Joseph Redmon
2015-05-11 516f019ba6fb88de7218dd3b4eaeadb1cf676518
route handles input images well....ish
29 files modified
2 files deleted
3069 ■■■■■ changed files
Makefile 2 ●●● patch | view | raw | blame | history
src/connected_layer.c 182 ●●●● patch | view | raw | blame | history
src/connected_layer.h 33 ●●●●● patch | view | raw | blame | history
src/convolutional_layer.c 242 ●●●● patch | view | raw | blame | history
src/convolutional_layer.h 35 ●●●●● patch | view | raw | blame | history
src/cost_layer.c 65 ●●●● patch | view | raw | blame | history
src/cost_layer.h 28 ●●●● patch | view | raw | blame | history
src/crop_layer.c 74 ●●●● patch | view | raw | blame | history
src/crop_layer.h 25 ●●●● patch | view | raw | blame | history
src/darknet.c 11 ●●●●● patch | view | raw | blame | history
src/data.c 2 ●●● patch | view | raw | blame | history
src/deconvolutional_layer.c 211 ●●●● patch | view | raw | blame | history
src/deconvolutional_layer.h 34 ●●●●● patch | view | raw | blame | history
src/detection.c 39 ●●●● patch | view | raw | blame | history
src/detection_layer.c 210 ●●●● patch | view | raw | blame | history
src/detection_layer.h 33 ●●●● patch | view | raw | blame | history
src/dropout_layer.c 48 ●●●● patch | view | raw | blame | history
src/dropout_layer.h 25 ●●●●● patch | view | raw | blame | history
src/maxpool_layer.c 130 ●●●● patch | view | raw | blame | history
src/maxpool_layer.h 30 ●●●●● patch | view | raw | blame | history
src/network.c 444 ●●●● patch | view | raw | blame | history
src/network.h 20 ●●●● patch | view | raw | blame | history
src/network_kernels.cu 235 ●●●● patch | view | raw | blame | history
src/normalization_layer.c 96 ●●●●● patch | view | raw | blame | history
src/normalization_layer.h 27 ●●●●● patch | view | raw | blame | history
src/old.c 251 ●●●●● patch | view | raw | blame | history
src/parser.c 367 ●●●● patch | view | raw | blame | history
src/route_layer.c 84 ●●●● patch | view | raw | blame | history
src/route_layer.h 25 ●●●● patch | view | raw | blame | history
src/softmax_layer.c 36 ●●●● patch | view | raw | blame | history
src/softmax_layer.h 25 ●●●●● patch | view | raw | blame | history
Makefile
@@ -25,7 +25,7 @@
LDFLAGS+= -L/usr/local/cuda/lib64 -lcuda -lcudart -lcublas -lcurand
endif
OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o normalization_layer.o parser.o option_list.o darknet.o detection_layer.o imagenet.o captcha.o detection.o route_layer.o
OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o darknet.o detection_layer.o imagenet.o captcha.o detection.o route_layer.o
ifeq ($(GPU), 1) 
OBJ+=convolutional_kernels.o deconvolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o softmax_layer_kernels.o network_kernels.o
endif
src/connected_layer.c
@@ -9,99 +9,97 @@
#include <stdlib.h>
#include <string.h>
connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation)
connected_layer make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation)
{
    int i;
    connected_layer *layer = calloc(1, sizeof(connected_layer));
    connected_layer l = {0};
    l.type = CONNECTED;
    layer->inputs = inputs;
    layer->outputs = outputs;
    layer->batch=batch;
    l.inputs = inputs;
    l.outputs = outputs;
    l.batch=batch;
    layer->output = calloc(batch*outputs, sizeof(float*));
    layer->delta = calloc(batch*outputs, sizeof(float*));
    l.output = calloc(batch*outputs, sizeof(float*));
    l.delta = calloc(batch*outputs, sizeof(float*));
    layer->weight_updates = calloc(inputs*outputs, sizeof(float));
    layer->bias_updates = calloc(outputs, sizeof(float));
    l.weight_updates = calloc(inputs*outputs, sizeof(float));
    l.bias_updates = calloc(outputs, sizeof(float));
    layer->weight_prev = calloc(inputs*outputs, sizeof(float));
    layer->bias_prev = calloc(outputs, sizeof(float));
    layer->weights = calloc(inputs*outputs, sizeof(float));
    layer->biases = calloc(outputs, sizeof(float));
    l.weights = calloc(inputs*outputs, sizeof(float));
    l.biases = calloc(outputs, sizeof(float));
    float scale = 1./sqrt(inputs);
    for(i = 0; i < inputs*outputs; ++i){
        layer->weights[i] = 2*scale*rand_uniform() - scale;
        l.weights[i] = 2*scale*rand_uniform() - scale;
    }
    for(i = 0; i < outputs; ++i){
        layer->biases[i] = scale;
        l.biases[i] = scale;
    }
#ifdef GPU
    layer->weights_gpu = cuda_make_array(layer->weights, inputs*outputs);
    layer->biases_gpu = cuda_make_array(layer->biases, outputs);
    l.weights_gpu = cuda_make_array(l.weights, inputs*outputs);
    l.biases_gpu = cuda_make_array(l.biases, outputs);
    layer->weight_updates_gpu = cuda_make_array(layer->weight_updates, inputs*outputs);
    layer->bias_updates_gpu = cuda_make_array(layer->bias_updates, outputs);
    l.weight_updates_gpu = cuda_make_array(l.weight_updates, inputs*outputs);
    l.bias_updates_gpu = cuda_make_array(l.bias_updates, outputs);
    layer->output_gpu = cuda_make_array(layer->output, outputs*batch);
    layer->delta_gpu = cuda_make_array(layer->delta, outputs*batch);
    l.output_gpu = cuda_make_array(l.output, outputs*batch);
    l.delta_gpu = cuda_make_array(l.delta, outputs*batch);
#endif
    layer->activation = activation;
    l.activation = activation;
    fprintf(stderr, "Connected Layer: %d inputs, %d outputs\n", inputs, outputs);
    return layer;
    return l;
}
void update_connected_layer(connected_layer layer, int batch, float learning_rate, float momentum, float decay)
void update_connected_layer(connected_layer l, int batch, float learning_rate, float momentum, float decay)
{
    axpy_cpu(layer.outputs, learning_rate/batch, layer.bias_updates, 1, layer.biases, 1);
    scal_cpu(layer.outputs, momentum, layer.bias_updates, 1);
    axpy_cpu(l.outputs, learning_rate/batch, l.bias_updates, 1, l.biases, 1);
    scal_cpu(l.outputs, momentum, l.bias_updates, 1);
    axpy_cpu(layer.inputs*layer.outputs, -decay*batch, layer.weights, 1, layer.weight_updates, 1);
    axpy_cpu(layer.inputs*layer.outputs, learning_rate/batch, layer.weight_updates, 1, layer.weights, 1);
    scal_cpu(layer.inputs*layer.outputs, momentum, layer.weight_updates, 1);
    axpy_cpu(l.inputs*l.outputs, -decay*batch, l.weights, 1, l.weight_updates, 1);
    axpy_cpu(l.inputs*l.outputs, learning_rate/batch, l.weight_updates, 1, l.weights, 1);
    scal_cpu(l.inputs*l.outputs, momentum, l.weight_updates, 1);
}
void forward_connected_layer(connected_layer layer, network_state state)
void forward_connected_layer(connected_layer l, network_state state)
{
    int i;
    for(i = 0; i < layer.batch; ++i){
        copy_cpu(layer.outputs, layer.biases, 1, layer.output + i*layer.outputs, 1);
    for(i = 0; i < l.batch; ++i){
        copy_cpu(l.outputs, l.biases, 1, l.output + i*l.outputs, 1);
    }
    int m = layer.batch;
    int k = layer.inputs;
    int n = layer.outputs;
    int m = l.batch;
    int k = l.inputs;
    int n = l.outputs;
    float *a = state.input;
    float *b = layer.weights;
    float *c = layer.output;
    float *b = l.weights;
    float *c = l.output;
    gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
    activate_array(layer.output, layer.outputs*layer.batch, layer.activation);
    activate_array(l.output, l.outputs*l.batch, l.activation);
}
void backward_connected_layer(connected_layer layer, network_state state)
void backward_connected_layer(connected_layer l, network_state state)
{
    int i;
    gradient_array(layer.output, layer.outputs*layer.batch, layer.activation, layer.delta);
