:fire: crush. crush. admit. :fire:
| | |
| | | return v; |
| | | } |
| | | |
| | | void train_classifier_multi(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear) |
| | | void train_classifier(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear) |
| | | { |
| | | #ifdef GPU |
| | | int i; |
| | | |
| | | float avg_loss = -1; |
| | |
| | | int seed = rand(); |
| | | for(i = 0; i < ngpus; ++i){ |
| | | srand(seed); |
| | | #ifdef GPU |
| | | cuda_set_device(gpus[i]); |
| | | #endif |
| | | nets[i] = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&nets[i], weightfile); |
| | |
| | | printf("Loaded: %lf seconds\n", sec(clock()-time)); |
| | | time=clock(); |
| | | |
| | | float loss = train_networks(nets, ngpus, train, 4); |
| | | float loss = 0; |
| | | #ifdef GPU |
| | | if(ngpus == 1){ |
| | | loss = train_network(net, train); |
| | | } else { |
| | | loss = train_networks(nets, ngpus, train, 4); |
| | | } |
| | | #else |
| | | loss = train_network(net, train); |
| | | #endif |
| | | if(avg_loss == -1) avg_loss = loss; |
| | | avg_loss = avg_loss*.9 + loss*.1; |
| | | printf("%d, %.3f: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen); |
| | |
| | | free_ptrs((void**)paths, plist->size); |
| | | free_list(plist); |
| | | free(base); |
| | | #endif |
| | | } |
| | | |
| | | |
| | | void train_classifier(char *datacfg, char *cfgfile, char *weightfile, int clear) |
| | | { |
| | | srand(time(0)); |
| | | float avg_loss = -1; |
| | | char *base = basecfg(cfgfile); |
| | | printf("%s\n", base); |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | if(clear) *net.seen = 0; |
| | | /* |
| | | void train_classifier(char *datacfg, char *cfgfile, char *weightfile, int clear) |
| | | { |
| | | srand(time(0)); |
| | | float avg_loss = -1; |
| | | char *base = basecfg(cfgfile); |
| | | printf("%s\n", base); |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | if(clear) *net.seen = 0; |
| | | |
| | | int imgs = net.batch * net.subdivisions; |
| | | int imgs = net.batch * net.subdivisions; |
| | | |
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | list *options = read_data_cfg(datacfg); |
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | list *options = read_data_cfg(datacfg); |
| | | |
| | | char *backup_directory = option_find_str(options, "backup", "/backup/"); |
| | | char *label_list = option_find_str(options, "labels", "data/labels.list"); |
| | | char *train_list = option_find_str(options, "train", "data/train.list"); |
| | | int classes = option_find_int(options, "classes", 2); |
| | | char *backup_directory = option_find_str(options, "backup", "/backup/"); |
| | | char *label_list = option_find_str(options, "labels", "data/labels.list"); |
| | | char *train_list = option_find_str(options, "train", "data/train.list"); |
| | | int classes = option_find_int(options, "classes", 2); |
| | | |
| | | char **labels = get_labels(label_list); |
| | | list *plist = get_paths(train_list); |
| | | char **paths = (char **)list_to_array(plist); |
| | | printf("%d\n", plist->size); |
| | | int N = plist->size; |
| | | clock_t time; |
| | | char **labels = get_labels(label_list); |
| | | list *plist = get_paths(train_list); |
| | | char **paths = (char **)list_to_array(plist); |
| | | printf("%d\n", plist->size); |
