AlexeyAB
2018-03-04 f39160f6e8f4465e9325e235e18f0d9413d1f672
Added: calc_anchors
3 files modified
1 files added
107 ■■■■■ changed files
build/darknet/x64/calc_anchors.cmd 8 ●●●●● patch | view | raw | blame | history
build/darknet/x64/data/voc.data 2 ●●● patch | view | raw | blame | history
src/detector.c 95 ●●●●● patch | view | raw | blame | history
src/reorg_layer.c 2 ●●●●● patch | view | raw | blame | history
build/darknet/x64/calc_anchors.cmd
New file
@@ -0,0 +1,8 @@
rem # How to calculate Yolo v2 anchors using K-means++
darknet.exe detector calc_anchors data/voc.data -num_of_clusters 5 -final_width 13 -final_heigh 13
pause
build/darknet/x64/data/voc.data
@@ -1,5 +1,5 @@
classes= 20
train  = data/voc/train.txt
train  = data/train_voc.txt
valid  = data/voc/2007_test.txt
#difficult = data/voc/difficult_2007_test.txt
names = data/voc.names
src/detector.c
@@ -10,7 +10,9 @@
#ifdef OPENCV
#include "opencv2/highgui/highgui_c.h"
#include "opencv2/core/core_c.h"
//#include "opencv2/core/core.hpp"
#include "opencv2/core/version.hpp"
#include "opencv2/imgproc/imgproc_c.h"
#ifndef CV_VERSION_EPOCH
#include "opencv2/videoio/videoio_c.h"
@@ -804,6 +806,95 @@
    fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start));
}
#ifdef OPENCV
void calc_anchors(char *datacfg, int num_of_clusters, int final_width, int final_height)
{
    printf("\n num_of_clusters = %d, final_width = %d, final_height = %d \n", num_of_clusters, final_width, final_height);
    //float pointsdata[] = { 1,1, 2,2, 6,6, 5,5, 10,10 };
    float *rel_width_height_array = calloc(1000, sizeof(float));
    list *options = read_data_cfg(datacfg);
    char *train_images = option_find_str(options, "train", "data/train.list");
    list *plist = get_paths(train_images);
    int number_of_images = plist->size;
    char **paths = (char **)list_to_array(plist);
    int number_of_boxes = 0;
    printf(" read labels from %d images \n", number_of_images);
    int i, j;
    for (i = 0; i < number_of_images; ++i) {
        char *path = paths[i];
        char labelpath[4096];
        find_replace(path, "images", "labels", labelpath);
        find_replace(labelpath, "JPEGImages", "labels", labelpath);
        find_replace(labelpath, ".jpg", ".txt", labelpath);
        find_replace(labelpath, ".JPEG", ".txt", labelpath);
        find_replace(labelpath, ".png", ".txt", labelpath);
        int num_labels = 0;
        box_label *truth = read_boxes(labelpath, &num_labels);
        //printf(" new path: %s \n", labelpath);
        for (j = 0; j < num_labels; ++j)
        {
            number_of_boxes++;
            rel_width_height_array = realloc(rel_width_height_array, 2 * number_of_boxes * sizeof(float));
            rel_width_height_array[number_of_boxes * 2 - 2] = truth[j].w * final_width;
            rel_width_height_array[number_of_boxes * 2 - 1] = truth[j].h * final_height;
            printf("\r loaded \t image: %d \t box: %d", i+1, number_of_boxes);
        }
    }
    printf("\n all loaded. \n");
    //int number_of_boxes = 10;
    CvMat* points = cvCreateMat(number_of_boxes, 2, CV_32FC1);
    CvMat* centers = cvCreateMat(num_of_clusters, 2, CV_32FC1);
    CvMat* labels = cvCreateMat(number_of_boxes, 1, CV_32SC1);
    for (i = 0; i < number_of_boxes; ++i) {
        points->data.fl[i * 2] = rel_width_height_array[i * 2];
        points->data.fl[i * 2 + 1] = rel_width_height_array[i * 2 + 1];
        //cvSet1D(points, i * 2, cvScalar(rel_width_height_array[i * 2], 0, 0, 0));
        //cvSet1D(points, i * 2 + 1, cvScalar(rel_width_height_array[i * 2 + 1], 0, 0, 0));
    }
    const int attemps = 1000;
    double compactness;
    enum {
        KMEANS_RANDOM_CENTERS = 0,
        KMEANS_USE_INITIAL_LABELS = 1,
        KMEANS_PP_CENTERS = 2
    };
    printf("\n calculating k-means++ ...");
    // Should be used: distance(box, centroid) = 1 - IoU(box, centroid)
    cvKMeans2(points, num_of_clusters, labels,
        cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 1000, 0), attemps,
        0, KMEANS_RANDOM_CENTERS,
        centers, &compactness);
    printf("\n");
    printf("anchors = ");
    for (i = 0; i < num_of_clusters; ++i) {
        printf("%2.2f,%2.2f, ", centers->data.fl[i * 2], centers->data.fl[i * 2 + 1]);
    }
    //for (i = 0; i < number_of_boxes; ++i)
    //  printf("%2.2f,%2.2f, ", points->data.fl[i * 2], points->data.fl[i * 2 + 1]);
    free(rel_width_height_array);
    cvReleaseMat(&points);
    cvReleaseMat(&centers);
    cvReleaseMat(&labels);
}
#else
void calc_anchors(char *datacfg, int num_of_clusters, int final_width, int final_height) {
    printf(" k-means++ can't be used without OpenCV, because there is used cvKMeans2 implementation \n");
}
#endif // OPENCV
void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh, int dont_show)
{
    list *options = read_data_cfg(datacfg);
@@ -876,6 +967,9 @@
    float thresh = find_float_arg(argc, argv, "-thresh", .24);
    int cam_index = find_int_arg(argc, argv, "-c", 0);
    int frame_skip = find_int_arg(argc, argv, "-s", 0);
    int num_of_clusters = find_int_arg(argc, argv, "-num_of_clusters", 5);
    int final_width = find_int_arg(argc, argv, "-final_width", 13);
    int final_heigh = find_int_arg(argc, argv, "-final_heigh", 13);
    if(argc < 4){
        fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
        return;
@@ -916,6 +1010,7 @@
    else if(0==strcmp(argv[2], "valid")) validate_detector(datacfg, cfg, weights);
    else if(0==strcmp(argv[2], "recall")) validate_detector_recall(datacfg, cfg, weights);
    else if(0==strcmp(argv[2], "map")) validate_detector_map(datacfg, cfg, weights, thresh);
    else if(0==strcmp(argv[2], "calc_anchors"))  calc_anchors(datacfg, num_of_clusters, final_width, final_heigh);
    else if(0==strcmp(argv[2], "demo")) {
        list *options = read_data_cfg(datacfg);
        int classes = option_find_int(options, "classes", 20);
src/reorg_layer.c
@@ -110,11 +110,9 @@
{
    if (l.reverse) {
        reorg_ongpu(l.delta_gpu, l.out_w, l.out_h, l.out_c, l.batch, l.stride, 0, state.delta);
        //reorg_ongpu(l.delta_gpu, l.w, l.h, l.c, l.batch, l.stride, 0, state.delta);
    }
    else {
        reorg_ongpu(l.delta_gpu, l.out_w, l.out_h, l.out_c, l.batch, l.stride, 1, state.delta);
        //reorg_ongpu(l.delta_gpu, l.w, l.h, l.c, l.batch, l.stride, 1, state.delta);
    }
}
#endif