    for(i = 0; i < layer.batch; ++i){
        axpy_cpu(layer.outputs, 1, layer.delta + i*layer.outputs, 1, layer.bias_updates, 1);
    gradient_array(l.output, l.outputs*l.batch, l.activation, l.delta);
    for(i = 0; i < l.batch; ++i){
        axpy_cpu(l.outputs, 1, l.delta + i*l.outputs, 1, l.bias_updates, 1);
    }
    int m = layer.inputs;
    int k = layer.batch;
    int n = layer.outputs;
    int m = l.inputs;
    int k = l.batch;
    int n = l.outputs;
    float *a = state.input;
    float *b = layer.delta;
    float *c = layer.weight_updates;
    float *b = l.delta;
    float *c = l.weight_updates;
    gemm(1,0,m,n,k,1,a,m,b,n,1,c,n);
    m = layer.batch;
    k = layer.outputs;
    n = layer.inputs;
    m = l.batch;
    k = l.outputs;
    n = l.inputs;
    a = layer.delta;
    b = layer.weights;
    a = l.delta;
    b = l.weights;
    c = state.delta;
    if(c) gemm(0,1,m,n,k,1,a,k,b,k,0,c,n);
@@ -109,69 +107,69 @@
#ifdef GPU
void pull_connected_layer(connected_layer layer)
void pull_connected_layer(connected_layer l)
{
    cuda_pull_array(layer.weights_gpu, layer.weights, layer.inputs*layer.outputs);
    cuda_pull_array(layer.biases_gpu, layer.biases, layer.outputs);
    cuda_pull_array(layer.weight_updates_gpu, layer.weight_updates, layer.inputs*layer.outputs);
    cuda_pull_array(layer.bias_updates_gpu, layer.bias_updates, layer.outputs);
    cuda_pull_array(l.weights_gpu, l.weights, l.inputs*l.outputs);
    cuda_pull_array(l.biases_gpu, l.biases, l.outputs);
    cuda_pull_array(l.weight_updates_gpu, l.weight_updates, l.inputs*l.outputs);
    cuda_pull_array(l.bias_updates_gpu, l.bias_updates, l.outputs);
}
void push_connected_layer(connected_layer layer)
void push_connected_layer(connected_layer l)
{
    cuda_push_array(layer.weights_gpu, layer.weights, layer.inputs*layer.outputs);
    cuda_push_array(layer.biases_gpu, layer.biases, layer.outputs);
    cuda_push_array(layer.weight_updates_gpu, layer.weight_updates, layer.inputs*layer.outputs);
    cuda_push_array(layer.bias_updates_gpu, layer.bias_updates, layer.outputs);
    cuda_push_array(l.weights_gpu, l.weights, l.inputs*l.outputs);
    cuda_push_array(l.biases_gpu, l.biases, l.outputs);
    cuda_push_array(l.weight_updates_gpu, l.weight_updates, l.inputs*l.outputs);
    cuda_push_array(l.bias_updates_gpu, l.bias_updates, l.outputs);
}
void update_connected_layer_gpu(connected_layer layer, int batch, float learning_rate, float momentum, float decay)
void update_connected_layer_gpu(connected_layer l, int batch, float learning_rate, float momentum, float decay)
{
    axpy_ongpu(layer.outputs, learning_rate/batch, layer.bias_updates_gpu, 1, layer.biases_gpu, 1);
    scal_ongpu(layer.outputs, momentum, layer.bias_updates_gpu, 1);
    axpy_ongpu(l.outputs, learning_rate/batch, l.bias_updates_gpu, 1, l.biases_gpu, 1);
    scal_ongpu(l.outputs, momentum, l.bias_updates_gpu, 1);
    axpy_ongpu(layer.inputs*layer.outputs, -decay*batch, layer.weights_gpu, 1, layer.weight_updates_gpu, 1);
    axpy_ongpu(layer.inputs*layer.outputs, learning_rate/batch, layer.weight_updates_gpu, 1, layer.weights_gpu, 1);
    scal_ongpu(layer.inputs*layer.outputs, momentum, layer.weight_updates_gpu, 1);
    axpy_ongpu(l.inputs*l.outputs, -decay*batch, l.weights_gpu, 1, l.weight_updates_gpu, 1);
    axpy_ongpu(l.inputs*l.outputs, learning_rate/batch, l.weight_updates_gpu, 1, l.weights_gpu, 1);
    scal_ongpu(l.inputs*l.outputs, momentum, l.weight_updates_gpu, 1);
}
void forward_connected_layer_gpu(connected_layer layer, network_state state)
void forward_connected_layer_gpu(connected_layer l, network_state state)
{
    int i;
    for(i = 0; i < layer.batch; ++i){
        copy_ongpu_offset(layer.outputs, layer.biases_gpu, 0, 1, layer.output_gpu, i*layer.outputs, 1);
    for(i = 0; i < l.batch; ++i){
        copy_ongpu_offset(l.outputs, l.biases_gpu, 0, 1, l.output_gpu, i*l.outputs, 1);
    }
    int m = layer.batch;
    int k = layer.inputs;
    int n = layer.outputs;
    int m = l.batch;
    int k = l.inputs;
    int n = l.outputs;
    float * a = state.input;
    float * b = layer.weights_gpu;
    float * c = layer.output_gpu;
    float * b = l.weights_gpu;
    float * c = l.output_gpu;
    gemm_ongpu(0,0,m,n,k,1,a,k,b,n,1,c,n);
    activate_array_ongpu(layer.output_gpu, layer.outputs*layer.batch, layer.activation);
    activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation);
}
void backward_connected_layer_gpu(connected_layer layer, network_state state)
void backward_connected_layer_gpu(connected_layer l, network_state state)
{
    int i;
    gradient_array_ongpu(layer.output_gpu, layer.outputs*layer.batch, layer.activation, layer.delta_gpu);
    for(i = 0; i < layer.batch; ++i){
        axpy_ongpu_offset(layer.outputs, 1, layer.delta_gpu, i*layer.outputs, 1, layer.bias_updates_gpu, 0, 1);
    gradient_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation, l.delta_gpu);
    for(i = 0; i < l.batch; ++i){
        axpy_ongpu_offset(l.outputs, 1, l.delta_gpu, i*l.outputs, 1, l.bias_updates_gpu, 0, 1);
    }
    int m = layer.inputs;
    int k = layer.batch;
    int n = layer.outputs;
    int m = l.inputs;
    int k = l.batch;
    int n = l.outputs;
    float * a = state.input;
    float * b = layer.delta_gpu;
    float * c = layer.weight_updates_gpu;
    float * b = l.delta_gpu;
    float * c = l.weight_updates_gpu;
    gemm_ongpu(1,0,m,n,k,1,a,m,b,n,1,c,n);
    m = layer.batch;
    k = layer.outputs;
    n = layer.inputs;
    m = l.batch;
    k = l.outputs;
    n = l.inputs;
    a = layer.delta_gpu;
    b = layer.weights_gpu;
    a = l.delta_gpu;
    b = l.weights_gpu;
    c = state.delta;
    if(c) gemm_ongpu(0,1,m,n,k,1,a,k,b,k,0,c,n);
src/connected_layer.h
@@ -3,38 +3,11 @@
#include "activations.h"
#include "params.h"
#include "layer.h"
typedef struct{
    int batch;
    int inputs;
    int outputs;
    float *weights;
    float *biases;
typedef layer connected_layer;
    float *weight_updates;
    float *bias_updates;
    float *weight_prev;
    float *bias_prev;
    float *output;
    float *delta;
    #ifdef GPU
    float * weights_gpu;
    float * biases_gpu;
    float * weight_updates_gpu;
    float * bias_updates_gpu;
    float * output_gpu;
    float * delta_gpu;
    #endif
    ACTIVATION activation;
} connected_layer;
connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation);
connected_layer make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation);
void forward_connected_layer(connected_layer layer, network_state state);
void backward_connected_layer(connected_layer layer, network_state state);
src/convolutional_layer.c
@@ -7,111 +7,117 @@
#include <stdio.h>
#include <time.h>
int convolutional_out_height(convolutional_layer layer)
int convolutional_out_height(convolutional_layer l)
{
    int h = layer.h;
    if (!layer.pad) h -= layer.size;
    int h = l.h;
    if (!l.pad) h -= l.size;
    else h -= 1;
    return h/layer.stride + 1;
    return h/l.stride + 1;
}
int convolutional_out_width(convolutional_layer layer)
int convolutional_out_width(convolutional_layer l)
{
    int w = layer.w;
    if (!layer.pad) w -= layer.size;
    int w = l.w;
    if (!l.pad) w -= l.size;
    else w -= 1;
    return w/layer.stride + 1;
    return w/l.stride + 1;
}
image get_convolutional_image(convolutional_layer layer)
image get_convolutional_image(convolutional_layer l)
{
    int h,w,c;
    h = convolutional_out_height(layer);
    w = convolutional_out_width(layer);
    c = layer.n;
    return float_to_image(w,h,c,layer.output);
