Connected layers use matrices
5 files modified
2 files added
| | |
| | | LDFLAGS=`pkg-config --libs opencv` -lm |
| | | VPATH=./src/ |
| | | |
| | | OBJ=network.o image.o tests.o convolutional_layer.o connected_layer.o maxpool_layer.o activations.o list.o option_list.o parser.o utils.o data.o matrix.o softmax_layer.o |
| | | OBJ=network.o image.o tests.o convolutional_layer.o connected_layer.o maxpool_layer.o activations.o list.o option_list.o parser.o utils.o data.o matrix.o softmax_layer.o mini_blas.o |
| | | |
| | | all: cnn |
| | | |
| | |
| | | #include "connected_layer.h" |
| | | #include "utils.h" |
| | | #include "mini_blas.h" |
| | | |
| | | #include <math.h> |
| | | #include <stdio.h> |
| | |
| | | return layer; |
| | | } |
| | | |
| | | void update_connected_layer(connected_layer layer, double step, double momentum, double decay) |
| | | { |
| | | int i; |
| | | for(i = 0; i < layer.outputs; ++i){ |
| | | layer.bias_momentum[i] = step*(layer.bias_updates[i]) + momentum*layer.bias_momentum[i]; |
| | | layer.biases[i] += layer.bias_momentum[i]; |
| | | } |
| | | for(i = 0; i < layer.outputs*layer.inputs; ++i){ |
| | | layer.weight_momentum[i] = step*(layer.weight_updates[i] - decay*layer.weights[i]) + momentum*layer.weight_momentum[i]; |
| | | layer.weights[i] += layer.weight_momentum[i]; |
| | | } |
| | | memset(layer.bias_updates, 0, layer.outputs*sizeof(double)); |
| | | memset(layer.weight_updates, 0, layer.outputs*layer.inputs*sizeof(double)); |
| | | } |
| | | |
| | | void forward_connected_layer(connected_layer layer, double *input) |
| | | { |
| | | int i, j; |
| | | int i; |
| | | memcpy(layer.output, layer.biases, layer.outputs*sizeof(double)); |
| | | int m = 1; |
| | | int k = layer.inputs; |
| | | int n = layer.outputs; |
| | | double *a = input; |
| | | double *b = layer.weights; |
| | | double *c = layer.output; |
| | | gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); |
| | | for(i = 0; i < layer.outputs; ++i){ |
| | | layer.output[i] = layer.biases[i]; |
| | | for(j = 0; j < layer.inputs; ++j){ |
| | | layer.output[i] += input[j]*layer.weights[i*layer.inputs + j]; |
| | | } |
| | | layer.output[i] = activate(layer.output[i], layer.activation); |
| | | } |
| | | } |
| | | |
| | | void learn_connected_layer(connected_layer layer, double *input) |
| | | { |
| | | int i, j; |
| | | int i; |
| | | for(i = 0; i < layer.outputs; ++i){ |
| | | layer.delta[i] *= gradient(layer.output[i], layer.activation); |
| | | layer.bias_updates[i] += layer.delta[i]; |
| | | for(j = 0; j < layer.inputs; ++j){ |
| | | layer.weight_updates[i*layer.inputs + j] += layer.delta[i]*input[j]; |
| | | } |
| | | } |
| | | } |
| | | |
| | | void update_connected_layer(connected_layer layer, double step, double momentum, double decay) |
| | | { |
| | | int i,j; |
| | | for(i = 0; i < layer.outputs; ++i){ |
| | | layer.bias_momentum[i] = step*(layer.bias_updates[i]) + momentum*layer.bias_momentum[i]; |
| | | layer.biases[i] += layer.bias_momentum[i]; |
| | | for(j = 0; j < layer.inputs; ++j){ |
| | | int index = i*layer.inputs+j; |