| | | int N = plist->size; |
| | | clock_t time; |
| | | |
| | | load_args args = {0}; |
| | | args.w = net.w; |
| | | args.h = net.h; |
| | | args.threads = 8; |
| | | load_args args = {0}; |
| | | args.w = net.w; |
| | | args.h = net.h; |
| | | args.threads = 8; |
| | | |
| | | args.min = net.min_crop; |
| | | args.max = net.max_crop; |
| | | args.angle = net.angle; |
| | | args.aspect = net.aspect; |
| | | args.exposure = net.exposure; |
| | | args.saturation = net.saturation; |
| | | args.hue = net.hue; |
| | | args.size = net.w; |
| | | args.hierarchy = net.hierarchy; |
| | | args.min = net.min_crop; |
| | | args.max = net.max_crop; |
| | | args.angle = net.angle; |
| | | args.aspect = net.aspect; |
| | | args.exposure = net.exposure; |
| | | args.saturation = net.saturation; |
| | | args.hue = net.hue; |
| | | args.size = net.w; |
| | | args.hierarchy = net.hierarchy; |
| | | |
| | | args.paths = paths; |
| | | args.classes = classes; |
| | | args.n = imgs; |
| | | args.m = N; |
| | | args.labels = labels; |
| | | args.type = CLASSIFICATION_DATA; |
| | | args.paths = paths; |
| | | args.classes = classes; |
| | | args.n = imgs; |
| | | args.m = N; |
| | | args.labels = labels; |
| | | args.type = CLASSIFICATION_DATA; |
| | | |
| | | data train; |
| | | data buffer; |
| | | pthread_t load_thread; |
| | | args.d = &buffer; |
| | | load_thread = load_data(args); |
| | | data train; |
| | | data buffer; |
| | | pthread_t load_thread; |
| | | args.d = &buffer; |
| | | load_thread = load_data(args); |
| | | |
| | | int epoch = (*net.seen)/N; |
| | | while(get_current_batch(net) < net.max_batches || net.max_batches == 0){ |
| | | time=clock(); |
| | | int epoch = (*net.seen)/N; |
| | | while(get_current_batch(net) < net.max_batches || net.max_batches == 0){ |
| | | time=clock(); |
| | | |
| | | pthread_join(load_thread, 0); |
| | | train = buffer; |
| | | load_thread = load_data(args); |
| | | pthread_join(load_thread, 0); |
| | | train = buffer; |
| | | load_thread = load_data(args); |
| | | |
| | | printf("Loaded: %lf seconds\n", sec(clock()-time)); |
| | | time=clock(); |
| | | printf("Loaded: %lf seconds\n", sec(clock()-time)); |
| | | time=clock(); |
| | | |
| | | #ifdef OPENCV |
| | | if(0){ |
| | | int u; |
| | | for(u = 0; u < imgs; ++u){ |
| | | image im = float_to_image(net.w, net.h, 3, train.X.vals[u]); |
| | | show_image(im, "loaded"); |
| | | cvWaitKey(0); |
| | | } |
| | | } |
| | | if(0){ |
| | | int u; |
| | | for(u = 0; u < imgs; ++u){ |
| | | image im = float_to_image(net.w, net.h, 3, train.X.vals[u]); |
| | | show_image(im, "loaded"); |
| | | cvWaitKey(0); |
| | | } |
| | | } |
| | | #endif |
| | | |
| | | float loss = train_network(net, train); |
| | | free_data(train); |
| | | float loss = train_network(net, train); |
| | | free_data(train); |
| | | |
| | | if(avg_loss == -1) avg_loss = loss; |
| | | avg_loss = avg_loss*.9 + loss*.1; |
| | | printf("%d, %.3f: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen); |
| | | if(*net.seen/N > epoch){ |
| | | epoch = *net.seen/N; |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch); |
| | | save_weights(net, buff); |
| | | } |
| | | if(get_current_batch(net)%100 == 0){ |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s.backup",backup_directory,base); |
| | | save_weights(net, buff); |
