl, m*n*layer.batch, layer.activation); |
| | | //cl_read_array(layer.output_cl, layer.output, m*n*layer.batch); |
| | | #ifdef TIMEIT |
| | | cl_read_array(layer.output_cl, layer.output, m*n*layer.batch); |
| | | #endif |
| | | } |
| | | |
| | | void backward_convolutional_layer_gpu(convolutional_layer layer, cl_mem delta_cl) |
| | |
| | | } |
| | | } |
| | | |
| | | void pull_convolutional_layer(convolutional_layer layer) |
| | | { |
| | | cl_read_array(layer.filters_cl, layer.filters, layer.c*layer.n*layer.size*layer.size); |
| | | cl_read_array(layer.biases_cl, layer.biases, layer.n); |
| | | } |
| | | |
| | | void update_convolutional_layer_gpu(convolutional_layer layer) |
| | | { |
| | | int size = layer.size*layer.size*layer.c*layer.n; |
| | |
| | | scal_ongpu(size, 1.-layer.learning_rate*layer.decay, layer.filters_cl, 1); |
| | | axpy_ongpu(size, layer.learning_rate, layer.filter_updates_cl, 1, layer.filters_cl, 1); |
| | | scal_ongpu(size, layer.momentum, layer.filter_updates_cl, 1); |
| | | pull_convolutional_layer(layer); |
| | | } |
| | | |
| | | |
| | |
| | | #include "mini_blas.h" |
| | | #include <clBLAS.h> |
| | | |
| | | void gemm(int TA, int TB, int M, int N, int K, float ALPHA, |
| | | float *A, int lda, |
| | |
| | | for(j = 0; j < N; ++j){ |
| | | register float sum = 0; |
| | | for(k = 0; k < K; ++k){ |
| | | sum += ALPHA*A[i*lda+k]*B[k+j*ldb]; |
| | | sum += ALPHA*A[i*lda+k]*B[j*ldb + k]; |
| | | } |
| | | C[i*ldc+j] += sum; |
| | | } |
| | |
| | | } |
| | | } |
| | | } |
| | | |
| | | void gemm_tt(int M, int N, int K, float ALPHA, |
| | | float *A, int lda, |
| | | float *B, int ldb, |
| | |
| | | int i,j,k; |
| | | for(i = 0; i < M; ++i){ |
| | | for(j = 0; j < N; ++j){ |
| | | register float sum = 0; |
| | | for(k = 0; k < K; ++k){ |
| | | C[i*ldc+j] += ALPHA*A[i+k*lda]*B[k+j*ldb]; |
| | | sum += ALPHA*A[i+k*lda]*B[k+j*ldb]; |
| | | } |
| | | C[i*ldc+j] += sum; |
| | | } |
| | | } |
| | | } |
| | |
| | | return gemm_kernel; |
| | | } |
| | | |
| | | void gemm_ongpu_old(int TA, int TB, int M, int N, int K, float ALPHA, |
| | | cl_mem A_gpu, int lda, |
| | | cl_mem B_gpu, int ldb, |
| | | float BETA, |
| | | cl_mem C_gpu, int ldc); |
| | | |
| | | void gemm_ongpu(int TA, int TB, int M, int N, int K, float ALPHA, |
| | | cl_mem A_gpu, int lda, |
| | | cl_mem B_gpu, int ldb, |
| | | float BETA, |
| | | cl_mem C_gpu, int ldc) |
| | | { |
| | | //printf("gpu: %d %d %d %d %d %f %d %d %f %d\n",TA, TB, M, N, K, ALPHA, lda, ldb, BETA, ldc); |
| | | cl_setup(); |
| | | //cl.error = clblasSgemm(clblasRowMajor, TA?clblasTrans:clblasNoTrans, TB?clblasTrans:clblasNoTrans,M, N, K,ALPHA, A_gpu, 0, lda,B_gpu, 0, ldb,BETA, C_gpu, 0, ldc,1, &queue, 0, NULL, &event); |
| | | //check_error(cl); |
| | | gemm_ongpu_old(TA, TB, M, N, K, ALPHA, A_gpu, lda, B_gpu, ldb, BETA, C_gpu, ldc); |
| | | } |
| | | |
| | | void gemm_ongpu_old(int TA, int TB, int M, int N, int K, float ALPHA, |
| | | cl_mem A_gpu, int lda, |
| | | cl_mem B_gpu, int ldb, |
| | | float BETA, |
| | | cl_mem C_gpu, int ldc) |
| | | { |
| | | //printf("gpu: %d %d %d %d %d\n",TA, TB, M, N, K); |
| | | cl_setup(); |
| | | cl_kernel gemm_kernel = get_gemm_kernel(); |
| | | cl_command_queue queue = cl.queue; |
| | |
| | | float *c = random_matrix(m,n); |
| | | int i; |
| | | clock_t start = clock(), end; |
| | | for(i = 0; i<1000; ++i){ |
| | | for(i = 0; i<10; ++i){ |
| | | gemm_gpu(TA,TB,m,n,k,1,a,lda,b,ldb,1,c,n); |
| | | } |