    h = convolutional_out_height(l);
    w = convolutional_out_width(l);
    c = l.n;
    return float_to_image(w,h,c,l.output);
}
image get_convolutional_delta(convolutional_layer layer)
image get_convolutional_delta(convolutional_layer l)
{
    int h,w,c;
    h = convolutional_out_height(layer);
    w = convolutional_out_width(layer);
    c = layer.n;
    return float_to_image(w,h,c,layer.delta);
    h = convolutional_out_height(l);
    w = convolutional_out_width(l);
    c = l.n;
    return float_to_image(w,h,c,l.delta);
}
convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation)
convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation)
{
    int i;
    convolutional_layer *layer = calloc(1, sizeof(convolutional_layer));
    convolutional_layer l = {0};
    l.type = CONVOLUTIONAL;
    layer->h = h;
    layer->w = w;
    layer->c = c;
    layer->n = n;
    layer->batch = batch;
    layer->stride = stride;
    layer->size = size;
    layer->pad = pad;
    l.h = h;
    l.w = w;
    l.c = c;
    l.n = n;
    l.batch = batch;
    l.stride = stride;
    l.size = size;
    l.pad = pad;
    layer->filters = calloc(c*n*size*size, sizeof(float));
    layer->filter_updates = calloc(c*n*size*size, sizeof(float));
    l.filters = calloc(c*n*size*size, sizeof(float));
    l.filter_updates = calloc(c*n*size*size, sizeof(float));
    layer->biases = calloc(n, sizeof(float));
    layer->bias_updates = calloc(n, sizeof(float));
    l.biases = calloc(n, sizeof(float));
    l.bias_updates = calloc(n, sizeof(float));
    float scale = 1./sqrt(size*size*c);
    for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = 2*scale*rand_uniform() - scale;
    for(i = 0; i < c*n*size*size; ++i) l.filters[i] = 2*scale*rand_uniform() - scale;
    for(i = 0; i < n; ++i){
        layer->biases[i] = scale;
        l.biases[i] = scale;
    }
    int out_h = convolutional_out_height(*layer);
    int out_w = convolutional_out_width(*layer);
    int out_h = convolutional_out_height(l);
    int out_w = convolutional_out_width(l);
    l.out_h = out_h;
    l.out_w = out_w;
    l.out_c = n;
    l.outputs = l.out_h * l.out_w * l.out_c;
    l.inputs = l.w * l.h * l.c;
    layer->col_image = calloc(out_h*out_w*size*size*c, sizeof(float));
    layer->output = calloc(layer->batch*out_h * out_w * n, sizeof(float));
    layer->delta  = calloc(layer->batch*out_h * out_w * n, sizeof(float));
    l.col_image = calloc(out_h*out_w*size*size*c, sizeof(float));
    l.output = calloc(l.batch*out_h * out_w * n, sizeof(float));
    l.delta  = calloc(l.batch*out_h * out_w * n, sizeof(float));
    #ifdef GPU
    layer->filters_gpu = cuda_make_array(layer->filters, c*n*size*size);
    layer->filter_updates_gpu = cuda_make_array(layer->filter_updates, c*n*size*size);
    l.filters_gpu = cuda_make_array(l.filters, c*n*size*size);
    l.filter_updates_gpu = cuda_make_array(l.filter_updates, c*n*size*size);
    layer->biases_gpu = cuda_make_array(layer->biases, n);
    layer->bias_updates_gpu = cuda_make_array(layer->bias_updates, n);
    l.biases_gpu = cuda_make_array(l.biases, n);
    l.bias_updates_gpu = cuda_make_array(l.bias_updates, n);
    layer->col_image_gpu = cuda_make_array(layer->col_image, out_h*out_w*size*size*c);
    layer->delta_gpu = cuda_make_array(layer->delta, layer->batch*out_h*out_w*n);
    layer->output_gpu = cuda_make_array(layer->output, layer->batch*out_h*out_w*n);
    l.col_image_gpu = cuda_make_array(l.col_image, out_h*out_w*size*size*c);
    l.delta_gpu = cuda_make_array(l.delta, l.batch*out_h*out_w*n);
    l.output_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
    #endif
    layer->activation = activation;
    l.activation = activation;
    fprintf(stderr, "Convolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n);
    return layer;
    return l;
}
void resize_convolutional_layer(convolutional_layer *layer, int h, int w)
void resize_convolutional_layer(convolutional_layer *l, int h, int w)
{
    layer->h = h;
    layer->w = w;
    int out_h = convolutional_out_height(*layer);
    int out_w = convolutional_out_width(*layer);
    l->h = h;
    l->w = w;
    int out_h = convolutional_out_height(*l);
    int out_w = convolutional_out_width(*l);
    layer->col_image = realloc(layer->col_image,
                                out_h*out_w*layer->size*layer->size*layer->c*sizeof(float));
    layer->output = realloc(layer->output,
                                layer->batch*out_h * out_w * layer->n*sizeof(float));
    layer->delta  = realloc(layer->delta,
                                layer->batch*out_h * out_w * layer->n*sizeof(float));
    l->col_image = realloc(l->col_image,
                                out_h*out_w*l->size*l->size*l->c*sizeof(float));
    l->output = realloc(l->output,
                                l->batch*out_h * out_w * l->n*sizeof(float));
    l->delta  = realloc(l->delta,
                                l->batch*out_h * out_w * l->n*sizeof(float));
    #ifdef GPU
    cuda_free(layer->col_image_gpu);
    cuda_free(layer->delta_gpu);
    cuda_free(layer->output_gpu);
    cuda_free(l->col_image_gpu);
    cuda_free(l->delta_gpu);
    cuda_free(l->output_gpu);
    layer->col_image_gpu = cuda_make_array(layer->col_image, out_h*out_w*layer->size*layer->size*layer->c);
    layer->delta_gpu = cuda_make_array(layer->delta, layer->batch*out_h*out_w*layer->n);
    layer->output_gpu = cuda_make_array(layer->output, layer->batch*out_h*out_w*layer->n);
    l->col_image_gpu = cuda_make_array(l->col_image, out_h*out_w*l->size*l->size*l->c);
    l->delta_gpu = cuda_make_array(l->delta, l->batch*out_h*out_w*l->n);
    l->output_gpu = cuda_make_array(l->output, l->batch*out_h*out_w*l->n);
    #endif
}
@@ -138,104 +144,104 @@
}
void forward_convolutional_layer(const convolutional_layer layer, network_state state)
void forward_convolutional_layer(const convolutional_layer l, network_state state)
{
    int out_h = convolutional_out_height(layer);
    int out_w = convolutional_out_width(layer);
    int out_h = convolutional_out_height(l);
    int out_w = convolutional_out_width(l);
    int i;
    bias_output(layer.output, layer.biases, layer.batch, layer.n, out_h*out_w);
    bias_output(l.output, l.biases, l.batch, l.n, out_h*out_w);
    int m = layer.n;
    int k = layer.size*layer.size*layer.c;
    int m = l.n;
    int k = l.size*l.size*l.c;
    int n = out_h*out_w;
    float *a = layer.filters;
    float *b = layer.col_image;
    float *c = layer.output;
    float *a = l.filters;
    float *b = l.col_image;
    float *c = l.output;
    for(i = 0; i < layer.batch; ++i){
        im2col_cpu(state.input, layer.c, layer.h, layer.w,
            layer.size, layer.stride, layer.pad, b);
    for(i = 0; i < l.batch; ++i){
        im2col_cpu(state.input, l.c, l.h, l.w,
            l.size, l.stride, l.pad, b);
        gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
        c += n*m;
        state.input += layer.c*layer.h*layer.w;
        state.input += l.c*l.h*l.w;
    }
    activate_array(layer.output, m*n*layer.batch, layer.activation);
    activate_array(l.output, m*n*l.batch, l.activation);
}
void backward_convolutional_layer(convolutional_layer layer, network_state state)
void backward_convolutional_layer(convolutional_layer l, network_state state)
{
    int i;
    int m = layer.n;
    int n = layer.size*layer.size*layer.c;
    int k = convolutional_out_height(layer)*
        convolutional_out_width(layer);
    int m = l.n;
    int n = l.size*l.size*l.c;
    int k = convolutional_out_height(l)*
