| | |
| | | endif |
| | | UNAME = $(shell uname) |
| | | OPTS=-Ofast -flto |
| | | OPTS=-Ofast -flto |
| | | ifeq ($(UNAME), Darwin) |
| | | COMMON+= -isystem /usr/local/Cellar/opencv/2.4.6.1/include/opencv -isystem /usr/local/Cellar/opencv/2.4.6.1/include |
| | | ifeq ($(GPU), 1) |
| | |
| | | free_data(train); |
| | | } |
| | | |
| | | void train_full() |
| | | void train_assira() |
| | | { |
| | | network net = parse_network_cfg("cfg/imagenet.cfg"); |
| | | network net = parse_network_cfg("cfg/assira.cfg"); |
| | | srand(2222222); |
| | | int i = 0; |
| | | char *labels[] = {"cat","dog"}; |
| | | float lr = .00001; |
| | | float momentum = .9; |
| | | float decay = 0.01; |
| | | while(1){ |
| | | i += 1000; |
| | | data train = load_data_image_pathfile_random("images/assira/train.list", 1000, labels, 2, 256, 256); |
| | | //image im = float_to_image(256, 256, 3,train.X.vals[0]); |
| | | //visualize_network(net); |
| | | //cvWaitKey(100); |
| | | //show_image(im, "input"); |
| | | //cvWaitKey(100); |
| | | //scale_data_rows(train, 1./255.); |
| | | data train = load_data_image_pathfile_random("data/assira/train.list", 1000, labels, 2, 256, 256); |
| | | normalize_data_rows(train); |
| | | clock_t start = clock(), end; |
| | | float loss = train_network_sgd(net, train, 1000); |
| | | float loss = train_network_sgd_gpu(net, train, 10); |
| | | end = clock(); |
| | | printf("%d: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", i, loss, (float)(end-start)/CLOCKS_PER_SEC, lr, momentum, decay); |
| | | printf("%d: %f, Time: %lf seconds\n", i, loss, (float)(end-start)/CLOCKS_PER_SEC ); |
| | | free_data(train); |
| | | if(i%10000==0){ |
| | | char buff[256]; |
| | |
| | | data train = load_all_cifar10(); |
| | | while(++count <= 10000){ |
| | | clock_t start = clock(), end; |
| | | float loss = train_network_sgd(net, train, iters); |
| | | float loss = train_network_sgd_gpu(net, train, iters); |
| | | end = clock(); |
| | | visualize_network(net); |
| | | cvWaitKey(5000); |
| | | //visualize_network(net); |
| | | //cvWaitKey(5000); |
| | | |
| | | //float test_acc = network_accuracy(net, test); |
| | | //printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay); |
| | |
| | | |
| | | int main(int argc, char *argv[]) |
| | | { |
| | | //train_full(); |
| | | //train_assira(); |
| | | //test_distribution(); |
| | | //feenableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW); |
| | | |
| | |
| | | } |
| | | |
| | | #ifdef GPU |
| | | layer->weights_cl = cl_make_array(layer->weights, inputs*outputs); |
| | | layer->biases_cl = cl_make_array(layer->biases, outputs); |
| | | |
| | | layer->weight_updates_cl = cl_make_array(layer->weight_updates, inputs*outputs); |
| | | layer->bias_updates_cl = cl_make_array(layer->bias_updates, outputs); |
| | | |
| | | layer->output_cl = cl_make_array(layer->output, outputs*batch); |
| | | layer->delta_cl = cl_make_array(layer->delta, outputs*batch); |
| | | #endif |
| | | layer->activation = activation; |
| | | return layer; |
| | |
| | | { |
| | | int i; |
| | | gradient_array(layer.output, layer.outputs*layer.batch, layer.activation, layer.delta); |
| | | for(i = 0; i < layer.outputs*layer.batch; ++i){ |
| | | layer.bias_updates[i%layer.outputs] += layer.delta[i]; |
| | | for(i = 0; i < layer.batch; ++i){ |
| | | axpy_cpu(layer.outputs, 1, layer.delta + i*layer.outputs, 1, layer.bias_updates, 1); |
| | | } |