| | | end = clock(); |
| | | printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %lf ms\n",m,k,k,n, TA, TB, (float)(end-start)/CLOCKS_PER_SEC); |
| | | printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %lf s\n",m,k,k,n, TA, TB, (float)(end-start)/CLOCKS_PER_SEC); |
| | | free(a); |
| | | free(b); |
| | | free(c); |
| | |
| | | layer->c = c; |
| | | layer->size = size; |
| | | layer->stride = stride; |
| | | layer->indexes = calloc(((h-1)/stride+1) * ((w-1)/stride+1) * c*batch, sizeof(int)); |
| | | layer->output = calloc(((h-1)/stride+1) * ((w-1)/stride+1) * c*batch, sizeof(float)); |
| | | layer->delta = calloc(((h-1)/stride+1) * ((w-1)/stride+1) * c*batch, sizeof(float)); |
| | | int output_size = ((h-1)/stride+1) * ((w-1)/stride+1) * c * batch; |
| | | layer->indexes = calloc(output_size, sizeof(int)); |
| | | layer->output = calloc(output_size, sizeof(float)); |
| | | layer->delta = calloc(output_size, sizeof(float)); |
| | | #ifdef GPU |
| | | layer->indexes_cl = cl_make_int_array(layer->indexes, output_size); |
| | | layer->output_cl = cl_make_array(layer->output, output_size); |
| | | layer->delta_cl = cl_make_array(layer->delta, output_size); |
| | | #endif |
| | | return layer; |
| | | } |
| | | |
| | |
| | | int index = cur_w + layer.w*(cur_h + layer.h*(k + b*layer.c)); |
| | | int valid = (cur_h >= 0 && cur_h < layer.h && |
| | | cur_w >= 0 && cur_w < layer.w); |
| | | float val = (valid != 0) ? input[index] : -INFINITY; |
| | | float val = (valid != 0) ? input[index] : -FLT_MAX; |
| | | max_i = (val > max) ? index : max_i; |
| | | max = (val > max) ? val : max; |
| | | } |
| | |
| | | } |
| | | } |
| | | |
| | | void backward_maxpool_layer(const maxpool_layer layer, float *input, float *delta) |
| | | void backward_maxpool_layer(const maxpool_layer layer, float *delta) |
| | | { |
| | | int i; |
| | | int h = (layer.h-1)/layer.stride + 1; |
| | |
| | | } |
| | | } |
| | | |
| | | #ifdef GPU |
| | | cl_kernel get_forward_kernel() |
| | | { |
| | | static int init = 0; |
| | | static cl_kernel kernel; |
| | | if(!init){ |
| | | kernel = get_kernel("src/maxpool_layer.cl", "forward", 0); |
| | | init = 1; |
| | | } |
| | | return kernel; |
| | | } |
| | | |
| | | void forward_maxpool_layer_gpu(maxpool_layer layer, cl_mem input) |
| | | { |
| | | int h = (layer.h-1)/layer.stride + 1; |
| | | int w = (layer.w-1)/layer.stride + 1; |
| | | int c = layer.c; |
| | | cl_setup(); |
| | | cl_kernel kernel = get_forward_kernel(); |
| | | cl_command_queue queue = cl.queue; |
| | | |
| | | cl_uint i = 0; |
| | | cl.error = clSetKernelArg(kernel, i++, sizeof(layer.h), (void*) &layer.h); |
| | | cl.error = clSetKernelArg(kernel, i++, sizeof(layer.w), (void*) &layer.w); |
| | | cl.error = clSetKernelArg(kernel, i++, sizeof(layer.c), (void*) &layer.c); |
| | | cl.error = clSetKernelArg(kernel, i++, sizeof(layer.stride), (void*) &layer.stride); |
| | | cl.error = clSetKernelArg(kernel, i++, sizeof(layer.size), (void*) &layer.size); |
| | | cl.error = clSetKernelArg(kernel, i++, sizeof(input), (void*) &input); |
| | | cl.error = clSetKernelArg(kernel, i++, sizeof(layer.output_cl), (void*) &layer.output_cl); |
| | | cl.error = clSetKernelArg(kernel, i++, sizeof(layer.indexes_cl), (void*) &layer.indexes_cl); |
| | | check_error(cl); |
| | | |
| | | const size_t global_size[] = {h*w*c*layer.batch}; |
| | | |
| | | clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_size, 0, 0, 0, 0); |