        convolutional_out_width(l);
    gradient_array(layer.output, m*k*layer.batch, layer.activation, layer.delta);
    backward_bias(layer.bias_updates, layer.delta, layer.batch, layer.n, k);
    gradient_array(l.output, m*k*l.batch, l.activation, l.delta);
    backward_bias(l.bias_updates, l.delta, l.batch, l.n, k);
    if(state.delta) memset(state.delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
    if(state.delta) memset(state.delta, 0, l.batch*l.h*l.w*l.c*sizeof(float));
    for(i = 0; i < layer.batch; ++i){
        float *a = layer.delta + i*m*k;
        float *b = layer.col_image;
        float *c = layer.filter_updates;
    for(i = 0; i < l.batch; ++i){
        float *a = l.delta + i*m*k;
        float *b = l.col_image;
        float *c = l.filter_updates;
        float *im = state.input+i*layer.c*layer.h*layer.w;
        float *im = state.input+i*l.c*l.h*l.w;
        im2col_cpu(im, layer.c, layer.h, layer.w,
                layer.size, layer.stride, layer.pad, b);
        im2col_cpu(im, l.c, l.h, l.w,
                l.size, l.stride, l.pad, b);
        gemm(0,1,m,n,k,1,a,k,b,k,1,c,n);
        if(state.delta){
            a = layer.filters;
            b = layer.delta + i*m*k;
            c = layer.col_image;
            a = l.filters;
            b = l.delta + i*m*k;
            c = l.col_image;
            gemm(1,0,n,k,m,1,a,n,b,k,0,c,k);
            col2im_cpu(layer.col_image, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, state.delta+i*layer.c*layer.h*layer.w);
            col2im_cpu(l.col_image, l.c,  l.h,  l.w,  l.size,  l.stride, l.pad, state.delta+i*l.c*l.h*l.w);
        }
    }
}
void update_convolutional_layer(convolutional_layer layer, int batch, float learning_rate, float momentum, float decay)
void update_convolutional_layer(convolutional_layer l, int batch, float learning_rate, float momentum, float decay)
{
    int size = layer.size*layer.size*layer.c*layer.n;
    axpy_cpu(layer.n, learning_rate/batch, layer.bias_updates, 1, layer.biases, 1);
    scal_cpu(layer.n, momentum, layer.bias_updates, 1);
    int size = l.size*l.size*l.c*l.n;
    axpy_cpu(l.n, learning_rate/batch, l.bias_updates, 1, l.biases, 1);
    scal_cpu(l.n, momentum, l.bias_updates, 1);
    axpy_cpu(size, -decay*batch, layer.filters, 1, layer.filter_updates, 1);
    axpy_cpu(size, learning_rate/batch, layer.filter_updates, 1, layer.filters, 1);
    scal_cpu(size, momentum, layer.filter_updates, 1);
    axpy_cpu(size, -decay*batch, l.filters, 1, l.filter_updates, 1);
    axpy_cpu(size, learning_rate/batch, l.filter_updates, 1, l.filters, 1);
    scal_cpu(size, momentum, l.filter_updates, 1);
}
image get_convolutional_filter(convolutional_layer layer, int i)
image get_convolutional_filter(convolutional_layer l, int i)
{
    int h = layer.size;
    int w = layer.size;
    int c = layer.c;
    return float_to_image(w,h,c,layer.filters+i*h*w*c);
    int h = l.size;
    int w = l.size;
    int c = l.c;
    return float_to_image(w,h,c,l.filters+i*h*w*c);
}
image *get_filters(convolutional_layer layer)
image *get_filters(convolutional_layer l)
{
    image *filters = calloc(layer.n, sizeof(image));
    image *filters = calloc(l.n, sizeof(image));
    int i;
    for(i = 0; i < layer.n; ++i){
        filters[i] = copy_image(get_convolutional_filter(layer, i));
    for(i = 0; i < l.n; ++i){
        filters[i] = copy_image(get_convolutional_filter(l, i));
    }
    return filters;
}
image *visualize_convolutional_layer(convolutional_layer layer, char *window, image *prev_filters)
image *visualize_convolutional_layer(convolutional_layer l, char *window, image *prev_filters)
{
    image *single_filters = get_filters(layer);
    show_images(single_filters, layer.n, window);
    image *single_filters = get_filters(l);
    show_images(single_filters, l.n, window);
    image delta = get_convolutional_image(layer);
    image delta = get_convolutional_image(l);
    image dc = collapse_image_layers(delta, 1);
    char buff[256];
    sprintf(buff, "%s: Output", window);
src/convolutional_layer.h
@@ -5,38 +5,9 @@
#include "params.h"
#include "image.h"
#include "activations.h"
#include "layer.h"
typedef struct {
    int batch;
    int h,w,c;
    int n;
    int size;
    int stride;
    int pad;
    float *filters;
    float *filter_updates;
    float *biases;
    float *bias_updates;
    float *col_image;
    float *delta;
    float *output;
    #ifdef GPU
    float * filters_gpu;
    float * filter_updates_gpu;
    float * biases_gpu;
    float * bias_updates_gpu;
    float * col_image_gpu;
    float * delta_gpu;
    float * output_gpu;
    #endif
    ACTIVATION activation;
} convolutional_layer;
typedef layer convolutional_layer;
#ifdef GPU
void forward_convolutional_layer_gpu(convolutional_layer layer, network_state state);
@@ -50,7 +21,7 @@
void backward_bias_gpu(float *bias_updates, float *delta, int batch, int n, int size);
#endif
convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation);
convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation);
void resize_convolutional_layer(convolutional_layer *layer, int h, int w);
void forward_convolutional_layer(const convolutional_layer layer, network_state state);
void update_convolutional_layer(convolutional_layer layer, int batch, float learning_rate, float momentum, float decay);
src/cost_layer.c
@@ -26,70 +26,73 @@
    return "sse";
}
cost_layer *make_cost_layer(int batch, int inputs, COST_TYPE type)
cost_layer make_cost_layer(int batch, int inputs, COST_TYPE cost_type)
{
    fprintf(stderr, "Cost Layer: %d inputs\n", inputs);
    cost_layer *layer = calloc(1, sizeof(cost_layer));
    layer->batch = batch;
    layer->inputs = inputs;
    layer->type = type;
    layer->delta = calloc(inputs*batch, sizeof(float));
    layer->output = calloc(1, sizeof(float));
    cost_layer l = {0};
    l.type = COST;
    l.batch = batch;
    l.inputs = inputs;
    l.outputs = inputs;
    l.cost_type = cost_type;
    l.delta = calloc(inputs*batch, sizeof(float));
    l.output = calloc(1, sizeof(float));
    #ifdef GPU
    layer->delta_gpu = cuda_make_array(layer->delta, inputs*batch);
    l.delta_gpu = cuda_make_array(l.delta, inputs*batch);
    #endif
    return layer;
    return l;
}
void forward_cost_layer(cost_layer layer, network_state state)
void forward_cost_layer(cost_layer l, network_state state)
{
    if (!state.truth) return;
    if(layer.type == MASKED){
    if(l.cost_type == MASKED){
        int i;
        for(i = 0; i < layer.batch*layer.inputs; ++i){
        for(i = 0; i < l.batch*l.inputs; ++i){
            if(state.truth[i] == 0) state.input[i] = 0;
        }
    }
    copy_cpu(layer.batch*layer.inputs, state.truth, 1, layer.delta, 1);
    axpy_cpu(layer.batch*layer.inputs, -1, state.input, 1, layer.delta, 1);
    *(layer.output) = dot_cpu(layer.batch*layer.inputs, layer.delta, 1, layer.delta, 1);
    //printf("cost: %f\n", *layer.output);
    copy_cpu(l.batch*l.inputs, state.truth, 1, l.delta, 1);
    axpy_cpu(l.batch*l.inputs, -1, state.input, 1, l.delta, 1);
    *(l.output) = dot_cpu(l.batch*l.inputs, l.delta, 1, l.delta, 1);
    //printf("cost: %f\n", *l.output);
}
void backward_cost_layer(const cost_layer layer, network_state state)
void backward_cost_layer(const cost_layer l, network_state state)
{
    copy_cpu(layer.batch*layer.inputs, layer.delta, 1, state.delta, 1);
    copy_cpu(l.batch*l.inputs, l.delta, 1, state.delta, 1);
}
#ifdef GPU
void pull_cost_layer(cost_layer layer)
void pull_cost_layer(cost_layer l)
{