| | | int m = layer.inputs; |
| | | int k = layer.batch; |
| | |
| | | if(c) gemm(0,1,m,n,k,1,a,k,b,k,0,c,n); |
| | | } |
| | | |
| | | #ifdef GPU |
| | | |
| | | void update_connected_layer_gpu(connected_layer layer) |
| | | { |
| | | axpy_ongpu(layer.outputs, layer.learning_rate, layer.bias_updates_cl, 1, layer.biases_cl, 1); |
| | | scal_ongpu(layer.outputs, layer.momentum, layer.bias_updates_cl, 1); |
| | | |
| | | scal_ongpu(layer.inputs*layer.outputs, 1.-layer.learning_rate*layer.decay, layer.weights_cl, 1); |
| | | axpy_ongpu(layer.inputs*layer.outputs, layer.learning_rate, layer.weight_updates_cl, 1, layer.weights_cl, 1); |
| | | scal_ongpu(layer.inputs*layer.outputs, layer.momentum, layer.weight_updates_cl, 1); |
| | | } |
| | | |
| | | void forward_connected_layer_gpu(connected_layer layer, cl_mem input) |
| | | { |
| | | int i; |
| | | for(i = 0; i < layer.batch; ++i){ |
| | | cl_mem sub = cl_sub_array(layer.output_cl, i*layer.outputs, layer.outputs); |
| | | copy_ongpu(layer.outputs, layer.biases_cl, 1, sub, 1); |
| | | clReleaseMemObject(sub); |
| | | } |
| | | int m = layer.batch; |
| | | int k = layer.inputs; |
| | | int n = layer.outputs; |
| | | cl_mem a = input; |
| | | cl_mem b = layer.weights_cl; |
| | | cl_mem c = layer.output_cl; |
| | | gemm_ongpu(0,0,m,n,k,1,a,k,b,n,1,c,n); |
| | | activate_array_ongpu(layer.output_cl, layer.outputs*layer.batch, layer.activation); |
| | | } |
| | | |
| | | void backward_connected_layer_gpu(connected_layer layer, cl_mem input, cl_mem delta) |
| | | { |
| | | int i; |
| | | gradient_array_ongpu(layer.output_cl, layer.outputs*layer.batch, layer.activation, layer.delta_cl); |
| | | for(i = 0; i < layer.batch; ++i){ |
| | | cl_mem sub = cl_sub_array(layer.delta_cl, i*layer.outputs, layer.outputs); |
| | | axpy_ongpu(layer.outputs, 1, sub, 1, layer.bias_updates_cl, 1); |
| | | clReleaseMemObject(sub); |
| | | } |
| | | int m = layer.inputs; |
| | | int k = layer.batch; |
| | | int n = layer.outputs; |
| | | cl_mem a = input; |
| | | cl_mem b = layer.delta_cl; |
| | | cl_mem c = layer.weight_updates_cl; |
| | | gemm_ongpu(1,0,m,n,k,1,a,m,b,n,1,c,n); |
| | | |
| | | m = layer.batch; |
| | | k = layer.outputs; |
| | | n = layer.inputs; |
| | | |
| | | a = layer.delta_cl; |
| | | b = layer.weights_cl; |
| | | c = delta; |
| | | |
| | | if(c) gemm_ongpu(0,1,m,n,k,1,a,k,b,k,0,c,n); |
| | | } |
| | | #endif |
| | |
| | | cl_mem weight_updates_cl; |
| | | cl_mem bias_updates_cl; |
| | | |
| | | cl_mem weight_momentum_cl; |
| | | cl_mem bias_momentum_cl; |
| | | |
| | | cl_mem output_cl; |
| | | cl_mem delta_cl; |
| | | #endif |
| | |
| | | void backward_connected_layer(connected_layer layer, float *input, float *delta); |
| | | void update_connected_layer(connected_layer layer); |
| | | |
| | | #ifdef GPU |
| | | void forward_connected_layer_gpu(connected_layer layer, cl_mem input); |
| | | void backward_connected_layer_gpu(connected_layer layer, cl_mem input, cl_mem delta); |
| | | void update_connected_layer_gpu(connected_layer layer); |
| | | #endif |
| | | |
| | | #endif |
| | | |
| | |
| | | layer->c = c; |
| | | layer->size = size; |
| | | layer->stride = stride; |
| | | layer->max_indexes = calloc(((h-1)/stride+1) * ((w-1)/stride+1) * c*batch, sizeof(int)); |
| | | layer->indexes = calloc(((h-1)/stride+1) * ((w-1)/stride+1) * c*batch, sizeof(int)); |
| | | layer->output = calloc(((h-1)/stride+1) * ((w-1)/stride+1) * c*batch, sizeof(float)); |