| | | layer.weight_momentum[index] = step*(layer.weight_updates[index] - decay*layer.weights[index]) + momentum*layer.weight_momentum[index]; |
| | | layer.weights[index] += layer.weight_momentum[index]; |
| | | } |
| | | } |
| | | memset(layer.bias_updates, 0, layer.outputs*sizeof(double)); |
| | | memset(layer.weight_updates, 0, layer.outputs*layer.inputs*sizeof(double)); |
| | | int m = layer.inputs; |
| | | int k = 1; |
| | | int n = layer.outputs; |
| | | double *a = input; |
| | | double *b = layer.delta; |
| | | double *c = layer.weight_updates; |
| | | gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); |
| | | } |
| | | |
| | | void backward_connected_layer(connected_layer layer, double *input, double *delta) |
| | | { |
| | | int i, j; |
| | | memset(delta, 0, layer.inputs*sizeof(double)); |
| | | |
| | | for(j = 0; j < layer.inputs; ++j){ |
| | | delta[j] = 0; |
| | | for(i = 0; i < layer.outputs; ++i){ |
| | | delta[j] += layer.delta[i]*layer.weights[i*layer.inputs + j]; |
| | | } |
| | | } |
| | | int m = layer.inputs; |
| | | int k = layer.outputs; |
| | | int n = 1; |
| | | |
| | | double *a = layer.weights; |
| | | double *b = layer.delta; |
| | | double *c = delta; |
| | | |
| | | gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); |
| | | } |
| | | /* |
| | | void forward_connected_layer(connected_layer layer, double *input) |
| | | { |
| | | int i, j; |
| | | for(i = 0; i < layer.outputs; ++i){ |
| | | layer.output[i] = layer.biases[i]; |
| | | for(j = 0; j < layer.inputs; ++j){ |
| | | layer.output[i] += input[j]*layer.weights[i*layer.inputs + j]; |
| | | } |
| | | layer.output[i] = activate(layer.output[i], layer.activation); |
| | | } |
| | | } |
| | | void learn_connected_layer(connected_layer layer, double *input) |
| | | { |
| | | int i, j; |
| | | for(i = 0; i < layer.outputs; ++i){ |
| | | layer.delta[i] *= gradient(layer.output[i], layer.activation); |
| | | layer.bias_updates[i] += layer.delta[i]; |
| | | for(j = 0; j < layer.inputs; ++j){ |
| | | layer.weight_updates[i*layer.inputs + j] += layer.delta[i]*input[j]; |
| | | } |
| | | } |
| | | } |
| | | void backward_connected_layer(connected_layer layer, double *input, double *delta) |
| | | { |
| | | int i, j; |
| | | |
| | | for(j = 0; j < layer.inputs; ++j){ |
| | | delta[j] = 0; |
| | | for(i = 0; i < layer.outputs; ++i){ |
| | | delta[j] += layer.delta[i]*layer.weights[i*layer.inputs + j]; |
| | | } |
| | | } |
| | | } |
| | | */ |
| | |
| | | int i; |
| | | for(i = 0; i < h*w*c; ++i){ |
| | | out.data[i] = rand_normal(); |
| | | //out.data[i] = rand()%3; |
| | | } |
| | | return out; |
| | | } |
| New file |
| | |
| | | |
| | | void gemm(int TA, int TB, int M, int N, int K, double ALPHA, |
| | | double *A, int lda, |
| | | double *B, int ldb, |
| | | double BETA, |
| | | double *C, int ldc) |
| | | { |
| | | // Assume TA = TB = 0, beta = 1 LULZ |
| | | int i,j,k; |
| | | for(i = 0; i < M; ++i){ |
| | | for(k = 0; k < K; ++k){ |
| | | for(j = 0; j < N; ++j){ |
| | | C[i*ldc+j] += ALPHA*A[i*lda+k]*B[k*ldb+j]; |
| | | } |
| | | } |
| | | } |
| | | } |
| | | |
| | | void im2row(double *image, int h, int w, int c, int size, int stride, double *matrix) |
| | | { |