    cuda_pull_array(layer.delta_gpu, layer.delta, layer.batch*layer.inputs);
    cuda_pull_array(l.delta_gpu, l.delta, l.batch*l.inputs);
}
void push_cost_layer(cost_layer layer)
void push_cost_layer(cost_layer l)
{
    cuda_push_array(layer.delta_gpu, layer.delta, layer.batch*layer.inputs);
    cuda_push_array(l.delta_gpu, l.delta, l.batch*l.inputs);
}
void forward_cost_layer_gpu(cost_layer layer, network_state state)
void forward_cost_layer_gpu(cost_layer l, network_state state)
{
    if (!state.truth) return;
    if (layer.type == MASKED) {
        mask_ongpu(layer.batch*layer.inputs, state.input, state.truth);
    if (l.cost_type == MASKED) {
        mask_ongpu(l.batch*l.inputs, state.input, state.truth);
    }
    
    copy_ongpu(layer.batch*layer.inputs, state.truth, 1, layer.delta_gpu, 1);
    axpy_ongpu(layer.batch*layer.inputs, -1, state.input, 1, layer.delta_gpu, 1);
    copy_ongpu(l.batch*l.inputs, state.truth, 1, l.delta_gpu, 1);
    axpy_ongpu(l.batch*l.inputs, -1, state.input, 1, l.delta_gpu, 1);
    cuda_pull_array(layer.delta_gpu, layer.delta, layer.batch*layer.inputs);
    *(layer.output) = dot_cpu(layer.batch*layer.inputs, layer.delta, 1, layer.delta, 1);
    cuda_pull_array(l.delta_gpu, l.delta, l.batch*l.inputs);
    *(l.output) = dot_cpu(l.batch*l.inputs, l.delta, 1, l.delta, 1);
}
void backward_cost_layer_gpu(const cost_layer layer, network_state state)
void backward_cost_layer_gpu(const cost_layer l, network_state state)
{
    copy_ongpu(layer.batch*layer.inputs, layer.delta_gpu, 1, state.delta, 1);
    copy_ongpu(l.batch*l.inputs, l.delta_gpu, 1, state.delta, 1);
}
#endif
src/cost_layer.h
@@ -1,33 +1,19 @@
#ifndef COST_LAYER_H
#define COST_LAYER_H
#include "params.h"
#include "layer.h"
typedef enum{
    SSE, MASKED
} COST_TYPE;
typedef struct {
    int inputs;
    int batch;
    int coords;
    int classes;
    float *delta;
    float *output;
    COST_TYPE type;
    #ifdef GPU
    float * delta_gpu;
    #endif
} cost_layer;
typedef layer cost_layer;
COST_TYPE get_cost_type(char *s);
char *get_cost_string(COST_TYPE a);
cost_layer *make_cost_layer(int batch, int inputs, COST_TYPE type);
void forward_cost_layer(const cost_layer layer, network_state state);
void backward_cost_layer(const cost_layer layer, network_state state);
cost_layer make_cost_layer(int batch, int inputs, COST_TYPE type);
void forward_cost_layer(const cost_layer l, network_state state);
void backward_cost_layer(const cost_layer l, network_state state);
#ifdef GPU
void forward_cost_layer_gpu(cost_layer layer, network_state state);
void backward_cost_layer_gpu(const cost_layer layer, network_state state);
void forward_cost_layer_gpu(cost_layer l, network_state state);
void backward_cost_layer_gpu(const cost_layer l, network_state state);
#endif
#endif
src/crop_layer.c
@@ -2,63 +2,69 @@
#include "cuda.h"
#include <stdio.h>
image get_crop_image(crop_layer layer)
image get_crop_image(crop_layer l)
{
    int h = layer.crop_height;
    int w = layer.crop_width;
    int c = layer.c;
    return float_to_image(w,h,c,layer.output);
    int h = l.out_h;
    int w = l.out_w;
    int c = l.out_c;
    return float_to_image(w,h,c,l.output);
}
crop_layer *make_crop_layer(int batch, int h, int w, int c, int crop_height, int crop_width, int flip, float angle, float saturation, float exposure)
crop_layer make_crop_layer(int batch, int h, int w, int c, int crop_height, int crop_width, int flip, float angle, float saturation, float exposure)
{
    fprintf(stderr, "Crop Layer: %d x %d -> %d x %d x %d image\n", h,w,crop_height,crop_width,c);
    crop_layer *layer = calloc(1, sizeof(crop_layer));
    layer->batch = batch;
    layer->h = h;
    layer->w = w;
    layer->c = c;
    layer->flip = flip;
    layer->angle = angle;
    layer->saturation = saturation;
    layer->exposure = exposure;
    layer->crop_width = crop_width;
    layer->crop_height = crop_height;
    layer->output = calloc(crop_width*crop_height * c*batch, sizeof(float));
    crop_layer l = {0};
    l.type = CROP;
    l.batch = batch;
    l.h = h;
    l.w = w;
    l.c = c;
    l.flip = flip;
    l.angle = angle;
    l.saturation = saturation;
    l.exposure = exposure;
    l.crop_width = crop_width;
    l.crop_height = crop_height;
    l.out_w = crop_width;
    l.out_h = crop_height;
    l.out_c = c;
    l.inputs = l.w * l.h * l.c;
    l.outputs = l.out_w * l.out_h * l.out_c;
    l.output = calloc(crop_width*crop_height * c*batch, sizeof(float));
    #ifdef GPU
    layer->output_gpu = cuda_make_array(layer->output, crop_width*crop_height*c*batch);
    layer->rand_gpu = cuda_make_array(0, layer->batch*8);
    l.output_gpu = cuda_make_array(l.output, crop_width*crop_height*c*batch);
    l.rand_gpu = cuda_make_array(0, l.batch*8);
    #endif
    return layer;
    return l;
}
void forward_crop_layer(const crop_layer layer, network_state state)
void forward_crop_layer(const crop_layer l, network_state state)
{
    int i,j,c,b,row,col;
    int index;
    int count = 0;
    int flip = (layer.flip && rand()%2);
    int dh = rand()%(layer.h - layer.crop_height + 1);
    int dw = rand()%(layer.w - layer.crop_width + 1);
    int flip = (l.flip && rand()%2);
    int dh = rand()%(l.h - l.crop_height + 1);
    int dw = rand()%(l.w - l.crop_width + 1);
    float scale = 2;
    float trans = -1;
    if(!state.train){
        flip = 0;
        dh = (layer.h - layer.crop_height)/2;
        dw = (layer.w - layer.crop_width)/2;
        dh = (l.h - l.crop_height)/2;
        dw = (l.w - l.crop_width)/2;
    }
    for(b = 0; b < layer.batch; ++b){
        for(c = 0; c < layer.c; ++c){
            for(i = 0; i < layer.crop_height; ++i){
                for(j = 0; j < layer.crop_width; ++j){
    for(b = 0; b < l.batch; ++b){
        for(c = 0; c < l.c; ++c){
            for(i = 0; i < l.crop_height; ++i){
                for(j = 0; j < l.crop_width; ++j){
                    if(flip){
                        col = layer.w - dw - j - 1;
                        col = l.w - dw - j - 1;
                    }else{
                        col = j + dw;
                    }
                    row = i + dh;
                    index = col+layer.w*(row+layer.h*(c + layer.c*b));
                    layer.output[count++] = state.input[index]*scale + trans;
                    index = col+l.w*(row+l.h*(c + l.c*b));
                    l.output[count++] = state.input[index]*scale + trans;
                }
            }
        }
src/crop_layer.h
@@ -3,29 +3,16 @@
#include "image.h"
#include "params.h"
#include "layer.h"
typedef struct {
    int batch;
    int h,w,c;
    int crop_width;
    int crop_height;
    int flip;
    float angle;
    float saturation;
    float exposure;
    float *output;
#ifdef GPU
    float *output_gpu;
    float *rand_gpu;
#endif
} crop_layer;
typedef layer crop_layer;
image get_crop_image(crop_layer layer);
crop_layer *make_crop_layer(int batch, int h, int w, int c, int crop_height, int crop_width, int flip, float angle, float saturation, float exposure);
void forward_crop_layer(const crop_layer layer, network_state state);
image get_crop_image(crop_layer l);
crop_layer make_crop_layer(int batch, int h, int w, int c, int crop_height, int crop_width, int flip, float angle, float saturation, float exposure);
void forward_crop_layer(const crop_layer l, network_state state);
#ifdef GPU
void forward_crop_layer_gpu(crop_layer layer, network_state state);
void forward_crop_layer_gpu(crop_layer l, network_state state);
#endif
#endif
src/darknet.c
@@ -72,15 +72,6 @@
