| | |
| | | GPU=0 |
| | | OPENCV=0 |
| | | GPU=1 |
| | | OPENCV=1 |
| | | DEBUG=0 |
| | | |
| | | ARCH= --gpu-architecture=compute_20 --gpu-code=compute_20 |
| | |
| | | [net] |
| | | batch=64 |
| | | subdivisions=64 |
| | | subdivisions=4 |
| | | height=448 |
| | | width=448 |
| | | channels=3 |
| | | learning_rate=0.001 |
| | | learning_rate=0.01 |
| | | momentum=0.9 |
| | | decay=0.0005 |
| | | |
| | | policy=steps |
| | | steps=50, 5000 |
| | | scales=10, .1 |
| | | max_batches = 8000 |
| | | steps=20000 |
| | | scales=.1 |
| | | max_batches = 35000 |
| | | |
| | | [crop] |
| | | crop_width=448 |
| | |
| | | ACTIVATION activation; |
| | | COST_TYPE cost_type; |
| | | int batch; |
| | | int forced; |
| | | int inputs; |
| | | int outputs; |
| | | int truths; |
| | |
| | | layer.sqrt = option_find_int(options, "sqrt", 0); |
| | | |
| | | layer.coord_scale = option_find_float(options, "coord_scale", 1); |
| | | layer.forced = option_find_int(options, "forced", 0); |
| | | layer.object_scale = option_find_float(options, "object_scale", 1); |
| | | layer.noobject_scale = option_find_float(options, "noobject_scale", 1); |
| | | layer.class_scale = option_find_float(options, "class_scale", 1); |
| | |
| | | |
| | | int best_index = -1; |
| | | float best_iou = 0; |
| | | float best_rmse = 4; |
| | | float best_rmse = 20; |
| | | |
| | | if (!is_obj) continue; |
| | | if (!is_obj){ |
| | | //printf("."); |
| | | continue; |
| | | } |
| | | |
| | | int class_index = index + i*l.classes; |
| | | for(j = 0; j < l.classes; ++j) { |
| | |
| | | } |
| | | } |
| | | } |
| | | int p_index = index + locations*l.classes + i*l.n + best_index; |
| | | *(l.cost) -= l.noobject_scale * pow(l.output[p_index], 2); |
| | | *(l.cost) += l.object_scale * pow(1-l.output[p_index], 2); |
| | | avg_obj += l.output[p_index]; |
| | | l.delta[p_index+0] = l.object_scale * (1.-l.output[p_index]); |
| | | |
| | | if(l.rescore){ |
| | | l.delta[p_index+0] = l.object_scale * (best_iou - l.output[p_index]); |
| | | if(l.forced){ |
| | | if(truth.w*truth.h < .1){ |
| | | best_index = 1; |
| | | }else{ |
| | | best_index = 0; |
| | | } |
| | | } |
| | | |
| | | int box_index = index + locations*(l.classes + l.n) + (i*l.n + best_index) * l.coords; |
| | | int tbox_index = truth_index + 1 + l.classes; |
| | | |
| | | box out = float_to_box(l.output + box_index); |
| | | out.x /= l.side; |
| | | out.y /= l.side; |
| | | if (l.sqrt) { |
| | | out.w = out.w*out.w; |
| | | out.h = out.h*out.h; |
| | | } |
| | | float iou = box_iou(out, truth); |
| | | |
| | | //printf("%d", best_index); |
| | | int p_index = index + locations*l.classes + i*l.n + best_index; |
| | | *(l.cost) -= l.noobject_scale * pow(l.output[p_index], 2); |
| | | *(l.cost) += l.object_scale * pow(1-l.output[p_index], 2); |
| | | avg_obj += l.output[p_index]; |
| | | l.delta[p_index] = l.object_scale * (1.-l.output[p_index]); |
| | | |
| | | if(l.rescore){ |
| | | l.delta[p_index] = l.object_scale * (iou - l.output[p_index]); |
| | | } |
| | | |
| | | l.delta[box_index+0] = l.coord_scale*(state.truth[tbox_index + 0] - l.output[box_index + 0]); |
| | | l.delta[box_index+1] = l.coord_scale*(state.truth[tbox_index + 1] - l.output[box_index + 1]); |
| | | l.delta[box_index+2] = l.coord_scale*(state.truth[tbox_index + 2] - l.output[box_index + 2]); |
| | |
| | | l.delta[box_index+3] = l.coord_scale*(sqrt(state.truth[tbox_index + 3]) - l.output[box_index + 3]); |
| | | } |
| | | |
| | | *(l.cost) += pow(1-best_iou, 2); |
| | | avg_iou += best_iou; |
| | | *(l.cost) += pow(1-iou, 2); |
| | | avg_iou += iou; |
| | | ++count; |
| | | } |
| | | if(l.softmax){ |
| | | gradient_array(l.output + index + locations*l.classes, locations*l.n*(1+l.coords), |
| | | LOGISTIC, l.delta + index + locations*l.classes); |
| | | } |
| | | //printf("\n"); |
| | | } |
| | | printf("Region Avg IOU: %f, Pos Cat: %f, All Cat: %f, Pos Obj: %f, Any Obj: %f, count: %d\n", avg_iou/count, avg_cat/count, avg_allcat/(count*l.classes), avg_obj/count, avg_anyobj/(l.batch*locations*l.n), count); |