| | | check_error(cl); |
| | | } |
| | | |
| | | cl_kernel get_backward_kernel() |
| | | { |
| | | static int init = 0; |
| | | static cl_kernel kernel; |
| | | if(!init){ |
| | | kernel = get_kernel("src/maxpool_layer.cl", "backward", 0); |
| | | init = 1; |
| | | } |
| | | return kernel; |
| | | } |
| | | |
| | | void backward_maxpool_layer_gpu(maxpool_layer layer, cl_mem delta) |
| | | { |
| | | cl_setup(); |
| | | cl_kernel kernel = get_backward_kernel(); |
| | | cl_command_queue queue = cl.queue; |
| | | |
| | | cl_uint i = 0; |
| | | cl.error = clSetKernelArg(kernel, i++, sizeof(layer.h), (void*) &layer.h); |
| | | cl.error = clSetKernelArg(kernel, i++, sizeof(layer.w), (void*) &layer.w); |
| | | cl.error = clSetKernelArg(kernel, i++, sizeof(layer.c), (void*) &layer.c); |
| | | cl.error = clSetKernelArg(kernel, i++, sizeof(layer.stride), (void*) &layer.stride); |
| | | cl.error = clSetKernelArg(kernel, i++, sizeof(layer.size), (void*) &layer.size); |
| | | cl.error = clSetKernelArg(kernel, i++, sizeof(layer.delta_cl), (void*) &layer.delta_cl); |
| | | cl.error = clSetKernelArg(kernel, i++, sizeof(delta), (void*) &delta); |
| | | cl.error = clSetKernelArg(kernel, i++, sizeof(layer.indexes_cl), (void*) &layer.indexes_cl); |
| | | check_error(cl); |
| | | |
| | | const size_t global_size[] = {layer.h*layer.w*layer.c*layer.batch}; |
| | | |
| | | clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_size, 0, 0, 0, 0); |
| | | check_error(cl); |
| | | } |
| | | |
| | | #endif |
| New file |
| | |
| | | |
| | | __kernel void forward(int in_h, int in_w, int in_c, int stride, int size, __global float *input, __global float *output, __global int *indexes) |
| | | { |
| | | int h = (in_h-1)/stride + 1; |
| | | int w = (in_w-1)/stride + 1; |
| | | int c = in_c; |
| | | |
| | | int id = get_global_id(0); |
| | | int j = id % w; |
| | | id /= w; |
| | | int i = id % h; |
| | | id /= h; |
| | | int k = id % c; |
| | | id /= c; |
| | | int b = id; |
| | | |
| | | int w_offset = (-size-1)/2 + 1; |
| | | int h_offset = (-size-1)/2 + 1; |
| | | |
| | | int out_index = j + w*(i + h*(k + c*b)); |
| | | float max = -INFINITY; |
| | | int max_i = -1; |
| | | int l, m; |
| | | for(l = 0; l < size; ++l){ |
| | | for(m = 0; m < size; ++m){ |
| | | int cur_h = h_offset + i*stride + l; |
| | | int cur_w = w_offset + j*stride + m; |
| | | int index = cur_w + in_w*(cur_h + in_h*(k + b*in_c)); |
| | | int valid = (cur_h >= 0 && cur_h < in_h && |
| | | cur_w >= 0 && cur_w < in_w); |
| | | float val = (valid != 0) ? input[index] : -INFINITY; |
| | | max_i = (val > max) ? index : max_i; |
| | | max = (val > max) ? val : max; |
| | | } |
| | | } |
| | | output[out_index] = max; |
| | | indexes[out_index] = max_i; |
| | | } |
| | | |
| | | __kernel void backward(int in_h, int in_w, int in_c, int stride, int size, __global float *delta, __global float *prev_delta, __global int *indexes) |
| | | { |
| | | int h = (in_h-1)/stride + 1; |
| | | int w = (in_w-1)/stride + 1; |
| | | int c = in_c; |
| | | int area = (size-1)/stride; |
| | | |
| | | int id = get_global_id(0); |
| | | int index = id; |
| | | int j = id % in_w; |
| | | id /= in_w; |
| | | int i = id % in_h; |
| | | id /= in_h; |
| | | int k = id % in_c; |
| | | id /= in_c; |
| | | int b = id; |
| | | |
| | | int w_offset = (-size-1)/2 + 1; |
| | | int h_offset = (-size-1)/2 + 1; |
| | | |
| | | float d = 0; |
| | | int l, m; |
| | | for(l = -area; l < area+1; ++l){ |