    save_weights(net, outfile);
}
void convert(char *cfgfile, char *outfile, char *weightfile)
{
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    save_network(net, outfile);
}
void visualize(char *cfgfile, char *weightfile)
{
    network net = parse_network_cfg(cfgfile);
@@ -120,8 +111,6 @@
        run_captcha(argc, argv);
    } else if (0 == strcmp(argv[1], "change")){
        change_rate(argv[2], atof(argv[3]), (argc > 4) ? atof(argv[4]) : 0);
    } else if (0 == strcmp(argv[1], "convert")){
        convert(argv[2], argv[3], (argc > 4) ? argv[4] : 0);
    } else if (0 == strcmp(argv[1], "partial")){
        partial(argv[2], argv[3], argv[4], atoi(argv[5]));
    } else if (0 == strcmp(argv[1], "visualize")){
src/data.c
@@ -174,7 +174,7 @@
        }
        int index = (i+j*num_boxes)*(4+classes+background);
        if(truth[index+classes+background+2]) continue;
        //if(truth[index+classes+background+2]) continue;
        if(background) truth[index++] = 0;
        truth[index+id] = 1;
        index += classes;
src/deconvolutional_layer.c
@@ -8,172 +8,179 @@
#include <stdio.h>
#include <time.h>
int deconvolutional_out_height(deconvolutional_layer layer)
int deconvolutional_out_height(deconvolutional_layer l)
{
    int h = layer.stride*(layer.h - 1) + layer.size;
    int h = l.stride*(l.h - 1) + l.size;
    return h;
}
int deconvolutional_out_width(deconvolutional_layer layer)
int deconvolutional_out_width(deconvolutional_layer l)
{
    int w = layer.stride*(layer.w - 1) + layer.size;
    int w = l.stride*(l.w - 1) + l.size;
    return w;
}
int deconvolutional_out_size(deconvolutional_layer layer)
int deconvolutional_out_size(deconvolutional_layer l)
{
    return deconvolutional_out_height(layer) * deconvolutional_out_width(layer);
    return deconvolutional_out_height(l) * deconvolutional_out_width(l);
}
image get_deconvolutional_image(deconvolutional_layer layer)
image get_deconvolutional_image(deconvolutional_layer l)
{
    int h,w,c;
    h = deconvolutional_out_height(layer);
    w = deconvolutional_out_width(layer);
    c = layer.n;
    return float_to_image(w,h,c,layer.output);
    h = deconvolutional_out_height(l);
    w = deconvolutional_out_width(l);
    c = l.n;
    return float_to_image(w,h,c,l.output);
}
image get_deconvolutional_delta(deconvolutional_layer layer)
image get_deconvolutional_delta(deconvolutional_layer l)
{
    int h,w,c;
    h = deconvolutional_out_height(layer);
    w = deconvolutional_out_width(layer);
    c = layer.n;
    return float_to_image(w,h,c,layer.delta);
    h = deconvolutional_out_height(l);
    w = deconvolutional_out_width(l);
    c = l.n;
    return float_to_image(w,h,c,l.delta);
}
deconvolutional_layer *make_deconvolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, ACTIVATION activation)
deconvolutional_layer make_deconvolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, ACTIVATION activation)
{
    int i;
    deconvolutional_layer *layer = calloc(1, sizeof(deconvolutional_layer));
    deconvolutional_layer l = {0};
    l.type = DECONVOLUTIONAL;
    layer->h = h;
    layer->w = w;
    layer->c = c;
    layer->n = n;
    layer->batch = batch;
    layer->stride = stride;
    layer->size = size;
    l.h = h;
    l.w = w;
    l.c = c;
    l.n = n;
    l.batch = batch;
    l.stride = stride;
    l.size = size;
    layer->filters = calloc(c*n*size*size, sizeof(float));
    layer->filter_updates = calloc(c*n*size*size, sizeof(float));
    l.filters = calloc(c*n*size*size, sizeof(float));
    l.filter_updates = calloc(c*n*size*size, sizeof(float));
    layer->biases = calloc(n, sizeof(float));
    layer->bias_updates = calloc(n, sizeof(float));
    l.biases = calloc(n, sizeof(float));
    l.bias_updates = calloc(n, sizeof(float));
    float scale = 1./sqrt(size*size*c);
    for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = scale*rand_normal();
    for(i = 0; i < c*n*size*size; ++i) l.filters[i] = scale*rand_normal();
    for(i = 0; i < n; ++i){
        layer->biases[i] = scale;
        l.biases[i] = scale;
    }
    int out_h = deconvolutional_out_height(*layer);
    int out_w = deconvolutional_out_width(*layer);
    int out_h = deconvolutional_out_height(l);
    int out_w = deconvolutional_out_width(l);
    layer->col_image = calloc(h*w*size*size*n, sizeof(float));
    layer->output = calloc(layer->batch*out_h * out_w * n, sizeof(float));
    layer->delta  = calloc(layer->batch*out_h * out_w * n, sizeof(float));
    l.out_h = out_h;
    l.out_w = out_w;
    l.out_c = n;
    l.outputs = l.out_w * l.out_h * l.out_c;
    l.inputs = l.w * l.h * l.c;
    l.col_image = calloc(h*w*size*size*n, sizeof(float));
    l.output = calloc(l.batch*out_h * out_w * n, sizeof(float));
    l.delta  = calloc(l.batch*out_h * out_w * n, sizeof(float));
    #ifdef GPU
    layer->filters_gpu = cuda_make_array(layer->filters, c*n*size*size);
    layer->filter_updates_gpu = cuda_make_array(layer->filter_updates, c*n*size*size);
    l.filters_gpu = cuda_make_array(l.filters, c*n*size*size);
    l.filter_updates_gpu = cuda_make_array(l.filter_updates, c*n*size*size);
    layer->biases_gpu = cuda_make_array(layer->biases, n);
    layer->bias_updates_gpu = cuda_make_array(layer->bias_updates, n);
    l.biases_gpu = cuda_make_array(l.biases, n);
    l.bias_updates_gpu = cuda_make_array(l.bias_updates, n);
    layer->col_image_gpu = cuda_make_array(layer->col_image, h*w*size*size*n);
    layer->delta_gpu = cuda_make_array(layer->delta, layer->batch*out_h*out_w*n);
    layer->output_gpu = cuda_make_array(layer->output, layer->batch*out_h*out_w*n);
    l.col_image_gpu = cuda_make_array(l.col_image, h*w*size*size*n);
    l.delta_gpu = cuda_make_array(l.delta, l.batch*out_h*out_w*n);
    l.output_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
    #endif
    layer->activation = activation;
    l.activation = activation;
    fprintf(stderr, "Deconvolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n);
    return layer;
    return l;
}
void resize_deconvolutional_layer(deconvolutional_layer *layer, int h, int w)
void resize_deconvolutional_layer(deconvolutional_layer *l, int h, int w)
{
    layer->h = h;
    layer->w = w;
    int out_h = deconvolutional_out_height(*layer);
    int out_w = deconvolutional_out_width(*layer);
    l->h = h;
    l->w = w;
    int out_h = deconvolutional_out_height(*l);
    int out_w = deconvolutional_out_width(*l);
    layer->col_image = realloc(layer->col_image,
                                out_h*out_w*layer->size*layer->size*layer->c*sizeof(float));
    layer->output = realloc(layer->output,
                                layer->batch*out_h * out_w * layer->n*sizeof(float));
    layer->delta  = realloc(layer->delta,
                                layer->batch*out_h * out_w * layer->n*sizeof(float));
    l->col_image = realloc(l->col_image,
                                out_h*out_w*l->size*l->size*l->c*sizeof(float));
    l->output = realloc(l->output,
                                l->batch*out_h * out_w * l->n*sizeof(float));
    l->delta  = realloc(l->delta,
                                l->batch*out_h * out_w * l->n*sizeof(float));
    #ifdef GPU
    cuda_free(layer->col_image_gpu);
    cuda_free(layer->delta_gpu);
    cuda_free(layer->output_gpu);
    cuda_free(l->col_image_gpu);
    cuda_free(l->delta_gpu);
    cuda_free(l->output_gpu);
    layer->col_image_gpu = cuda_make_array(layer->col_image, out_h*out_w*layer->size*layer->size*layer->c);
    layer->delta_gpu = cuda_make_array(layer->delta, layer->batch*out_h*out_w*layer->n);
