Joseph Redmon
2015-07-20 9db618329a1a4786ead73fab29d46dbb7fb58430
changes to detection
11 files modified
84 ■■■■■ changed files
Makefile 4 ●●●● patch | view | raw | blame | history
cfg/alexnet.cfg 1 ●●●● patch | view | raw | blame | history
cfg/jnet-conv.cfg 1 ●●●● patch | view | raw | blame | history
cfg/strided.cfg 1 ●●●● patch | view | raw | blame | history
cfg/vgg-16.cfg 1 ●●●● patch | view | raw | blame | history
cfg/vgg-conv.cfg 1 ●●●● patch | view | raw | blame | history
cfg/yolo-small.cfg 1 ●●●● patch | view | raw | blame | history
cfg/yolo.cfg 7 ●●●●● patch | view | raw | blame | history
src/data.c 2 ●●● patch | view | raw | blame | history
src/detection.c 62 ●●●● patch | view | raw | blame | history
src/parser.c 3 ●●●● patch | view | raw | blame | history
Makefile
@@ -1,5 +1,5 @@
GPU=1
OPENCV=1
GPU=0
OPENCV=0
DEBUG=0
ARCH= -arch=sm_52
cfg/alexnet.cfg
@@ -7,7 +7,6 @@
learning_rate=0.01
momentum=0.9
decay=0.0005
seen=0
[crop]
crop_height=224
cfg/jnet-conv.cfg
@@ -7,7 +7,6 @@
learning_rate=0.01
momentum=0.9
decay=0.0005
seen=0
[convolutional]
filters=32
cfg/strided.cfg
@@ -7,7 +7,6 @@
learning_rate=0.01
momentum=0.9
decay=0.0005
seen=0
[crop]
crop_height=224
cfg/vgg-16.cfg
@@ -6,7 +6,6 @@
channels=3
learning_rate=0.00001
momentum=0.9
seen=0
decay=0.0005
[crop]
cfg/vgg-conv.cfg
@@ -6,7 +6,6 @@
channels=3
learning_rate=0.00001
momentum=0.9
seen=0
decay=0.0005
[convolutional]
cfg/yolo-small.cfg
@@ -7,7 +7,6 @@
learning_rate=0.01
momentum=0.9
decay=0.0005
seen = 0
[crop]
crop_width=448
cfg/yolo.cfg
@@ -7,7 +7,6 @@
learning_rate=0.01
momentum=0.9
decay=0.0005
seen = 0
[crop]
crop_width=448
@@ -200,6 +199,6 @@
classes=20
coords=4
rescore=0
joint=1
objectness = 0
background=0
joint=0
objectness=1
src/data.c
@@ -140,7 +140,7 @@
void fill_truth_detection(char *path, float *truth, int classes, int num_boxes, int flip, int background, float dx, float dy, float sx, float sy)
{
    char *labelpath = find_replace(path, "detection_images", "labels");
    char *labelpath = find_replace(path, "JPEGImages", "labels");
    labelpath = find_replace(labelpath, ".jpg", ".txt");
    labelpath = find_replace(labelpath, ".JPEG", ".txt");
    int count = 0;
src/detection.c
@@ -8,20 +8,22 @@
char *class_names[] = {"aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"};
void draw_detection(image im, float *box, int side, char *label)
void draw_detection(image im, float *box, int side, int objectness, char *label)
{
    int classes = 20;
    int elems = 4+classes;
    int elems = 4+classes+objectness;
    int j;
    int r, c;
    for(r = 0; r < side; ++r){
        for(c = 0; c < side; ++c){
            j = (r*side + c) * elems;
            float scale = 1;
            if(objectness) scale = 1 - box[j++];
            int class = max_index(box+j, classes);
            if(box[j+class] > 0.2){
            if(scale * box[j+class] > 0.2){
                int width = box[j+class]*5 + 1;
                printf("%f %s\n", box[j+class], class_names[class]);
                printf("%f %s\n", scale * box[j+class], class_names[class]);
                float red = get_color(0,class,classes);
                float green = get_color(1,class,classes);
                float blue = get_color(2,class,classes);
@@ -51,7 +53,6 @@
{
    srand(time(0));
    data_seed = time(0);
    int imgnet = 0;
    char *base = basecfg(cfgfile);
    printf("%s\n", base);
    float avg_loss = -1;
@@ -66,49 +67,45 @@
    data train, buffer;
    int classes = layer.classes;
    int background = (layer.background || layer.objectness);
    printf("%d\n", background);
    int background = layer.objectness;
    int side = sqrt(get_detection_layer_locations(layer));
    char **paths;
    list *plist;
    if (imgnet){
        plist = get_paths("/home/pjreddie/data/imagenet/det.train.list");
    }else{
        //plist = get_paths("/home/pjreddie/data/voc/no_2012_val.txt");
        //plist = get_paths("/home/pjreddie/data/voc/no_2007_test.txt");
        //plist = get_paths("/home/pjreddie/data/voc/val_2012.txt");
        //plist = get_paths("/home/pjreddie/data/voc/no_2007_test.txt");