| | | } |
| | | } |
| | | if(avg_loss == -1) avg_loss = loss; |
| | | avg_loss = avg_loss*.9 + loss*.1; |
| | | printf("%d, %.3f: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen); |
| | | if(*net.seen/N > epoch){ |
| | | epoch = *net.seen/N; |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s.weights", backup_directory, base); |
| | | sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch); |
| | | save_weights(net, buff); |
| | | |
| | | free_network(net); |
| | | free_ptrs((void**)labels, classes); |
| | | free_ptrs((void**)paths, plist->size); |
| | | free_list(plist); |
| | | free(base); |
| | | } |
| | | if(get_current_batch(net)%100 == 0){ |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s.backup",backup_directory,base); |
| | | save_weights(net, buff); |
| | | } |
| | | } |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s.weights", backup_directory, base); |
| | | save_weights(net, buff); |
| | | |
| | | free_network(net); |
| | | free_ptrs((void**)labels, classes); |
| | | free_ptrs((void**)paths, plist->size); |
| | | free_list(plist); |
| | | free(base); |
| | | } |
| | | */ |
| | | |
| | | void validate_classifier_crop(char *datacfg, char *filename, char *weightfile) |
| | | { |
| | |
| | | |
| | | char *gpu_list = find_char_arg(argc, argv, "-gpus", 0); |
| | | int *gpus = 0; |
| | | int gpu = 0; |
| | | int ngpus = 0; |
| | | if(gpu_list){ |
| | | printf("%s\n", gpu_list); |
| | |
| | | gpus[i] = atoi(gpu_list); |
| | | gpu_list = strchr(gpu_list, ',')+1; |
| | | } |
| | | } else { |
| | | gpu = gpu_index; |
| | | gpus = &gpu; |
| | | ngpus = 1; |
| | | } |
| | | |
| | | int cam_index = find_int_arg(argc, argv, "-c", 0); |
| | |
| | | int layer = layer_s ? atoi(layer_s) : -1; |
| | | if(0==strcmp(argv[2], "predict")) predict_classifier(data, cfg, weights, filename, top); |
| | | else if(0==strcmp(argv[2], "try")) try_classifier(data, cfg, weights, filename, atoi(layer_s)); |
| | | else if(0==strcmp(argv[2], "train")) train_classifier(data, cfg, weights, clear); |
| | | else if(0==strcmp(argv[2], "trainm")) train_classifier_multi(data, cfg, weights, gpus, ngpus, clear); |
| | | else if(0==strcmp(argv[2], "train")) train_classifier(data, cfg, weights, gpus, ngpus, clear); |
| | | else if(0==strcmp(argv[2], "demo")) demo_classifier(data, cfg, weights, cam_index, filename); |
| | | else if(0==strcmp(argv[2], "gun")) gun_classifier(data, cfg, weights, cam_index, filename); |
| | | else if(0==strcmp(argv[2], "threat")) threat_classifier(data, cfg, weights, cam_index, filename); |
| | |
| | | extern void run_art(int argc, char **argv); |
| | | extern void run_super(int argc, char **argv); |
| | | |
| | | void change_rate(char *filename, float scale, float add) |
| | | { |
| | | // Ready for some weird shit?? |
| | | FILE *fp = fopen(filename, "r+b"); |
| | | if(!fp) file_error(filename); |
| | | float rate = 0; |
| | | fread(&rate, sizeof(float), 1, fp); |
| | | printf("Scaling learning rate from %f to %f\n", rate, rate*scale+add); |
| | | rate = rate*scale + add; |
| | | fseek(fp, 0, SEEK_SET); |
| | | fwrite(&rate, sizeof(float), 1, fp); |
| | | fclose(fp); |
| | | } |
| | | |
| | | void average(int argc, char *argv[]) |
| | | { |
| | | char *cfgfile = argv[2]; |
| | |
| | | int num = l.n*l.c*l.size*l.size; |