    layer->output_gpu = cuda_make_array(layer->output, layer->batch*out_h*out_w*layer->n);
    l->col_image_gpu = cuda_make_array(l->col_image, out_h*out_w*l->size*l->size*l->c);
    l->delta_gpu = cuda_make_array(l->delta, l->batch*out_h*out_w*l->n);
    l->output_gpu = cuda_make_array(l->output, l->batch*out_h*out_w*l->n);
    #endif
}
void forward_deconvolutional_layer(const deconvolutional_layer layer, network_state state)
void forward_deconvolutional_layer(const deconvolutional_layer l, network_state state)
{
    int i;
    int out_h = deconvolutional_out_height(layer);
    int out_w = deconvolutional_out_width(layer);
    int out_h = deconvolutional_out_height(l);
    int out_w = deconvolutional_out_width(l);
    int size = out_h*out_w;
    int m = layer.size*layer.size*layer.n;
    int n = layer.h*layer.w;
    int k = layer.c;
    int m = l.size*l.size*l.n;
    int n = l.h*l.w;
    int k = l.c;
    bias_output(layer.output, layer.biases, layer.batch, layer.n, size);
    bias_output(l.output, l.biases, l.batch, l.n, size);
    for(i = 0; i < layer.batch; ++i){
        float *a = layer.filters;
        float *b = state.input + i*layer.c*layer.h*layer.w;
        float *c = layer.col_image;
    for(i = 0; i < l.batch; ++i){
        float *a = l.filters;
        float *b = state.input + i*l.c*l.h*l.w;
        float *c = l.col_image;
        gemm(1,0,m,n,k,1,a,m,b,n,0,c,n);
        col2im_cpu(c, layer.n, out_h, out_w, layer.size, layer.stride, 0, layer.output+i*layer.n*size);
        col2im_cpu(c, l.n, out_h, out_w, l.size, l.stride, 0, l.output+i*l.n*size);
    }
    activate_array(layer.output, layer.batch*layer.n*size, layer.activation);
    activate_array(l.output, l.batch*l.n*size, l.activation);
}
void backward_deconvolutional_layer(deconvolutional_layer layer, network_state state)
void backward_deconvolutional_layer(deconvolutional_layer l, network_state state)
{
    float alpha = 1./layer.batch;
    int out_h = deconvolutional_out_height(layer);
    int out_w = deconvolutional_out_width(layer);
    float alpha = 1./l.batch;
    int out_h = deconvolutional_out_height(l);
    int out_w = deconvolutional_out_width(l);
    int size = out_h*out_w;
    int i;
    gradient_array(layer.output, size*layer.n*layer.batch, layer.activation, layer.delta);
    backward_bias(layer.bias_updates, layer.delta, layer.batch, layer.n, size);
    gradient_array(l.output, size*l.n*l.batch, l.activation, l.delta);
    backward_bias(l.bias_updates, l.delta, l.batch, l.n, size);
    if(state.delta) memset(state.delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
    if(state.delta) memset(state.delta, 0, l.batch*l.h*l.w*l.c*sizeof(float));
    for(i = 0; i < layer.batch; ++i){
        int m = layer.c;
        int n = layer.size*layer.size*layer.n;
        int k = layer.h*layer.w;
    for(i = 0; i < l.batch; ++i){
        int m = l.c;
        int n = l.size*l.size*l.n;
        int k = l.h*l.w;
        float *a = state.input + i*m*n;
        float *b = layer.col_image;
        float *c = layer.filter_updates;
        float *b = l.col_image;
        float *c = l.filter_updates;
        im2col_cpu(layer.delta + i*layer.n*size, layer.n, out_h, out_w,
                layer.size, layer.stride, 0, b);
        im2col_cpu(l.delta + i*l.n*size, l.n, out_h, out_w,
                l.size, l.stride, 0, b);
        gemm(0,1,m,n,k,alpha,a,k,b,k,1,c,n);
        if(state.delta){
            int m = layer.c;
            int n = layer.h*layer.w;
            int k = layer.size*layer.size*layer.n;
            int m = l.c;
            int n = l.h*l.w;
            int k = l.size*l.size*l.n;
            float *a = layer.filters;
            float *b = layer.col_image;
            float *a = l.filters;
            float *b = l.col_image;
            float *c = state.delta + i*n*m;
            gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
@@ -181,15 +188,15 @@
    }
}
void update_deconvolutional_layer(deconvolutional_layer layer, float learning_rate, float momentum, float decay)
void update_deconvolutional_layer(deconvolutional_layer l, float learning_rate, float momentum, float decay)
{
    int size = layer.size*layer.size*layer.c*layer.n;
    axpy_cpu(layer.n, learning_rate, layer.bias_updates, 1, layer.biases, 1);
    scal_cpu(layer.n, momentum, layer.bias_updates, 1);
    int size = l.size*l.size*l.c*l.n;
    axpy_cpu(l.n, learning_rate, l.bias_updates, 1, l.biases, 1);
    scal_cpu(l.n, momentum, l.bias_updates, 1);
    axpy_cpu(size, -decay, layer.filters, 1, layer.filter_updates, 1);
    axpy_cpu(size, learning_rate, layer.filter_updates, 1, layer.filters, 1);
    scal_cpu(size, momentum, layer.filter_updates, 1);
    axpy_cpu(size, -decay, l.filters, 1, l.filter_updates, 1);
    axpy_cpu(size, learning_rate, l.filter_updates, 1, l.filters, 1);
    scal_cpu(size, momentum, l.filter_updates, 1);
}
src/deconvolutional_layer.h
@@ -5,37 +5,9 @@
#include "params.h"
#include "image.h"
#include "activations.h"
#include "layer.h"
typedef struct {
    int batch;
    int h,w,c;
    int n;
    int size;
    int stride;
    float *filters;
    float *filter_updates;
    float *biases;
    float *bias_updates;
    float *col_image;
    float *delta;
    float *output;
    #ifdef GPU
    float * filters_gpu;
    float * filter_updates_gpu;
    float * biases_gpu;
    float * bias_updates_gpu;
    float * col_image_gpu;
    float * delta_gpu;
    float * output_gpu;
    #endif
    ACTIVATION activation;
} deconvolutional_layer;
typedef layer deconvolutional_layer;
#ifdef GPU
void forward_deconvolutional_layer_gpu(deconvolutional_layer layer, network_state state);
@@ -45,7 +17,7 @@
void pull_deconvolutional_layer(deconvolutional_layer layer);
#endif
deconvolutional_layer *make_deconvolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, ACTIVATION activation);
deconvolutional_layer make_deconvolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, ACTIVATION activation);
void resize_deconvolutional_layer(deconvolutional_layer *layer, int h, int w);
void forward_deconvolutional_layer(const deconvolutional_layer layer, network_state state);
void update_deconvolutional_layer(deconvolutional_layer layer, float learning_rate, float momentum, float decay);
src/detection.c
@@ -115,6 +115,7 @@
        time=clock();
        float loss = train_network(net, train);
        //TODO
        float *out = get_network_output_gpu(net);
        image im = float_to_image(net.w, net.h, 3, train.X.vals[127]);
        image copy = copy_image(im);
@@ -149,7 +150,7 @@
    if(weightfile){
        load_weights(&net, weightfile);
    }
    detection_layer *layer = get_network_detection_layer(net);
    detection_layer layer = get_network_detection_layer(net);
    net.learning_rate = 0;
    net.decay = 0;
    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
@@ -157,9 +158,9 @@
    int i = net.seen/imgs;
    data train, buffer;
    int classes = layer->classes;
    int background = layer->background;
    int side = sqrt(get_detection_layer_locations(*layer));
    int classes = layer.classes;
    int background = layer.background;
    int side = sqrt(get_detection_layer_locations(layer));
    char **paths;
    list *plist;
@@ -174,7 +175,7 @@
    paths = (char **)list_to_array(plist);
    pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.w, net.h, side, side, background, &buffer);
    clock_t time;
    cost_layer clayer = *((cost_layer *)net.layers[net.n-1]);
    cost_layer clayer = net.layers[net.n-1];
    while(1){