| | | for(m = -area; m < area+1; ++m){ |
| | | int out_w = (j-w_offset)/stride + m; |
| | | int out_h = (i-h_offset)/stride + l; |
| | | int out_index = out_w + w*(out_h + h*(k + c*b)); |
| | | int valid = (out_w >= 0 && out_w < w && |
| | | out_h >= 0 && out_h < h); |
| | | d += (valid && indexes[out_index] == index) ? delta[out_index] : 0; |
| | | } |
| | | } |
| | | prev_delta[index] = d; |
| | | } |
| | |
| | | #define MAXPOOL_LAYER_H |
| | | |
| | | #include "image.h" |
| | | #include "opencl.h" |
| | | |
| | | typedef struct { |
| | | int batch; |
| | |
| | | int *indexes; |
| | | float *delta; |
| | | float *output; |
| | | #ifdef GPU |
| | | cl_mem indexes_cl; |
| | | cl_mem output_cl; |
| | | cl_mem delta_cl; |
| | | #endif |
| | | } maxpool_layer; |
| | | |
| | | image get_maxpool_image(maxpool_layer layer); |
| | | maxpool_layer *make_maxpool_layer(int batch, int h, int w, int c, int size, int stride); |
| | | void resize_maxpool_layer(maxpool_layer *layer, int h, int w, int c); |
| | | void forward_maxpool_layer(const maxpool_layer layer, float *input); |
| | | void backward_maxpool_layer(const maxpool_layer layer, float *input, float *delta); |
| | | void backward_maxpool_layer(const maxpool_layer layer, float *delta); |
| | | |
| | | #ifdef GPU |
| | | void forward_maxpool_layer_gpu(maxpool_layer layer, cl_mem input); |
| | | void backward_maxpool_layer_gpu(maxpool_layer layer, cl_mem delta); |
| | | #endif |
| | | |
| | | #endif |
| | | |
| | |
| | | float *c = random_matrix(m,n); |
| | | int i; |
| | | clock_t start = clock(), end; |
| | | for(i = 0; i<1000; ++i){ |
| | | for(i = 0; i<10; ++i){ |
| | | gemm_cpu(TA,TB,m,n,k,1,a,lda,b,ldb,1,c,n); |
| | | } |
| | | end = clock(); |
| | |
| | | #include <stdio.h> |
| | | #include <time.h> |
| | | #include "network.h" |
| | | #include "image.h" |
| | | #include "data.h" |
| | |
| | | } |
| | | |
| | | #ifdef GPU |
| | | |
| | | void forward_network_gpu(network net, cl_mem input, cl_mem truth, int train) |
| | | { |
| | | //printf("start\n"); |
| | | int i; |
| | | for(i = 0; i < net.n; ++i){ |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | |
| | | forward_connected_layer_gpu(layer, input); |
| | | input = layer.output_cl; |
| | | } |
| | | /* |
| | | else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | forward_maxpool_layer_gpu(layer, input); |
| | | input = layer.output_cl; |
| | | } |
| | | else if(net.types[i] == SOFTMAX){ |
| | | softmax_layer layer = *(softmax_layer *)net.layers[i]; |
| | | forward_softmax_layer(layer, input); |
| | | input = layer.output; |
| | | forward_softmax_layer_gpu(layer, input); |
| | | input = layer.output_cl; |
| | | } |
| | | /* |
| | | else if(net.types[i] == CROP){ |
| | | crop_layer layer = *(crop_layer *)net.layers[i]; |
| | | forward_crop_layer(layer, input); |
| | | input = layer.output; |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | forward_maxpool_layer(layer, input); |
| | | input = layer.output; |
| | | } |
| | | else if(net.types[i] == NORMALIZATION){ |
| | | normalization_layer layer = *(normalization_layer *)net.layers[i]; |
| | | forward_normalization_layer(layer, input); |
| | |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | backward_connected_layer_gpu(layer, prev_input, prev_delta); |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | backward_maxpool_layer_gpu(layer, prev_delta); |
| | | } |
| | | else if(net.types[i] == SOFTMAX){ |