| | | axpy_cpu(l.n, 1, l.biases, 1, out.biases, 1); |
| | | axpy_cpu(num, 1, l.weights, 1, out.weights, 1); |
| | | if(l.batch_normalize){ |
| | | axpy_cpu(l.n, 1, l.scales, 1, out.scales, 1); |
| | | axpy_cpu(l.n, 1, l.rolling_mean, 1, out.rolling_mean, 1); |
| | | axpy_cpu(l.n, 1, l.rolling_variance, 1, out.rolling_variance, 1); |
| | | } |
| | | } |
| | | if(l.type == CONNECTED){ |
| | | axpy_cpu(l.outputs, 1, l.biases, 1, out.biases, 1); |
| | |
| | | int num = l.n*l.c*l.size*l.size; |
| | | scal_cpu(l.n, 1./n, l.biases, 1); |
| | | scal_cpu(num, 1./n, l.weights, 1); |
| | | if(l.batch_normalize){ |
| | | scal_cpu(l.n, 1./n, l.scales, 1); |
| | | scal_cpu(l.n, 1./n, l.rolling_mean, 1); |
| | | scal_cpu(l.n, 1./n, l.rolling_variance, 1); |
| | | } |
| | | } |
| | | if(l.type == CONNECTED){ |
| | | scal_cpu(l.outputs, 1./n, l.biases, 1); |
| | |
| | | printf("Floating Point Operations: %.2f Bn\n", (float)ops/1000000000.); |
| | | } |
| | | |
| | | void oneoff(char *cfgfile, char *weightfile, char *outfile) |
| | | { |
| | | gpu_index = -1; |
| | | network net = parse_network_cfg(cfgfile); |
| | | int oldn = net.layers[net.n - 2].n; |
| | | int c = net.layers[net.n - 2].c; |
| | | net.layers[net.n - 2].n = 7879; |
| | | net.layers[net.n - 2].biases += 5; |
| | | net.layers[net.n - 2].weights += 5*c; |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | net.layers[net.n - 2].biases -= 5; |
| | | net.layers[net.n - 2].weights -= 5*c; |
| | | net.layers[net.n - 2].n = oldn; |
| | | printf("%d\n", oldn); |
| | | layer l = net.layers[net.n - 2]; |
| | | copy_cpu(l.n/3, l.biases, 1, l.biases + l.n/3, 1); |
| | | copy_cpu(l.n/3, l.biases, 1, l.biases + 2*l.n/3, 1); |
| | | copy_cpu(l.n/3*l.c, l.weights, 1, l.weights + l.n/3*l.c, 1); |
| | | copy_cpu(l.n/3*l.c, l.weights, 1, l.weights + 2*l.n/3*l.c, 1); |
| | | *net.seen = 0; |
| | | save_weights(net, outfile); |
| | | } |
| | | |
| | | void partial(char *cfgfile, char *weightfile, char *outfile, int max) |
| | | { |
| | | gpu_index = -1; |
| | |
| | | run_captcha(argc, argv); |
| | | } else if (0 == strcmp(argv[1], "nightmare")){ |
| | | run_nightmare(argc, argv); |
| | | } else if (0 == strcmp(argv[1], "change")){ |
| | | change_rate(argv[2], atof(argv[3]), (argc > 4) ? atof(argv[4]) : 0); |
| | | } else if (0 == strcmp(argv[1], "rgbgr")){ |
| | | rgbgr_net(argv[2], argv[3], argv[4]); |
| | | } else if (0 == strcmp(argv[1], "reset")){ |
| | |
| | | } else if (0 == strcmp(argv[1], "ops")){ |
| | | operations(argv[2]); |
| | | } else if (0 == strcmp(argv[1], "speed")){ |
| | | speed(argv[2], (argc > 3) ? atoi(argv[3]) : 0); |
| | | speed(argv[2], (argc > 3 && argv[3]) ? atoi(argv[3]) : 0); |
| | | } else if (0 == strcmp(argv[1], "oneoff")){ |
| | | oneoff(argv[2], argv[3], argv[4]); |
| | | } else if (0 == strcmp(argv[1], "partial")){ |
| | | partial(argv[2], argv[3], argv[4], atoi(argv[5])); |
| | | } else if (0 == strcmp(argv[1], "average")){ |
| | |
| | | #ifdef OPENCV |
| | | #include "opencv2/highgui/highgui_c.h" |
| | | #endif |
| | | static int coco_ids[] = {1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,27,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,70,72,73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90}; |
| | | |
