saving weight files as binaries, hell yeah
| | |
| | | LDFLAGS=`pkg-config --libs opencv` -lm -pthread |
| | | COMMON=`pkg-config --cflags opencv` -I/usr/local/cuda/include/ |
| | | CFLAGS=-Wall -Wfatal-errors |
| | | CFLAGS+=$(OPTS) |
| | | |
| | | ifeq ($(DEBUG), 1) |
| | | COMMON+=-O0 -g |
| | | CFLAGS+=-O0 -g |
| | | OPTS=-O0 -g |
| | | endif |
| | | |
| | | CFLAGS+=$(OPTS) |
| | | |
| | | ifeq ($(GPU), 1) |
| | | COMMON+=-DGPU |
| | | CFLAGS+=-DGPU |
| | |
| | | |
| | | |
| | | float scale = 1./sqrt(inputs); |
| | | //scale = .01; |
| | | for(i = 0; i < inputs*outputs; ++i){ |
| | | layer->weights[i] = scale*rand_normal(); |
| | | } |
| | | |
| | | for(i = 0; i < outputs; ++i){ |
| | | layer->biases[i] = scale; |
| | | // layer->biases[i] = 1; |
| | | } |
| | | |
| | | #ifdef GPU |
| | |
| | | layer->biases = calloc(n, sizeof(float)); |
| | | layer->bias_updates = calloc(n, sizeof(float)); |
| | | float scale = 1./sqrt(size*size*c); |
| | | //scale = .01; |
| | | for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = scale*rand_normal(); |
| | | for(i = 0; i < n; ++i){ |
| | | //layer->biases[i] = rand_normal()*scale + scale; |
| | | layer->biases[i] = scale; |
| | | //layer->biases[i] = 1; |
| | | } |
| | | int out_h = convolutional_out_height(*layer); |
| | | int out_w = convolutional_out_width(*layer); |
| | |
| | | return c; |
| | | } |
| | | |
| | | void train_imagenet(char *cfgfile) |
| | | void train_imagenet(char *cfgfile, char *weightfile) |
| | | { |
| | | float avg_loss = -1; |
| | | srand(time(0)); |
| | | char *base = basename(cfgfile); |
| | | printf("%s\n", base); |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | //test_learn_bias(*(convolutional_layer *)net.layers[1]); |
| | | //set_learning_network(&net, net.learning_rate, 0, net.decay); |
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | |
| | | free_data(train); |
| | | if(i%100==0){ |
| | | char buff[256]; |
| | | sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.cfg",base, i); |
| | | save_network(net, buff); |
| | | sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.weights",base, i); |
| | | save_weights(net, buff); |
| | | } |
| | | } |
| | | } |
| | | |
| | | void validate_imagenet(char *filename) |
| | | void validate_imagenet(char *filename, char *weightfile) |
| | | { |
| | | int i = 0; |
| | | network net = parse_network_cfg(filename); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | srand(time(0)); |
| | | |
| | | char **labels = get_labels("/home/pjreddie/data/imagenet/cls.val.labels.list"); |
| | |
| | | float *X = im.data; |
| | | network net = parse_network_cfg(cfgfile); |
| | | set_batch_network(&net, 1); |
| | | float *predictions = network_predict(net, X); |
| | | network_predict(net, X); |
| | | image crop = get_network_image_layer(net, 0); |
| | | //show_image(crop, "cropped"); |
| | | // print_image(crop); |
| | | //show_image(im, "orig"); |
| | | show_image(crop, "cropped"); |
| | | print_image(crop); |
| | | show_image(im, "orig"); |
| | | float * inter = get_network_output(net); |
| | | pm(1000, 1, inter); |
| | | //cvWaitKey(0); |
| | | cvWaitKey(0); |
| | | } |
| | | |
| | | void test_imagenet(char *cfgfile) |
| | |
| | | float *in = calloc(size, sizeof(float)); |
| | | int i; |
| | | for(i = 0; i < size; ++i) in[i] = rand_normal(); |
| | | float *in_gpu = cuda_make_array(in, size); |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[0]; |
| | | int out_size = convolutional_out_height(layer)*convolutional_out_width(layer)*layer.batch; |
| | | cuda_compare(layer.output_gpu, layer.output, out_size, "nothing"); |
| | |
| | | { |
| | | int i; |
| | | for(i = index; i < argc-1; ++i) argv[i] = argv[i+1]; |
| | | argv[i] = 0; |
| | | } |
| | | |
| | | int find_arg(int argc, char* argv[], char *arg) |
| | | { |
| | | int i; |
| | | for(i = 0; i < argc; ++i) if(0==strcmp(argv[i], arg)) { |