| | | softmax_layer layer = *(softmax_layer *)net.layers[i]; |
| | | backward_softmax_layer_gpu(layer, prev_delta); |
| | | } |
| | | } |
| | | } |
| | | |
| | |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | return layer.output_cl; |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | return layer.output_cl; |
| | | } |
| | | else if(net.types[i] == SOFTMAX){ |
| | | softmax_layer layer = *(softmax_layer *)net.layers[i]; |
| | | return layer.output_cl; |
| | | } |
| | | return 0; |
| | | } |
| | | |
| | |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | return layer.delta_cl; |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | return layer.delta_cl; |
| | | } |
| | | else if(net.types[i] == SOFTMAX){ |
| | | softmax_layer layer = *(softmax_layer *)net.layers[i]; |
| | | return layer.delta_cl; |
| | | } |
| | | return 0; |
| | | } |
| | | |
| | |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | if(i != 0) backward_maxpool_layer(layer, prev_input, prev_delta); |
| | | if(i != 0) backward_maxpool_layer(layer, prev_delta); |
| | | } |
| | | else if(net.types[i] == NORMALIZATION){ |
| | | normalization_layer layer = *(normalization_layer *)net.layers[i]; |
| | |
| | | } |
| | | else if(net.types[i] == SOFTMAX){ |
| | | softmax_layer layer = *(softmax_layer *)net.layers[i]; |
| | | if(i != 0) backward_softmax_layer(layer, prev_input, prev_delta); |
| | | if(i != 0) backward_softmax_layer(layer, prev_delta); |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | |
| | | } |
| | | } |
| | | |
| | | |
| | | #ifdef GPU |
| | | float train_network_datum_gpu(network net, float *x, float *y) |
| | | { |
| | |
| | | cl_write_array(*net.truth_cl, y, y_size); |
| | | } |
| | | forward_network_gpu(net, *net.input_cl, *net.truth_cl, 1); |
| | | //int class = get_predicted_class_network(net); |
| | | backward_network_gpu(net, *net.input_cl); |
| | | float error = get_network_cost(net); |
| | | update_network_gpu(net); |
| | | //return (y[class]?1:0); |
| | | return error; |
| | | } |
| | | |
| | | float train_network_sgd_gpu(network net, data d, int n) |
| | | { |
| | | int batch = net.batch; |
| | |
| | | #include <string.h> |
| | | #include <time.h> |
| | | #include <unistd.h> |
| | | //#include <clBLAS.h> |
| | | |
| | | #include "opencl.h" |
| | | #include "utils.h" |
| | |
| | | |
| | | } |
| | | int index = getpid()%num_devices; |
| | | index = 0; |
| | | printf("%d rand, %d devices, %d index\n", getpid(), num_devices, index); |
| | | //info.device = devices[index]; |
| | | info.device = devices[0]; |
| | | info.device = devices[index]; |
| | | fprintf(stderr, "Found %d device(s)\n", num_devices); |
| | | check_error(info); |
| | | |
| | |
| | | check_error(info); |
| | | info.queue = clCreateCommandQueue(info.context, info.device, 0, &info.error); |
| | | check_error(info); |
| | | for(i = 0; i < NUM_QUEUES; ++i){ |
| | | info.queues[i] = clCreateCommandQueue(info.context, info.device, 0, &info.error); |
| | | check_error(info); |
| | | } |
| | | //info.error = clblasSetup(); |
| | | check_error(info); |
| | | info.initialized = 1; |
| | | return info; |
| | | } |
| | | |
| | | void wait_for_queues() |
| | | { |
| | | int i; |
| | | for(i = 0; i < NUM_QUEUES; ++i){ |
| | | clFinish(cl.queues[i]); |
| | | } |
| | | } |
| | | |
| | | cl_program cl_fprog(char *filename, char *options, cl_info info) |
| | | { |
| | | size_t srcsize; |
| | |
| | | return mem; |
| | | } |