| | | void train_detector(char *datacfg, char *cfgfile, char *weightfile, int clear) |
| | | void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear) |
| | | { |
| | | list *options = read_data_cfg(datacfg); |
| | | char *train_images = option_find_str(options, "train", "data/train.list"); |
| | |
| | | char *base = basecfg(cfgfile); |
| | | printf("%s\n", base); |
| | | float avg_loss = -1; |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | network *nets = calloc(ngpus, sizeof(network)); |
| | | |
| | | srand(time(0)); |
| | | int seed = rand(); |
| | | int i; |
| | | for(i = 0; i < ngpus; ++i){ |
| | | srand(seed); |
| | | #ifdef GPU |
| | | cuda_set_device(gpus[i]); |
| | | #endif |
| | | nets[i] = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&nets[i], weightfile); |
| | | } |
| | | if(clear) *nets[i].seen = 0; |
| | | nets[i].learning_rate *= ngpus; |
| | | } |
| | | if(clear) *net.seen = 0; |
| | | srand(time(0)); |
| | | network net = nets[0]; |
| | | |
| | | int imgs = net.batch * net.subdivisions * ngpus; |
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | int imgs = net.batch*net.subdivisions; |
| | | int i = *net.seen/imgs; |
| | | data train, buffer; |
| | | |
| | | layer l = net.layers[net.n - 1]; |
| | |
| | | clock_t time; |
| | | //while(i*imgs < N*120){ |
| | | while(get_current_batch(net) < net.max_batches){ |
| | | i += 1; |
| | | time=clock(); |
| | | pthread_join(load_thread, 0); |
| | | train = buffer; |
| | | load_thread = load_data(args); |
| | | |
| | | /* |
| | | int k; |
| | | for(k = 0; k < l.max_boxes; ++k){ |
| | | box b = float_to_box(train.y.vals[10] + 1 + k*5); |
| | | if(!b.x) break; |
| | | printf("loaded: %f %f %f %f\n", b.x, b.y, b.w, b.h); |
| | | } |
| | | image im = float_to_image(448, 448, 3, train.X.vals[10]); |
| | | int k; |
| | | for(k = 0; k < l.max_boxes; ++k){ |
| | | box b = float_to_box(train.y.vals[10] + 1 + k*5); |
| | | printf("%d %d %d %d\n", truth.x, truth.y, truth.w, truth.h); |
| | | draw_bbox(im, b, 8, 1,0,0); |
| | | } |
| | | save_image(im, "truth11"); |
| | | */ |
| | | /* |
| | | int k; |
| | | for(k = 0; k < l.max_boxes; ++k){ |
| | | box b = float_to_box(train.y.vals[10] + 1 + k*5); |
| | | if(!b.x) break; |
| | | printf("loaded: %f %f %f %f\n", b.x, b.y, b.w, b.h); |
| | | } |
| | | image im = float_to_image(448, 448, 3, train.X.vals[10]); |
| | | int k; |
| | | for(k = 0; k < l.max_boxes; ++k){ |
| | | box b = float_to_box(train.y.vals[10] + 1 + k*5); |
| | | printf("%d %d %d %d\n", truth.x, truth.y, truth.w, truth.h); |
| | | draw_bbox(im, b, 8, 1,0,0); |
| | | } |
| | | save_image(im, "truth11"); |
| | | */ |
| | | |
| | | printf("Loaded: %lf seconds\n", sec(clock()-time)); |
| | | |
| | | time=clock(); |
| | | float loss = train_network(net, train); |
| | | float loss = 0; |
| | | #ifdef GPU |
| | | if(ngpus == 1){ |
| | | loss = train_network(net, train); |
| | | } else { |
| | | loss = train_networks(nets, ngpus, train, 4); |
| | | } |
| | | #else |
| | | loss = train_network(net, train); |
| | | #endif |
| | | if (avg_loss < 0) avg_loss = loss; |
| | | avg_loss = avg_loss*.9 + loss*.1; |
| | | |
| | | printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs); |
| | | i = get_current_batch(net); |
| | | printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs); |