| | | for(i = 0; i < argc; ++i) { |
| | | if(!argv[i]) continue; |
| | | if(0==strcmp(argv[i], arg)) { |
| | | del_arg(argc, argv, i); |
| | | return 1; |
| | | } |
| | | } |
| | | return 0; |
| | | } |
| | | |
| | |
| | | { |
| | | int i; |
| | | for(i = 0; i < argc-1; ++i){ |
| | | if(!argv[i]) continue; |
| | | if(0==strcmp(argv[i], arg)){ |
| | | def = atoi(argv[i+1]); |
| | | del_arg(argc, argv, i); |
| | |
| | | return def; |
| | | } |
| | | |
| | | void scale_rate(char *filename, float scale) |
| | | { |
| | | // Ready for some weird shit?? |
| | | FILE *fp = fopen(filename, "r+b"); |
| | | if(!fp) file_error(filename); |
| | | float rate = 0; |
| | | fread(&rate, sizeof(float), 1, fp); |
| | | printf("Scaling learning rate from %f to %f\n", rate, rate*scale); |
| | | rate = rate*scale; |
| | | fseek(fp, 0, SEEK_SET); |
| | | fwrite(&rate, sizeof(float), 1, fp); |
| | | fclose(fp); |
| | | } |
| | | |
| | | int main(int argc, char **argv) |
| | | { |
| | | //test_convolutional_layer(); |
| | |
| | | else if(0==strcmp(argv[1], "ctrain")) train_cifar10(argv[2]); |
| | | else if(0==strcmp(argv[1], "nist")) train_nist(argv[2]); |
| | | else if(0==strcmp(argv[1], "ctest")) test_cifar10(argv[2]); |
| | | else if(0==strcmp(argv[1], "train")) train_imagenet(argv[2]); |
| | | else if(0==strcmp(argv[1], "train")) train_imagenet(argv[2], (argc > 3)? argv[3] : 0); |
| | | //else if(0==strcmp(argv[1], "client")) train_imagenet_distributed(argv[2]); |
| | | else if(0==strcmp(argv[1], "detect")) test_detection(argv[2]); |
| | | else if(0==strcmp(argv[1], "init")) test_init(argv[2]); |
| | | else if(0==strcmp(argv[1], "visualize")) test_visualize(argv[2]); |
| | | else if(0==strcmp(argv[1], "valid")) validate_imagenet(argv[2]); |
| | | else if(0==strcmp(argv[1], "valid")) validate_imagenet(argv[2], (argc > 3)? argv[3] : 0); |
| | | else if(0==strcmp(argv[1], "testnist")) test_nist(argv[2]); |
| | | else if(0==strcmp(argv[1], "validetect")) validate_detection_net(argv[2]); |
| | | else if(argc < 4){ |
| | |
| | | return 0; |
| | | } |
| | | else if(0==strcmp(argv[1], "compare")) compare_nist(argv[2], argv[3]); |
| | | else if(0==strcmp(argv[1], "scale")) scale_rate(argv[2], atof(argv[3])); |
| | | fprintf(stderr, "Success!\n"); |
| | | return 0; |
| | | } |
| | |
| | | parse_data(weights, layer->filters, c*n*size*size); |
| | | parse_data(biases, layer->biases, n); |
| | | #ifdef GPU |
| | | push_convolutional_layer(*layer); |
| | | if(weights || biases) push_convolutional_layer(*layer); |
| | | #endif |
| | | option_unused(options); |
| | | return layer; |
| | |
| | | parse_data(biases, layer->biases, output); |
| | | parse_data(weights, layer->weights, input*output); |
| | | #ifdef GPU |
| | | push_connected_layer(*layer); |
| | | if(weights || biases) push_connected_layer(*layer); |
| | | #endif |
| | | option_unused(options); |
| | | return layer; |
| | |
| | | fprintf(fp, "\n"); |
| | | } |
| | | |
| | | void save_weights(network net, char *filename) |
| | | { |
| | | printf("Saving weights to %s\n", filename); |
| | | FILE *fp = fopen(filename, "w"); |
| | | if(!fp) file_error(filename); |
| | | |
| | | fwrite(&net.learning_rate, sizeof(float), 1, fp); |
| | | fwrite(&net.momentum, sizeof(float), 1, fp); |
| | | fwrite(&net.decay, sizeof(float), 1, fp); |
| | | fwrite(&net.seen, sizeof(int), 1, fp); |
| | | |
| | | int i; |
| | | for(i = 0; i < net.n; ++i){ |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *) net.layers[i]; |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | | pull_convolutional_layer(layer); |
| | | } |
| | | #endif |
| | | int num = layer.n*layer.c*layer.size*layer.size; |
| | | fwrite(layer.biases, sizeof(float), layer.n, fp); |
| | | fwrite(layer.filters, sizeof(float), num, fp); |
| | | } |
| | | if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *) net.layers[i]; |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | | pull_connected_layer(layer); |