| | | |
| | | cl_mem cl_make_int_array(int *x, int n) |
| | | { |
| | | cl_setup(); |
| | | cl_mem mem = clCreateBuffer(cl.context, |
| | | CL_MEM_READ_WRITE|CL_MEM_COPY_HOST_PTR, |
| | | sizeof(int)*n, x, &cl.error); |
| | | check_error(cl); |
| | | return mem; |
| | | } |
| | | |
| | | #endif |
| | |
| | | #include <CL/cl.h> |
| | | #endif |
| | | |
| | | #define NUM_QUEUES 8 |
| | | |
| | | typedef struct { |
| | | int initialized; |
| | | cl_int error; |
| | |
| | | cl_device_id device; |
| | | cl_context context; |
| | | cl_command_queue queue; |
| | | cl_command_queue queues[NUM_QUEUES]; |
| | | }cl_info; |
| | | |
| | | extern cl_info cl; |
| | | |
| | | void cl_setup(); |
| | | void wait_for_queues(); |
| | | void check_error(cl_info info); |
| | | cl_kernel get_kernel(char *filename, char *kernelname, char *options); |
| | | void cl_read_array(cl_mem mem, float *x, int n); |
| | | void cl_write_array(cl_mem mem, float *x, int n); |
| | | cl_mem cl_make_array(float *x, int n); |
| | | cl_mem cl_make_int_array(int *x, int n); |
| | | void cl_copy_array(cl_mem src, cl_mem dst, int n); |
| | | cl_mem cl_sub_array(cl_mem src, int offset, int size); |
| | | #endif |
| | |
| | | #include "softmax_layer.h" |
| | | #include "mini_blas.h" |
| | | #include <float.h> |
| | | #include <math.h> |
| | | #include <stdlib.h> |
| | | #include <stdio.h> |
| | |
| | | layer->output = calloc(inputs*batch, sizeof(float)); |
| | | layer->delta = calloc(inputs*batch, sizeof(float)); |
| | | layer->jacobian = calloc(inputs*inputs*batch, sizeof(float)); |
| | | #ifdef GPU |
| | | layer->output_cl = cl_make_array(layer->output, inputs*batch); |
| | | layer->delta_cl = cl_make_array(layer->delta, inputs*batch); |
| | | #endif |
| | | return layer; |
| | | } |
| | | |
| | | /* UNSTABLE! |
| | | void forward_softmax_layer(const softmax_layer layer, float *input) |
| | | { |
| | | int i; |
| | | float sum = 0; |
| | | for(i = 0; i < layer.inputs; ++i){ |
| | | sum += exp(input[i]); |
| | | } |
| | | for(i = 0; i < layer.inputs; ++i){ |
| | | layer.output[i] = exp(input[i])/sum; |
| | | } |
| | | } |
| | | */ |
| | | void forward_softmax_layer(const softmax_layer layer, float *input) |
| | | { |
| | | int i,b; |
| | | for(b = 0; b < layer.batch; ++b){ |
| | | float sum = 0; |
| | | float largest = 0; |
| | | float largest = -FLT_MAX; |
| | | for(i = 0; i < layer.inputs; ++i){ |
| | | if(input[i+b*layer.inputs] > largest) largest = input[i+b*layer.inputs]; |
| | | } |
| | | for(i = 0; i < layer.inputs; ++i){ |
| | | sum += exp(input[i+b*layer.inputs]-largest); |
| | | //printf("%f, ", input[i]); |
| | | } |
| | | //printf("\n"); |
| | | if(sum) sum = largest+log(sum); |
| | | else sum = largest-100; |
| | | for(i = 0; i < layer.inputs; ++i){ |
| | |
| | | } |
| | | } |
| | | |
| | | void backward_softmax_layer(const softmax_layer layer, float *input, float *delta) |
| | | void backward_softmax_layer(const softmax_layer layer, float *delta) |
| | | { |
| | | /* |
| | | int i; |
| | | for(i = 0; i < layer.inputs*layer.batch; ++i){ |
| | | delta[i] = layer.delta[i]; |
| | | } |
| | | } |
| | | |
| | | #ifdef GPU |
| | | cl_kernel get_softmax_forward_kernel() |
| | | { |
| | | static int init = 0; |
| | | static cl_kernel kernel; |
| | | if(!init){ |
| | | kernel = get_kernel("src/softmax_layer.cl", "forward", 0); |
| | | init = 1; |
| | | } |
| | | return kernel; |
| | | } |
| | | |