| | | int i; |
| | | int mc = c; |
| | | int mw = (size*size); |
| | | int mh = ((h-size)/stride+1)*((w-size)/stride+1); |
| | | int msize = mc*mw*mh; |
| | | for(i = 0; i < msize; ++i){ |
| | | int channel = i/(mh*mw); |
| | | int block = (i%(mh*mw))/mw; |
| | | int position = i%mw; |
| | | int block_h = block/((w-size)/stride+1); |
| | | int block_w = block%((w-size)/stride+1); |
| | | int ph, pw, pc; |
| | | ph = position/size+block_h; |
| | | pw = position%size+block_w; |
| | | pc = channel; |
| | | matrix[i] = image[pc*h*w+ph*w+pw]; |
| | | } |
| | | } |
| | | void im2col(double *image, int h, int w, int c, int size, int stride, double *matrix) |
| | | { |
| | | int b,p; |
| | | int blocks = ((h-size)/stride+1)*((w-size)/stride+1); |
| | | int pixels = (size*size*c); |
| | | for(b = 0; b < blocks; ++b){ |
| | | int block_h = b/((w-size)/stride+1); |
| | | int block_w = b%((w-size)/stride+1); |
| | | for(p = 0; p < pixels; ++p){ |
| | | int ph, pw, pc; |
| | | int position = p%(size*size); |
| | | pc = p/(size*size); |
| | | ph = position/size+block_h; |
| | | pw = position%size+block_w; |
| | | matrix[b+p*blocks] = image[pc*h*w+ph*w+pw]; |
| | | } |
| | | } |
| | | } |
| | | |
| | | //From Berkeley Vision's Caffe! |
| | | void im2col_cpu(double* data_im, const int channels, |
| | | const int height, const int width, const int ksize, const int stride, |
| | | double* data_col) |
| | | { |
| | | int c,h,w; |
| | | int height_col = (height - ksize) / stride + 1; |
| | | int width_col = (width - ksize) / stride + 1; |
| | | int channels_col = channels * ksize * ksize; |
| | | for ( c = 0; c < channels_col; ++c) { |
| | | int w_offset = c % ksize; |
| | | int h_offset = (c / ksize) % ksize; |
| | | int c_im = c / ksize / ksize; |
| | | for ( h = 0; h < height_col; ++h) { |
| | | for ( w = 0; w < width_col; ++w) { |
| | | data_col[(c * height_col + h) * width_col + w] = |
| | | data_im[(c_im * height + h * stride + h_offset) * width |
| | | + w * stride + w_offset]; |
| | | } |
| | | } |
| | | } |
| | | } |
| | | |
| New file |
| | |
| | | void gemm(int TA, int TB, int M, int N, int K, double ALPHA, |
| | | double *A, int lda, |
| | | double *B, int ldb, |
| | | double BETA, |
| | | double *C, int ldc); |
| | | void im2row(double *image, int h, int w, int c, int size, int stride, double *matrix); |
| | | void im2col(double *image, int h, int w, int c, int size, int stride, double *matrix); |
| | | void im2col_cpu(double* data_im, const int channels, |
| | | const int height, const int width, const int ksize, const int stride, |
| | | double* data_col); |
| | |
| | | #include "data.h" |
| | | #include "matrix.h" |
| | | #include "utils.h" |
| | | #include "mini_blas.h" |
| | | |
| | | #include <time.h> |
| | | #include <stdlib.h> |
| | |
| | | show_image_layers(edge, "Test Convolve"); |
| | | } |
| | | |
| | | void test_convolve_matrix() |
| | | { |
| | | image dog = load_image("dog.jpg"); |
| | | printf("dog channels %d\n", dog.c); |
| | | |
| | | int size = 11; |
| | | int stride = 1; |
| | | int n = 40; |
| | | double *filters = make_random_image(size, size, dog.c*n).data; |
| | | |