| | | } |
| | | #endif |
| | | fwrite(layer.biases, sizeof(float), layer.outputs, fp); |
| | | fwrite(layer.weights, sizeof(float), layer.outputs*layer.inputs, fp); |
| | | } |
| | | } |
| | | fclose(fp); |
| | | } |
| | | |
| | | void load_weights(network *net, char *filename) |
| | | { |
| | | printf("Loading weights from %s\n", filename); |
| | | FILE *fp = fopen(filename, "r"); |
| | | if(!fp) file_error(filename); |
| | | |
| | | fread(&net->learning_rate, sizeof(float), 1, fp); |
| | | fread(&net->momentum, sizeof(float), 1, fp); |
| | | fread(&net->decay, sizeof(float), 1, fp); |
| | | fread(&net->seen, sizeof(int), 1, fp); |
| | | set_learning_network(net, net->learning_rate, net->momentum, net->decay); |
| | | |
| | | int i; |
| | | for(i = 0; i < net->n; ++i){ |
| | | if(net->types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *) net->layers[i]; |
| | | int num = layer.n*layer.c*layer.size*layer.size; |
| | | fread(layer.biases, sizeof(float), layer.n, fp); |
| | | fread(layer.filters, sizeof(float), num, fp); |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | | push_convolutional_layer(layer); |
| | | } |
| | | #endif |
| | | } |
| | | if(net->types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *) net->layers[i]; |
| | | fread(layer.biases, sizeof(float), layer.outputs, fp); |
| | | fread(layer.weights, sizeof(float), layer.outputs*layer.inputs, fp); |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | | push_connected_layer(layer); |
| | | } |
| | | #endif |
| | | } |
| | | } |
| | | fclose(fp); |
| | | } |
| | | |
| | | void save_network(network net, char *filename) |
| | | { |
| | |
| | | |
| | | network parse_network_cfg(char *filename); |
| | | void save_network(network net, char *filename); |
| | | void save_weights(network net, char *filename); |
| | | void load_weights(network *net, char *filename); |
| | | |
| | | #endif |
| | |
| | | network net; |
| | | } connection_info; |
| | | |
| | | void read_all(int fd, char *buffer, size_t bytes) |
| | | { |
| | | //printf("Want %d\n", bytes); |
| | | size_t n = 0; |
| | | while(n < bytes){ |
| | | int next = read(fd, buffer + n, bytes-n); |
| | | if(next <= 0) error("read failed"); |
| | | n += next; |
| | | } |
| | | } |
| | | |
| | | void write_all(int fd, char *buffer, size_t bytes) |
| | | { |
| | | //printf("Writ %d\n", bytes); |
| | | size_t n = 0; |
| | | while(n < bytes){ |
| | | int next = write(fd, buffer + n, bytes-n); |
| | | if(next <= 0) error("write failed"); |
| | | n += next; |
| | | } |
| | | } |
| | | |
| | | void read_and_add_into(int fd, float *a, int n) |
| | | { |
| | | float *buff = calloc(n, sizeof(float)); |
| | |
| | | #include <stdlib.h> |
| | | #include <string.h> |
| | | #include <math.h> |
| | | #include <unistd.h> |
| | | #include <float.h> |
| | | #include <limits.h> |
| | | |
| | |
| | | return line; |
| | | } |
| | | |
| | | void read_all(int fd, char *buffer, size_t bytes) |
| | | { |
| | | size_t n = 0; |
| | | while(n < bytes){ |
| | | int next = read(fd, buffer + n, bytes-n); |
| | | if(next <= 0) error("read failed"); |
| | | n += next; |
| | | } |
| | | } |
| | | |
| | | void write_all(int fd, char *buffer, size_t bytes) |
| | | { |
| | | size_t n = 0; |
| | | while(n < bytes){ |
| | | size_t next = write(fd, buffer + n, bytes-n); |
| | | if(next <= 0) error("write failed"); |
| | | n += next; |
| | | } |
| | | } |
| | | |
| | | |
| | | char *copy_string(char *s) |
| | | { |
| | | char *copy = malloc(strlen(s)+1); |
| | |
| | | #include <time.h> |
| | | #include "list.h" |
| | | |
| | | void read_all(int fd, char *buffer, size_t bytes); |
| | | void write_all(int fd, char *buffer, size_t bytes); |
| | | char *find_replace(char *str, char *orig, char *rep); |
| | | void error(const char *s); |
| | | void malloc_error(); |