| | | void forward_softmax_layer_gpu(const softmax_layer layer, cl_mem input) |
| | | { |
| | | cl_setup(); |
| | | cl_kernel kernel = get_softmax_forward_kernel(); |
| | | cl_command_queue queue = cl.queue; |
| | | |
| | | cl_uint i = 0; |
| | | cl.error = clSetKernelArg(kernel, i++, sizeof(layer.inputs), (void*) &layer.inputs); |
| | | cl.error = clSetKernelArg(kernel, i++, sizeof(input), (void*) &input); |
| | | cl.error = clSetKernelArg(kernel, i++, sizeof(layer.output_cl), (void*) &layer.output_cl); |
| | | check_error(cl); |
| | | |
| | | const size_t global_size[] = {layer.batch}; |
| | | |
| | | clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_size, 0, 0, 0, 0); |
| | | check_error(cl); |
| | | } |
| | | |
| | | void backward_softmax_layer_gpu(const softmax_layer layer, cl_mem delta) |
| | | { |
| | | copy_ongpu(layer.batch*layer.inputs, layer.delta_cl, 1, delta, 1); |
| | | } |
| | | #endif |
| | | |
| | | /* This is if you want softmax w/o log-loss classification. You probably don't. |
| | | int i,j,b; |
| | | for(b = 0; b < layer.batch; ++b){ |
| | | for(i = 0; i < layer.inputs; ++i){ |
| | |
| | | gemm(0,0,M,N,K,1,A,K,B,N,0,C,N); |
| | | } |
| | | */ |
| | | |
| | | int i; |
| | | for(i = 0; i < layer.inputs*layer.batch; ++i){ |
| | | delta[i] = layer.delta[i]; |
| | | } |
| | | } |
| | | |
| New file |
| | |
| | | |
| | | __kernel void forward(int n, __global float *input, __global float *output) |
| | | { |
| | | int b = get_global_id(0); |
| | | |
| | | int i; |
| | | float sum = 0; |
| | | float largest = -INFINITY; |
| | | for(i = 0; i < n; ++i){ |
| | | int val = input[i+b*n]; |
| | | largest = (val>largest) ? val : largest; |
| | | } |
| | | for(i = 0; i < n; ++i){ |
| | | sum += exp(input[i+b*n]-largest); |
| | | } |
| | | sum = (sum != 0) ? largest+log(sum) : largest-100; |
| | | for(i = 0; i < n; ++i){ |
| | | output[i+b*n] = exp(input[i+b*n]-sum); |
| | | } |
| | | } |
| | | |
| | |
| | | #ifndef SOFTMAX_LAYER_H |
| | | #define SOFTMAX_LAYER_H |
| | | |
| | | #include "opencl.h" |
| | | |
| | | typedef struct { |
| | | int inputs; |
| | | int batch; |
| | | float *delta; |
| | | float *output; |
| | | float *jacobian; |
| | | #ifdef GPU |
| | | cl_mem delta_cl; |
| | | cl_mem output_cl; |
| | | #endif |
| | | } softmax_layer; |
| | | |
| | | softmax_layer *make_softmax_layer(int batch, int inputs); |
| | | void forward_softmax_layer(const softmax_layer layer, float *input); |
| | | void backward_softmax_layer(const softmax_layer layer, float *input, float *delta); |
| | | void backward_softmax_layer(const softmax_layer layer, float *delta); |
| | | |
| | | #ifdef GPU |
| | | void forward_softmax_layer_gpu(const softmax_layer layer, cl_mem input); |
| | | void backward_softmax_layer_gpu(const softmax_layer layer, cl_mem delta); |
| | | #endif |
| | | |
| | | #endif |
| | |
| | | #include <string.h> |
| | | #include <math.h> |
| | | |
| | | float sec(clock_t clocks) |
| | | { |
| | | return (float)clocks/CLOCKS_PER_SEC; |
| | | } |
| | | |
| | | void error(char *s) |
| | | { |
| | | fprintf(stderr, "Error: %s\n", s); |
| | |
| | | #ifndef UTILS_H |
| | | #define UTILS_H |
| | | #include <stdio.h> |
| | | #include <time.h> |
| | | #include "list.h" |
| | | |
| | | void error(char *s); |
| | |
| | | float mean_array(float *a, int n); |
| | | float variance_array(float *a, int n); |
| | | float **one_hot_encode(float *a, int n, int k); |
| | | float sec(clock_t clocks); |
| | | #endif |
| | | |