| | | layer->delta = calloc(((h-1)/stride+1) * ((w-1)/stride+1) * c*batch, sizeof(float)); |
| | | return layer; |
| | |
| | | |
| | | void forward_maxpool_layer(const maxpool_layer layer, float *input) |
| | | { |
| | | int b; |
| | | for(b = 0; b < layer.batch; ++b){ |
| | | int b,i,j,k,l,m; |
| | | int w_offset = (-layer.size-1)/2 + 1; |
| | | int h_offset = (-layer.size-1)/2 + 1; |
| | | |
| | | int h = (layer.h-1)/layer.stride + 1; |
| | | int w = (layer.w-1)/layer.stride + 1; |
| | | int c = layer.c; |
| | | |
| | | int i,j,k,l,m; |
| | | for(k = 0; k < layer.c; ++k){ |
| | | for(i = 0; i < layer.h; i += layer.stride){ |
| | | for(j = 0; j < layer.w; j += layer.stride){ |
| | | int out_index = j/layer.stride + w*(i/layer.stride + h*(k + c*b)); |
| | | layer.output[out_index] = -FLT_MAX; |
| | | int lower = (-layer.size-1)/2 + 1; |
| | | int upper = layer.size/2 + 1; |
| | | |
| | | int lh = (i+lower < 0) ? 0 : i+lower; |
| | | int uh = (i+upper > layer.h) ? layer.h : i+upper; |
| | | |
| | | int lw = (j+lower < 0) ? 0 : j+lower; |
| | | int uw = (j+upper > layer.w) ? layer.w : j+upper; |
| | | for(l = lh; l < uh; ++l){ |
| | | for(m = lw; m < uw; ++m){ |
| | | //printf("%d %d\n", l, m); |
| | | int index = m + layer.w*(l + layer.h*(k + b*layer.c)); |
| | | if(input[index] > layer.output[out_index]){ |
| | | layer.output[out_index] = input[index]; |
| | | layer.max_indexes[out_index] = index; |
| | | for(b = 0; b < layer.batch; ++b){ |
| | | for(k = 0; k < c; ++k){ |
| | | for(i = 0; i < h; ++i){ |
| | | for(j = 0; j < w; ++j){ |
| | | int out_index = j + w*(i + h*(k + c*b)); |
| | | float max = -FLT_MAX; |
| | | int max_i = -1; |
| | | for(l = 0; l < layer.size; ++l){ |
| | | for(m = 0; m < layer.size; ++m){ |
| | | int cur_h = h_offset + i*layer.stride + l; |
| | | int cur_w = w_offset + j*layer.stride + m; |
| | | int index = cur_w + layer.w*(cur_h + layer.h*(k + b*layer.c)); |
| | | int valid = (cur_h >= 0 && cur_h < layer.h && |
| | | cur_w >= 0 && cur_w < layer.w); |
| | | float val = (valid != 0) ? input[index] : -INFINITY; |
| | | max_i = (val > max) ? index : max_i; |
| | | max = (val > max) ? val : max; |
| | | } |
| | | } |
| | | } |
| | | layer.output[out_index] = max; |
| | | layer.indexes[out_index] = max_i; |
| | | } |
| | | } |
| | | } |
| | |
| | | int c = layer.c; |
| | | memset(delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float)); |
| | | for(i = 0; i < h*w*c*layer.batch; ++i){ |
| | | int index = layer.max_indexes[i]; |
| | | int index = layer.indexes[i]; |
| | | delta[index] += layer.delta[i]; |
| | | } |
| | | } |
| | |
| | | int h,w,c; |
| | | int stride; |
| | | int size; |
| | | int *max_indexes; |
| | | int *indexes; |
| | | float *delta; |
| | | float *output; |
| | | } maxpool_layer; |
| | |
| | | net.outputs = 0; |
| | | net.output = 0; |
| | | #ifdef GPU |
| | | net.input_cl = 0; |
| | | net.input_cl = calloc(1, sizeof(cl_mem)); |
| | | net.truth_cl = calloc(1, sizeof(cl_mem)); |
| | | #endif |
| | | return net; |
| | | } |
| | |
| | | cost_layer layer = *(cost_layer *)net.layers[i]; |
| | | forward_cost_layer_gpu(layer, input, truth); |
| | | } |
| | | /* |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | forward_connected_layer(layer, input, train); |
| | | input = layer.output; |
| | | forward_connected_layer_gpu(layer, input); |
| | | input = layer.output_cl; |
