Generalizing conv layer so deconv is easier
| | |
| | | #include "cuda.h" |
| | | } |
| | | |
| | | __global__ void bias(int n, int size, float *biases, float *output) |
| | | __global__ void bias_output_kernel(float *output, float *biases, int n, int size) |
| | | { |
| | | int offset = blockIdx.x * blockDim.x + threadIdx.x; |
| | | int filter = blockIdx.y; |
| | |
| | | if(offset < size) output[(batch*n+filter)*size + offset] = biases[filter]; |
| | | } |
| | | |
| | | extern "C" void bias_output_gpu(const convolutional_layer layer) |
| | | extern "C" void bias_output_gpu(float *output, float *biases, int batch, int n, int size) |
| | | { |
| | | int size = convolutional_out_height(layer)*convolutional_out_width(layer); |
| | | |
| | | dim3 dimBlock(BLOCK, 1, 1); |
| | | dim3 dimGrid((size-1)/BLOCK + 1, layer.n, layer.batch); |
| | | dim3 dimGrid((size-1)/BLOCK + 1, n, batch); |
| | | |
| | | bias<<<dimGrid, dimBlock>>>(layer.n, size, layer.biases_gpu, layer.output_gpu); |
| | | bias_output_kernel<<<dimGrid, dimBlock>>>(output, biases, n, size); |
| | | check_error(cudaPeekAtLastError()); |
| | | } |
| | | |
| | | __global__ void learn_bias(int batch, int n, int size, float *delta, float *bias_updates, float scale) |
| | | __global__ void backward_bias_kernel(float *bias_updates, float *delta, int batch, int n, int size, float scale) |
| | | { |
| | | __shared__ float part[BLOCK]; |
| | | int i,b; |
| | |
| | | } |
| | | } |
| | | |
| | | extern "C" void learn_bias_convolutional_layer_ongpu(convolutional_layer layer) |
| | | extern "C" void backward_bias_gpu(float *bias_updates, float *delta, int batch, int n, int size) |
| | | { |
| | | int size = convolutional_out_height(layer)*convolutional_out_width(layer); |
| | | float alpha = 1./layer.batch; |
| | | float alpha = 1./batch; |
| | | |
| | | learn_bias<<<layer.n, BLOCK>>>(layer.batch, layer.n, size, layer.delta_gpu, layer.bias_updates_gpu, alpha); |
| | | backward_bias_kernel<<<n, BLOCK>>>(bias_updates, delta, batch, n, size, alpha); |
| | | check_error(cudaPeekAtLastError()); |
| | | } |
| | | |
| | | extern "C" void test_learn_bias(convolutional_layer l) |
| | | { |
| | | int i; |
| | | int size = convolutional_out_height(l) * convolutional_out_width(l); |
| | | for(i = 0; i < size*l.batch*l.n; ++i){ |
| | | l.delta[i] = rand_uniform(); |
| | | } |
| | | for(i = 0; i < l.n; ++i){ |
| | | l.bias_updates[i] = rand_uniform(); |
| | | } |
| | | cuda_push_array(l.delta_gpu, l.delta, size*l.batch*l.n); |
| | | cuda_push_array(l.bias_updates_gpu, l.bias_updates, l.n); |
| | | float *gpu = (float *) calloc(l.n, sizeof(float)); |
| | | cuda_pull_array(l.bias_updates_gpu, gpu, l.n); |
| | | for(i = 0; i < l.n; ++i) printf("%.9g %.9g\n", l.bias_updates[i], gpu[i]); |
| | | learn_bias_convolutional_layer_ongpu(l); |
| | | learn_bias_convolutional_layer(l); |
| | | cuda_pull_array(l.bias_updates_gpu, gpu, l.n); |
| | | for(i = 0; i < l.n; ++i) printf("%.9g %.9g\n", l.bias_updates[i], gpu[i]); |
| | | } |
| | | |
| | | extern "C" void forward_convolutional_layer_gpu(convolutional_layer layer, float *in) |
| | | { |
| | | int i; |
| | |
| | | int n = convolutional_out_height(layer)* |
| | | convolutional_out_width(layer); |
| | | |
| | | bias_output_gpu(layer); |
| | | bias_output_gpu(layer.output_gpu, layer.biases_gpu, layer.batch, layer.n, n); |
| | | |
| | | for(i = 0; i < layer.batch; ++i){ |
| | | im2col_ongpu(in, i*layer.c*layer.h*layer.w, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, layer.col_image_gpu); |
| | |
| | | int n = layer.size*layer.size*layer.c; |
| | | int k = convolutional_out_height(layer)* |
| | | convolutional_out_width(layer); |
| | | |
| | | gradient_array_ongpu(layer.output_gpu, m*k*layer.batch, layer.activation, layer.delta_gpu); |
| | | learn_bias_convolutional_layer_ongpu(layer); |
| | | backward_bias_gpu(layer.bias_updates_gpu, layer.delta_gpu, layer.batch, layer.n, k); |
| | | |
| | | if(delta_gpu) scal_ongpu(layer.batch*layer.h*layer.w*layer.c, 0, delta_gpu, 1); |
| | | |
| | |
| | | layer->batch*out_h * out_w * layer->n*sizeof(float)); |
| | | } |
| | | |
| | | void bias_output(const convolutional_layer layer) |
| | | void bias_output(float *output, float *biases, int batch, int n, int size) |
| | | { |
| | | int i,j,b; |
| | | int out_h = convolutional_out_height(layer); |
| | | int out_w = convolutional_out_width(layer); |
| | | for(b = 0; b < layer.batch; ++b){ |
| | | for(i = 0; i < layer.n; ++i){ |
| | | for(j = 0; j < out_h*out_w; ++j){ |
| | | layer.output[(b*layer.n + i)*out_h*out_w + j] = layer.biases[i]; |
| | | for(b = 0; b < batch; ++b){ |
| | | for(i = 0; i < n; ++i){ |
| | | for(j = 0; j < size; ++j){ |
| | | output[(b*n + i)*size + j] = biases[i]; |
| | | } |
| | | } |
| | | } |
| | | } |
| | | |