| | | int mw = ((dog.h-size)/stride+1)*((dog.w-size)/stride+1); |
| | | int mh = (size*size*dog.c); |
| | | double *matrix = calloc(mh*mw, sizeof(double)); |
| | | |
| | | image edge = make_image((dog.h-size)/stride+1, (dog.w-size)/stride+1, n); |
| | | |
| | | |
| | | int i; |
| | | clock_t start = clock(), end; |
| | | for(i = 0; i < 1000; ++i){ |
| | | im2col_cpu(dog.data, dog.c, dog.h, dog.w, size, stride, matrix); |
| | | gemm(0,0,n,mw,mh,1,filters,mh,matrix,mw,1,edge.data,mw); |
| | | } |
| | | end = clock(); |
| | | printf("Convolutions: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC); |
| | | show_image_layers(edge, "Test Convolve"); |
| | | cvWaitKey(0); |
| | | } |
| | | |
| | | void test_color() |
| | | { |
| | | image dog = load_image("test_color.png"); |
| | |
| | | { |
| | | srand(444444); |
| | | srand(888888); |
| | | network net = parse_network_cfg("nist.cfg"); |
| | | network net = parse_network_cfg("nist_basic.cfg"); |
| | | data train = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10); |
| | | data test = load_categorical_data_csv("mnist/mnist_test.csv",0,10); |
| | | normalize_data_rows(train); |
| | |
| | | end = clock(); |
| | | printf("Time: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC); |
| | | start=end; |
| | | visualize_network(net); |
| | | cvWaitKey(100); |
| | | //visualize_network(net); |
| | | //cvWaitKey(100); |
| | | //lr /= 2; |
| | | if(count%5 == 0 && 0){ |
| | | double train_acc = network_accuracy(net, train); |
| | |
| | | printf("%d, %d, %d\n", train.X.rows, split[0].X.rows, split[1].X.rows); |
| | | } |
| | | |
| | | double *random_matrix(int rows, int cols) |
| | | { |
| | | int i, j; |
| | | double *m = calloc(rows*cols, sizeof(double)); |
| | | for(i = 0; i < rows; ++i){ |
| | | for(j = 0; j < cols; ++j){ |
| | | m[i*cols+j] = (double)rand()/RAND_MAX; |
| | | } |
| | | } |
| | | return m; |
| | | } |
| | | |
| | | void test_blas() |
| | | { |
| | | int m = 6025, n = 20, k = 11*11*3; |
| | | double *a = random_matrix(m,k); |
| | | double *b = random_matrix(k,n); |
| | | double *c = random_matrix(m,n); |
| | | int i; |
| | | for(i = 0; i<1000; ++i){ |
| | | gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); |
| | | } |
| | | } |
| | | |
| | | void test_im2row() |
| | | { |
| | | int h = 20; |
| | | int w = 20; |
| | | int c = 3; |
| | | int stride = 1; |
| | | int size = 11; |
| | | image test = make_random_image(h,w,c); |
| | | int mc = 1; |
| | | int mw = ((h-size)/stride+1)*((w-size)/stride+1); |
| | | int mh = (size*size*c); |
| | | int msize = mc*mw*mh; |
| | | double *matrix = calloc(msize, sizeof(double)); |
| | | int i; |
| | | for(i = 0; i < 1000; ++i){ |
| | | im2col_cpu(test.data, c, h, w, size, stride, matrix); |
| | | image render = double_to_image(mh, mw, mc, matrix); |
| | | } |
| | | } |
| | | |
| | | int main() |
| | | { |
| | | //test_blas(); |
| | | test_convolve_matrix(); |
| | | // test_im2row(); |
| | | //test_kernel_update(); |
| | | //test_split(); |
| | | //test_ensemble(); |
| | | test_nist(); |
| | | //test_nist(); |
| | | //test_full(); |
| | | //test_random_preprocess(); |
| | | //test_random_classify(); |