| | | if(i%1000==0 || (i < 1000 && i%100 == 0)){ |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i); |
| | |
| | | save_weights(net, buff); |
| | | } |
| | | |
| | | |
| | | static int get_coco_image_id(char *filename) |
| | | { |
| | | char *p = strrchr(filename, '_'); |
| | | return atoi(p+1); |
| | | } |
| | | |
| | | static void print_cocos(FILE *fp, char *image_path, box *boxes, float **probs, int num_boxes, int classes, int w, int h) |
| | | { |
| | | int i, j; |
| | | int image_id = get_coco_image_id(image_path); |
| | | for(i = 0; i < num_boxes; ++i){ |
| | | float xmin = boxes[i].x - boxes[i].w/2.; |
| | | float xmax = boxes[i].x + boxes[i].w/2.; |
| | | float ymin = boxes[i].y - boxes[i].h/2.; |
| | | float ymax = boxes[i].y + boxes[i].h/2.; |
| | | |
| | | if (xmin < 0) xmin = 0; |
| | | if (ymin < 0) ymin = 0; |
| | | if (xmax > w) xmax = w; |
| | | if (ymax > h) ymax = h; |
| | | |
| | | float bx = xmin; |
| | | float by = ymin; |
| | | float bw = xmax - xmin; |
| | | float bh = ymax - ymin; |
| | | |
| | | for(j = 0; j < classes; ++j){ |
| | | if (probs[i][j]) fprintf(fp, "{\"image_id\":%d, \"category_id\":%d, \"bbox\":[%f, %f, %f, %f], \"score\":%f},\n", image_id, coco_ids[j], bx, by, bw, bh, probs[i][j]); |
| | | } |
| | | } |
| | | } |
| | | |
| | | void print_detector_detections(FILE **fps, char *id, box *boxes, float **probs, int total, int classes, int w, int h) |
| | | { |
| | | int i, j; |
| | |
| | | list *options = read_data_cfg(datacfg); |
| | | char *valid_images = option_find_str(options, "valid", "data/train.list"); |
| | | char *name_list = option_find_str(options, "names", "data/names.list"); |
| | | char *prefix = option_find_str(options, "results", "results"); |
| | | char **names = get_labels(name_list); |
| | | |
| | | |
| | | char buff[1024]; |
| | | int coco = option_find_int_quiet(options, "coco", 0); |
| | | FILE *coco_fp = 0; |
| | | if(coco){ |
| | | snprintf(buff, 1024, "%s/coco_results.json", prefix); |
| | | coco_fp = fopen(buff, "w"); |
| | | fprintf(coco_fp, "[\n"); |
| | | } |
| | | |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | |
| | | fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | srand(time(0)); |
| | | |
| | | char *base = "results/comp4_det_test_"; |
| | | char *base = "comp4_det_test_"; |
| | | list *plist = get_paths(valid_images); |
| | | char **paths = (char **)list_to_array(plist); |
| | | |
| | |
| | | int j; |
| | | FILE **fps = calloc(classes, sizeof(FILE *)); |
| | | for(j = 0; j < classes; ++j){ |
| | | char buff[1024]; |
| | | snprintf(buff, 1024, "%s%s.txt", base, names[j]); |
| | | snprintf(buff, 1024, "%s/%s%s.txt", prefix, base, names[j]); |
| | | fps[j] = fopen(buff, "w"); |
| | | } |
| | | box *boxes = calloc(l.w*l.h*l.n, sizeof(box)); |
| | |
| | | int h = val[t].h; |
| | | get_region_boxes(l, w, h, thresh, probs, boxes, 0); |
| | | if (nms) do_nms_sort(boxes, probs, l.w*l.h*l.n, classes, nms); |
| | | print_detector_detections(fps, id, boxes, probs, l.w*l.h*l.n, classes, w, h); |
| | | if(coco_fp){ |
| | | print_cocos(coco_fp, path, boxes, probs, l.w*l.h*l.n, classes, w, h); |
| | | }else{ |
| | | print_detector_detections(fps, id, boxes, probs, l.w*l.h*l.n, classes, w, h); |
| | | } |
| | | free(id); |
| | | free_image(val[t]); |
| | | free_image(val_resized[t]); |