| | | void backward_bias(float *bias_updates, float *delta, int batch, int n, int size) |
| | | { |
| | | float alpha = 1./batch; |
| | | int i,b; |
| | | for(b = 0; b < batch; ++b){ |
| | | for(i = 0; i < n; ++i){ |
| | | bias_updates[i] += alpha * sum_array(delta+size*(i+b*n), size); |
| | | } |
| | | } |
| | | } |
| | | |
| | | |
| | | void forward_convolutional_layer(const convolutional_layer layer, float *in) |
| | | { |
| | | int out_h = convolutional_out_height(layer); |
| | | int out_w = convolutional_out_width(layer); |
| | | int i; |
| | | |
| | | bias_output(layer); |
| | | bias_output(layer.output, layer.biases, layer.batch, layer.n, out_h*out_w); |
| | | |
| | | int m = layer.n; |
| | | int k = layer.size*layer.size*layer.c; |
| | |
| | | activate_array(layer.output, m*n*layer.batch, layer.activation); |
| | | } |
| | | |
| | | void learn_bias_convolutional_layer(convolutional_layer layer) |
| | | { |
| | | float alpha = 1./layer.batch; |
| | | int i,b; |
| | | int size = convolutional_out_height(layer) |
| | | *convolutional_out_width(layer); |
| | | for(b = 0; b < layer.batch; ++b){ |
| | | for(i = 0; i < layer.n; ++i){ |
| | | layer.bias_updates[i] += alpha * sum_array(layer.delta+size*(i+b*layer.n), size); |
| | | } |
| | | } |
| | | } |
| | | |
| | | void backward_convolutional_layer(convolutional_layer layer, float *in, float *delta) |
| | | { |
| | | float alpha = 1./layer.batch; |
| | |
| | | convolutional_out_width(layer); |
| | | |
| | | gradient_array(layer.output, m*k*layer.batch, layer.activation, layer.delta); |
| | | |
| | | learn_bias_convolutional_layer(layer); |
| | | backward_bias(layer.bias_updates, layer.delta, layer.batch, layer.n, k); |
| | | |
| | | if(delta) memset(delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float)); |
| | | |
| | |
| | | void forward_convolutional_layer_gpu(convolutional_layer layer, float * in); |
| | | void backward_convolutional_layer_gpu(convolutional_layer layer, float * in, float * delta_gpu); |
| | | void update_convolutional_layer_gpu(convolutional_layer layer); |
| | | |
| | | void push_convolutional_layer(convolutional_layer layer); |
| | | void pull_convolutional_layer(convolutional_layer layer); |
| | | void learn_bias_convolutional_layer_ongpu(convolutional_layer layer); |
| | | void bias_output_gpu(const convolutional_layer layer); |
| | | |
| | | void bias_output_gpu(float *output, float *biases, int batch, int n, int size); |
| | | void backward_bias_gpu(float *bias_updates, float *delta, int batch, int n, int size); |
| | | #endif |
| | | |
| | | convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation, float learning_rate, float momentum, float decay); |
| | |
| | | |
| | | void backward_convolutional_layer(convolutional_layer layer, float *in, float *delta); |
| | | |
| | | void bias_output(const convolutional_layer layer); |
| | | void bias_output(float *output, float *biases, int batch, int n, int size); |
| | | void backward_bias(float *bias_updates, float *delta, int batch, int n, int size); |
| | | |
| | | image get_convolutional_image(convolutional_layer layer); |
| | | image get_convolutional_delta(convolutional_layer layer); |
| | | image get_convolutional_filter(convolutional_layer layer, int i); |
| | | |
| | | int convolutional_out_height(convolutional_layer layer); |
| | | int convolutional_out_width(convolutional_layer layer); |
| | | void learn_bias_convolutional_layer(convolutional_layer layer); |
| | | |
| | | #endif |
| | | |
| | |
| | | void train_imagenet(char *cfgfile, char *weightfile) |
| | | { |
| | | float avg_loss = -1; |
| | | // TODO |
| | | srand(0); |
| | | srand(time(0)); |
| | | char *base = basename(cfgfile); |
| | | printf("%s\n", base); |
| | | network net = parse_network_cfg(cfgfile); |
| | |
| | | cvWaitKey(0); |
| | | } |
| | | |
| | | #ifdef GPU |
| | | void test_convolutional_layer() |
| | | { |
| | | network net = parse_network_cfg("cfg/nist_conv.cfg"); |
| | | int size = get_network_input_size(net); |
| | | float *in = calloc(size, sizeof(float)); |
| | | int i; |
| | | for(i = 0; i < size; ++i) in[i] = rand_normal(); |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[0]; |
| | | int out_size = convolutional_out_height(layer)*convolutional_out_width(layer)*layer.batch; |
| | | cuda_compare(layer.output_gpu, layer.output, out_size, "nothing"); |
| | | cuda_compare(layer.biases_gpu, layer.biases, layer.n, "biases"); |
| | | cuda_compare(layer.filters_gpu, layer.filters, layer.n*layer.size*layer.size*layer.c, "filters"); |
| | | bias_output(layer); |
| | | bias_output_gpu(layer); |
| | | cuda_compare(layer.output_gpu, layer.output, out_size, "biased output"); |
| | | } |
| | | #endif |
| | | |
| | | void test_correct_nist() |
| | | { |
| | | network net = parse_network_cfg("cfg/nist_conv.cfg"); |