        //plist = get_paths("/home/pjreddie/data/coco/trainval.txt");
        plist = get_paths("/home/pjreddie/data/voc/all2007-2012.txt");
    }
    list *plist = get_paths("/home/pjreddie/data/voc/test/train.txt");
    int N = plist->size;
    paths = (char **)list_to_array(plist);
    pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.w, net.h, side, side, background, &buffer);
    clock_t time;
    while(1){
    while(i*imgs < N*120){
        i += 1;
        time=clock();
        pthread_join(load_thread, 0);
        train = buffer;
        load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.w, net.h, side, side, background, &buffer);
/*
           image im = float_to_image(net.w, net.h, 3, train.X.vals[114]);
           image copy = copy_image(im);
           draw_detection(copy, train.y.vals[114], 7, "truth");
           cvWaitKey(0);
           free_image(copy);
           */
        printf("Loaded: %lf seconds\n", sec(clock()-time));
        time=clock();
        float loss = train_network(net, train);
        net.seen += imgs;
        if (avg_loss < 0) avg_loss = loss;
        avg_loss = avg_loss*.9 + loss*.1;
        printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs);
        if(i == 100){
        if((i-1)*imgs <= N && i*imgs > N){
            fprintf(stderr, "Starting second stage...\n");
            net.learning_rate *= 10;
            char buff[256];
            sprintf(buff, "/home/pjreddie/imagenet_backup/%s_first_stage.weights", base);
            save_weights(net, buff);
        }
        if((i-1)*imgs <= 80*N && i*imgs > N*80){
            fprintf(stderr, "Second stage done.\n");
            net.learning_rate *= .1;
            char buff[256];
            sprintf(buff, "/home/pjreddie/imagenet_backup/%s_second_stage.weights", base);
            save_weights(net, buff);
            return;
        }
        if(i%1000==0){
            char buff[256];
@@ -117,6 +114,9 @@
        }
        free_data(train);
    }
    char buff[256];
    sprintf(buff, "/home/pjreddie/imagenet_backup/%s_final.weights",base);
    save_weights(net, buff);
}
void convert_detections(float *predictions, int classes, int objectness, int background, int num_boxes, int w, int h, float thresh, float **probs, box *boxes)
@@ -267,8 +267,6 @@
        load_weights(&net, weightfile);
    }
    detection_layer layer = get_network_detection_layer(net);
    if (!layer.joint) fprintf(stderr, "Detection layer should use joint prediction to draw correctly.\n");
    int im_size = 448;
    set_batch_network(&net, 1);
    srand(2222222);
    clock_t time;
@@ -283,12 +281,12 @@
            strtok(input, "\n");
        }
        image im = load_image_color(input,0,0);
        image sized = resize_image(im, im_size, im_size);
        image sized = resize_image(im, net.w, net.h);
        float *X = sized.data;
        time=clock();
        float *predictions = network_predict(net, X);
        printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
        draw_detection(im, predictions, 7, "predictions");
        draw_detection(im, predictions, 7, layer.objectness, "predictions");
        free_image(im);
        free_image(sized);
#ifdef OPENCV
src/parser.c
@@ -167,7 +167,7 @@
    int rescore = option_find_int(options, "rescore", 0);
    int joint = option_find_int(options, "joint", 0);
    int objectness = option_find_int(options, "objectness", 0);
    int background = option_find_int(options, "background", 0);
    int background = 0;
    detection_layer layer = make_detection_layer(params.batch, params.inputs, classes, coords, joint, rescore, background, objectness);
    return layer;
}
@@ -295,7 +295,6 @@
    net->learning_rate = option_find_float(options, "learning_rate", .001);
    net->momentum = option_find_float(options, "momentum", .9);
    net->decay = option_find_float(options, "decay", .0001);
    net->seen = option_find_int(options, "seen",0);
    int subdivs = option_find_int(options, "subdivisions",1);
    net->batch /= subdivs;
    net->subdivisions = subdivs;