| | |
| | | for(j = 0; j < classes; ++j){ |
| | | fclose(fps[j]); |
| | | } |
| | | if(coco_fp){ |
| | | fseek(coco_fp, -2, SEEK_CUR); |
| | | fprintf(coco_fp, "\n]\n"); |
| | | fclose(coco_fp); |
| | | } |
| | | fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start)); |
| | | } |
| | | |
| | |
| | | void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh) |
| | | { |
| | | list *options = read_data_cfg(datacfg); |
| | | char *name_list = option_find_str(options, "names", "data/names.list"); |
| | | char **names = get_labels(name_list); |
| | | char *name_list = option_find_str(options, "names", "data/names.list"); |
| | | char **names = get_labels(name_list); |
| | | |
| | | image **alphabet = load_alphabet(); |
| | | network net = parse_network_cfg(cfgfile); |
| | |
| | | fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); |
| | | return; |
| | | } |
| | | char *gpu_list = find_char_arg(argc, argv, "-gpus", 0); |
| | | int *gpus = 0; |
| | | int gpu = 0; |
| | | int ngpus = 0; |
| | | if(gpu_list){ |
| | | printf("%s\n", gpu_list); |
| | | int len = strlen(gpu_list); |
| | | ngpus = 1; |
| | | int i; |
| | | for(i = 0; i < len; ++i){ |
| | | if (gpu_list[i] == ',') ++ngpus; |
| | | } |
| | | gpus = calloc(ngpus, sizeof(int)); |
| | | for(i = 0; i < ngpus; ++i){ |
| | | gpus[i] = atoi(gpu_list); |
| | | gpu_list = strchr(gpu_list, ',')+1; |
| | | } |
| | | } else { |
| | | gpu = gpu_index; |
| | | gpus = &gpu; |
| | | ngpus = 1; |
| | | } |
| | | |
| | | int clear = find_arg(argc, argv, "-clear"); |
| | | |
| | | char *datacfg = argv[3]; |
| | |
| | | char *weights = (argc > 5) ? argv[5] : 0; |
| | | char *filename = (argc > 6) ? argv[6]: 0; |
| | | if(0==strcmp(argv[2], "test")) test_detector(datacfg, cfg, weights, filename, thresh); |
| | | else if(0==strcmp(argv[2], "train")) train_detector(datacfg, cfg, weights, clear); |
| | | else if(0==strcmp(argv[2], "train")) train_detector(datacfg, cfg, weights, gpus, ngpus, clear); |
| | | else if(0==strcmp(argv[2], "valid")) validate_detector(datacfg, cfg, weights); |
| | | else if(0==strcmp(argv[2], "recall")) validate_detector_recall(cfg, weights); |
| | | else if(0==strcmp(argv[2], "demo")) { |
| | |
| | | return l; |
| | | } |
| | | |
| | | #define LOG 1 |
| | | |
| | | #define DOABS 1 |
| | | box get_region_box(float *x, float *biases, int n, int index, int i, int j, int w, int h) |
| | | { |
| | | box b; |
| | | b.x = (i + .5)/w + x[index + 0] * biases[2*n]; |
| | | b.y = (j + .5)/h + x[index + 1] * biases[2*n + 1]; |
| | | if(LOG){ |
| | | b.x = (i + logistic_activate(x[index + 0])) / w; |
| | | b.y = (j + logistic_activate(x[index + 1])) / h; |
| | | } |
| | | b.x = (i + logistic_activate(x[index + 0])) / w; |
| | | b.y = (j + logistic_activate(x[index + 1])) / h; |
| | | b.w = exp(x[index + 2]) * biases[2*n]; |
| | | b.h = exp(x[index + 3]) * biases[2*n+1]; |
| | | if(DOABS){ |
| | | b.w = exp(x[index + 2]) * biases[2*n] / w; |
| | | b.h = exp(x[index + 3]) * biases[2*n+1] / h; |
| | | } |
| | | return b; |
| | | } |
| | | |
| | |
| | | box pred = get_region_box(x, biases, n, index, i, j, w, h); |
| | | float iou = box_iou(pred, truth); |
| | | |
| | | float tx = (truth.x - (i + .5)/w) / biases[2*n]; |
| | | float ty = (truth.y - (j + .5)/h) / biases[2*n + 1]; |
| | | if(LOG){ |