| | | } |
| | |
| | | #include "network.h" |
| | | #include "region_layer.h" |
| | | #include "detection_layer.h" |
| | | #include "cost_layer.h" |
| | | #include "utils.h" |
| | |
| | | |
| | | char *voc_names[] = {"aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"}; |
| | | |
| | | void draw_swag(image im, float *box, int side, int objectness, char *label, float thresh) |
| | | void draw_swag(image im, float *predictions, int side, int num, char *label, float thresh) |
| | | { |
| | | int classes = 20; |
| | | int elems = 4+classes+objectness; |
| | | int j; |
| | | int r, c; |
| | | int i,n; |
| | | |
| | | for(r = 0; r < side; ++r){ |
| | | for(c = 0; c < side; ++c){ |
| | | j = (r*side + c) * elems; |
| | | float scale = 1; |
| | | if(objectness) scale = 1 - box[j++]; |
| | | int class = max_index(box+j, classes); |
| | | if(scale * box[j+class] > thresh){ |
| | | int width = sqrt(scale*box[j+class])*5 + 1; |
| | | printf("%f %s\n", scale * box[j+class], voc_names[class]); |
| | | for(i = 0; i < side*side; ++i){ |
| | | int row = i / side; |
| | | int col = i % side; |
| | | for(n = 0; n < num; ++n){ |
| | | int p_index = side*side*classes + i*num + n; |
| | | int box_index = side*side*(classes + num) + (i*num + n)*4; |
| | | int class_index = i*classes; |
| | | float scale = predictions[p_index]; |
| | | int class = max_index(predictions+class_index, classes); |
| | | float prob = scale * predictions[class_index + class]; |
| | | if(prob > thresh){ |
| | | int width = sqrt(prob)*5 + 1; |
| | | printf("%f %s\n", prob, voc_names[class]); |
| | | float red = get_color(0,class,classes); |
| | | float green = get_color(1,class,classes); |
| | | float blue = get_color(2,class,classes); |
| | | box b = float_to_box(predictions+box_index); |
| | | b.x = (b.x + col)/side; |
| | | b.y = (b.y + row)/side; |
| | | b.w = b.w*b.w; |
| | | b.h = b.h*b.h; |
| | | |
| | | j += classes; |
| | | float x = box[j+0]; |
| | | float y = box[j+1]; |
| | | x = (x+c)/side; |
| | | y = (y+r)/side; |
| | | float w = box[j+2]; //*maxwidth; |
| | | float h = box[j+3]; //*maxheight; |
| | | h = h*h; |
| | | w = w*w; |
| | | |
| | | int left = (x-w/2)*im.w; |
| | | int right = (x+w/2)*im.w; |
| | | int top = (y-h/2)*im.h; |
| | | int bot = (y+h/2)*im.h; |
| | | int left = (b.x-b.w/2)*im.w; |
| | | int right = (b.x+b.w/2)*im.w; |
| | | int top = (b.y-b.h/2)*im.h; |
| | | int bot = (b.y+b.h/2)*im.h; |
| | | draw_box_width(im, left, top, right, bot, width, red, green, blue); |
| | | } |
| | | } |
| | |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | detection_layer layer = get_network_detection_layer(net); |
| | | region_layer layer = net.layers[net.n-1]; |
| | | set_batch_network(&net, 1); |
| | | srand(2222222); |
| | | clock_t time; |
| | |
| | | time=clock(); |
| | | float *predictions = network_predict(net, X); |
| | | printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time)); |
| | | draw_swag(im, predictions, 7, layer.objectness, "predictions", thresh); |
| | | draw_swag(im, predictions, layer.side, layer.n, "predictions", thresh); |
| | | show_image(sized, "resized"); |
| | | free_image(im); |
| | | free_image(sized); |
| | | #ifdef OPENCV |
| | |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | detection_layer layer = get_network_detection_layer(net); |
| | | int imgs = 128; |
| | | int i = *net.seen/imgs; |
| | | |
| | |
| | | int N = plist->size; |
| | | paths = (char **)list_to_array(plist); |
| | | |
| | | if(i*imgs > N*80){ |
| | | net.layers[net.n-1].objectness = 0; |
| | | net.layers[net.n-1].joint = 1; |
| | | } |
| | | if(i*imgs > N*120){ |
| | | net.layers[net.n-1].rescore = 1; |
| | | } |
| | | data train, buffer; |
| | | |
| | | detection_layer layer = get_network_detection_layer(net); |
| | | int classes = layer.classes; |
| | | int background = layer.objectness; |
| | | int side = sqrt(get_detection_layer_locations(layer)); |