| | | } |
| | | /* |
| | | else if(net.types[i] == SOFTMAX){ |
| | | softmax_layer layer = *(softmax_layer *)net.layers[i]; |
| | | forward_softmax_layer(layer, input); |
| | |
| | | cost_layer layer = *(cost_layer *)net.layers[i]; |
| | | backward_cost_layer_gpu(layer, prev_input, prev_delta); |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | backward_connected_layer_gpu(layer, prev_input, prev_delta); |
| | | } |
| | | } |
| | | } |
| | | |
| | |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | update_convolutional_layer_gpu(layer); |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | //maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | } |
| | | else if(net.types[i] == SOFTMAX){ |
| | | //maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | } |
| | | else if(net.types[i] == NORMALIZATION){ |
| | | //maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | update_connected_layer(layer); |
| | | update_connected_layer_gpu(layer); |
| | | } |
| | | } |
| | | } |
| | |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | return layer.output_cl; |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | return layer.output_cl; |
| | | } |
| | | return 0; |
| | | } |
| | | |
| | |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | return layer.delta_cl; |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | return layer.delta_cl; |
| | | } |
| | | return 0; |
| | | } |
| | | |
| | |
| | | } |
| | | } |
| | | |
| | | #ifdef GPU |
| | | float train_network_datum_gpu(network net, float *x, float *y) |
| | | { |
| | | int x_size = get_network_input_size(net)*net.batch; |
| | | int y_size = get_network_output_size(net)*net.batch; |
| | | if(!*net.input_cl){ |
| | | *net.input_cl = cl_make_array(x, x_size); |
| | | *net.truth_cl = cl_make_array(y, y_size); |
| | | }else{ |
| | | cl_write_array(*net.input_cl, x, x_size); |
| | | cl_write_array(*net.truth_cl, y, y_size); |
| | | } |
| | | forward_network_gpu(net, *net.input_cl, *net.truth_cl, 1); |
| | | //int class = get_predicted_class_network(net); |
| | | backward_network_gpu(net, *net.input_cl); |
| | | float error = get_network_cost(net); |
| | | update_network_gpu(net); |
| | | //return (y[class]?1:0); |
| | | return error; |
| | | } |
| | | float train_network_sgd_gpu(network net, data d, int n) |
| | | { |
| | | int batch = net.batch; |
| | | float *X = calloc(batch*d.X.cols, sizeof(float)); |
| | | float *y = calloc(batch*d.y.cols, sizeof(float)); |
| | | |
| | | int i; |
| | | float sum = 0; |
| | | for(i = 0; i < n; ++i){ |
| | | get_batch(d, batch, X, y); |
| | | float err = train_network_datum_gpu(net, X, y); |
| | | sum += err; |
| | | } |
| | | free(X); |
| | | free(y); |
| | | return (float)sum/(n*batch); |
| | | } |
| | | #endif |
| | | |
| | | |
| | | float train_network_datum(network net, float *x, float *y) |
| | | { |
| | | forward_network(net, x, y, 1); |
| | |
| | | float *output; |
| | | |
| | | #ifdef GPU |
| | | cl_mem input_cl; |
| | | cl_mem output_cl; |
| | | cl_mem *input_cl; |
| | | cl_mem *truth_cl; |
| | | #endif |
| | | } network; |
| | | |
| | |
| | | void update_network_gpu(network net); |
| | | cl_mem get_network_output_cl_layer(network net, int i); |
| | | cl_mem get_network_delta_cl_layer(network net, int i); |
| | | float train_network_sgd_gpu(network net, data d, int n); |
| | | #endif |
| | | |
| | | network make_network(int n, int batch); |