| | | tx = (truth.x*w - i); |
| | | ty = (truth.y*h - j); |
| | | } |
| | | float tx = (truth.x*w - i); |
| | | float ty = (truth.y*h - j); |
| | | float tw = log(truth.w / biases[2*n]); |
| | | float th = log(truth.h / biases[2*n + 1]); |
| | | |
| | | delta[index + 0] = scale * (tx - x[index + 0]); |
| | | delta[index + 1] = scale * (ty - x[index + 1]); |
| | | if(LOG){ |
| | | delta[index + 0] = scale * (tx - logistic_activate(x[index + 0])) * logistic_gradient(logistic_activate(x[index + 0])); |
| | | delta[index + 1] = scale * (ty - logistic_activate(x[index + 1])) * logistic_gradient(logistic_activate(x[index + 1])); |
| | | if(DOABS){ |
| | | tw = log(truth.w*w / biases[2*n]); |
| | | th = log(truth.h*h / biases[2*n + 1]); |
| | | } |
| | | |
| | | delta[index + 0] = scale * (tx - logistic_activate(x[index + 0])) * logistic_gradient(logistic_activate(x[index + 0])); |
| | | delta[index + 1] = scale * (ty - logistic_activate(x[index + 1])) * logistic_gradient(logistic_activate(x[index + 1])); |
| | | delta[index + 2] = scale * (tw - x[index + 2]); |
| | | delta[index + 3] = scale * (th - x[index + 3]); |
| | | return iou; |
| | |
| | | for(i = 0; i < l.h*l.w*l.n; ++i){ |
| | | int index = size*i + b*l.outputs; |
| | | l.output[index + 4] = logistic_activate(l.output[index + 4]); |
| | | if(l.softmax_tree){ |
| | | } |
| | | } |
| | | |
| | | |
| | | if (l.softmax_tree){ |
| | | #ifdef GPU |
| | | cuda_push_array(l.output_gpu, l.output, l.batch*l.outputs); |
| | | int i; |
| | | int count = 5; |
| | | for (i = 0; i < l.softmax_tree->groups; ++i) { |
| | | int group_size = l.softmax_tree->group_size[i]; |
| | | softmax_gpu(l.output_gpu+count, group_size, l.classes + 5, l.w*l.h*l.n*l.batch, 1, l.output_gpu + count); |
| | | count += group_size; |
| | | } |
| | | cuda_pull_array(l.output_gpu, l.output, l.batch*l.outputs); |
| | | #else |
| | | for (b = 0; b < l.batch; ++b){ |
| | | for(i = 0; i < l.h*l.w*l.n; ++i){ |
| | | int index = size*i + b*l.outputs; |
| | | softmax_tree(l.output + index + 5, 1, 0, 1, l.softmax_tree, l.output + index + 5); |
| | | } else if(l.softmax){ |
| | | } |
| | | } |
| | | #endif |
| | | } else if (l.softmax){ |
| | | for (b = 0; b < l.batch; ++b){ |
| | | for(i = 0; i < l.h*l.w*l.n; ++i){ |
| | | int index = size*i + b*l.outputs; |
| | | softmax(l.output + index + 5, l.classes, 1, l.output + index + 5); |
| | | } |
| | | } |
| | |
| | | truth.y = (j + .5)/l.h; |
| | | truth.w = l.biases[2*n]; |
| | | truth.h = l.biases[2*n+1]; |
| | | if(DOABS){ |
| | | truth.w = l.biases[2*n]/l.w; |
| | | truth.h = l.biases[2*n+1]/l.h; |
| | | } |
| | | delta_region_box(truth, l.output, l.biases, n, index, i, j, l.w, l.h, l.delta, .01); |
| | | //l.delta[index + 0] = .1 * (0 - l.output[index + 0]); |
| | | //l.delta[index + 1] = .1 * (0 - l.output[index + 1]); |
| | | //l.delta[index + 2] = .1 * (0 - l.output[index + 2]); |
| | | //l.delta[index + 3] = .1 * (0 - l.output[index + 3]); |
| | | } |
| | | } |
| | | } |
| | |
| | | if(l.bias_match){ |
| | | pred.w = l.biases[2*n]; |
| | | pred.h = l.biases[2*n+1]; |
| | | if(DOABS){ |
| | | pred.w = l.biases[2*n]/l.w; |
| | | pred.h = l.biases[2*n+1]/l.h; |
| | | } |
| | | } |
| | | //printf("pred: (%f, %f) %f x %f\n", pred.x, pred.y, pred.w, pred.h); |
| | | pred.x = 0; |