        i += 1;
        time=clock();
@@ -235,15 +236,15 @@
    if(weightfile){
        load_weights(&net, weightfile);
    }
    detection_layer *layer = get_network_detection_layer(net);
    detection_layer layer = get_network_detection_layer(net);
    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
    int imgs = 128;
    int i = net.seen/imgs;
    data train, buffer;
    int classes = layer->classes;
    int background = layer->background;
    int side = sqrt(get_detection_layer_locations(*layer));
    int classes = layer.classes;
    int background = layer.background;
    int side = sqrt(get_detection_layer_locations(layer));
    char **paths;
    list *plist;
@@ -325,7 +326,7 @@
    if(weightfile){
        load_weights(&net, weightfile);
    }
    detection_layer *layer = get_network_detection_layer(net);
    detection_layer layer = get_network_detection_layer(net);
    fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
    srand(time(0));
@@ -336,10 +337,10 @@
    //list *plist = get_paths("/home/pjreddie/data/voc/train.txt");
    char **paths = (char **)list_to_array(plist);
    int classes = layer->classes;
    int nuisance = layer->nuisance;
    int background = (layer->background && !nuisance);
    int num_boxes = sqrt(get_detection_layer_locations(*layer));
    int classes = layer.classes;
    int nuisance = layer.nuisance;
    int background = (layer.background && !nuisance);
    int num_boxes = sqrt(get_detection_layer_locations(layer));
    int per_box = 4+classes+background+nuisance;
    int num_output = num_boxes*num_boxes*per_box;
@@ -393,7 +394,7 @@
    load_weights(&post, "/home/pjreddie/imagenet_backup/localize_1000.weights");
    set_batch_network(&post, 1);
    detection_layer *layer = get_network_detection_layer(net);
    detection_layer layer = get_network_detection_layer(net);
    fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
    srand(time(0));
@@ -404,10 +405,10 @@
    //list *plist = get_paths("/home/pjreddie/data/voc/train.txt");
    char **paths = (char **)list_to_array(plist);
    int classes = layer->classes;
    int nuisance = layer->nuisance;
    int background = (layer->background && !nuisance);
    int num_boxes = sqrt(get_detection_layer_locations(*layer));
    int classes = layer.classes;
    int nuisance = layer.nuisance;
    int background = (layer.background && !nuisance);
    int num_boxes = sqrt(get_detection_layer_locations(layer));
    int per_box = 4+classes+background+nuisance;
src/detection_layer.c
@@ -8,47 +8,49 @@
#include <string.h>
#include <stdlib.h>
int get_detection_layer_locations(detection_layer layer)
int get_detection_layer_locations(detection_layer l)
{
    return layer.inputs / (layer.classes+layer.coords+layer.rescore+layer.background);
    return l.inputs / (l.classes+l.coords+l.rescore+l.background);
}
int get_detection_layer_output_size(detection_layer layer)
int get_detection_layer_output_size(detection_layer l)
{
    return get_detection_layer_locations(layer)*(layer.background + layer.classes + layer.coords);
    return get_detection_layer_locations(l)*(l.background + l.classes + l.coords);
}
detection_layer *make_detection_layer(int batch, int inputs, int classes, int coords, int rescore, int background, int nuisance)
detection_layer make_detection_layer(int batch, int inputs, int classes, int coords, int rescore, int background, int nuisance)
{
    detection_layer *layer = calloc(1, sizeof(detection_layer));
    detection_layer l = {0};
    l.type = DETECTION;
    
    layer->batch = batch;
    layer->inputs = inputs;
    layer->classes = classes;
    layer->coords = coords;
    layer->rescore = rescore;
    layer->nuisance = nuisance;
    layer->cost = calloc(1, sizeof(float));
    layer->does_cost=1;
    layer->background = background;
    int outputs = get_detection_layer_output_size(*layer);
    layer->output = calloc(batch*outputs, sizeof(float));
    layer->delta = calloc(batch*outputs, sizeof(float));
    l.batch = batch;
    l.inputs = inputs;
    l.classes = classes;
    l.coords = coords;
    l.rescore = rescore;
    l.nuisance = nuisance;
    l.cost = calloc(1, sizeof(float));
    l.does_cost=1;
    l.background = background;
    int outputs = get_detection_layer_output_size(l);
    l.outputs = outputs;
    l.output = calloc(batch*outputs, sizeof(float));
    l.delta = calloc(batch*outputs, sizeof(float));
    #ifdef GPU
    layer->output_gpu = cuda_make_array(0, batch*outputs);
    layer->delta_gpu = cuda_make_array(0, batch*outputs);
    l.output_gpu = cuda_make_array(0, batch*outputs);
    l.delta_gpu = cuda_make_array(0, batch*outputs);
    #endif
    fprintf(stderr, "Detection Layer\n");
    srand(0);
    return layer;
    return l;
}
void dark_zone(detection_layer layer, int class, int start, network_state state)
void dark_zone(detection_layer l, int class, int start, network_state state)
{
    int index = start+layer.background+class;
    int size = layer.classes+layer.coords+layer.background;
    int index = start+l.background+class;
    int size = l.classes+l.coords+l.background;
    int location = (index%(7*7*size)) / size ;
    int r = location / 7;
    int c = location % 7;
@@ -60,9 +62,9 @@
            if((c + dc) > 6 || (c + dc) < 0) continue;
            int di = (dr*7 + dc) * size;
            if(state.truth[index+di]) continue;
            layer.output[index + di] = 0;
            l.output[index + di] = 0;
            //if(!state.truth[start+di]) continue;
            //layer.output[start + di] = 1;
            //l.output[start + di] = 1;
        }
    }
}
@@ -299,47 +301,47 @@
    return dd;
}
void forward_detection_layer(const detection_layer layer, network_state state)
void forward_detection_layer(const detection_layer l, network_state state)
{
    int in_i = 0;
    int out_i = 0;
    int locations = get_detection_layer_locations(layer);
    int locations = get_detection_layer_locations(l);
    int i,j;
    for(i = 0; i < layer.batch*locations; ++i){
        int mask = (!state.truth || state.truth[out_i + layer.background + layer.classes + 2]);
    for(i = 0; i < l.batch*locations; ++i){
        int mask = (!state.truth || state.truth[out_i + l.background + l.classes + 2]);
        float scale = 1;
        if(layer.rescore) scale = state.input[in_i++];
        else if(layer.nuisance){
            layer.output[out_i++] = 1-state.input[in_i++];
        if(l.rescore) scale = state.input[in_i++];
        else if(l.nuisance){
            l.output[out_i++] = 1-state.input[in_i++];
            scale = mask;
        }
        else if(layer.background) layer.output[out_i++] = scale*state.input[in_i++];
        else if(l.background) l.output[out_i++] = scale*state.input[in_i++];
        for(j = 0; j < layer.classes; ++j){
            layer.output[out_i++] = scale*state.input[in_i++];
        for(j = 0; j < l.classes; ++j){
            l.output[out_i++] = scale*state.input[in_i++];
        }
        if(layer.nuisance){
        if(l.nuisance){
        }else if(layer.background){
            softmax_array(layer.output + out_i - layer.classes-layer.background, layer.classes+layer.background, layer.output + out_i - layer.classes-layer.background);
            activate_array(state.input+in_i, layer.coords, LOGISTIC);
        }else if(l.background){
            softmax_array(l.output + out_i - l.classes-l.background, l.classes+l.background, l.output + out_i - l.classes-l.background);
            activate_array(state.input+in_i, l.coords, LOGISTIC);
        }
        for(j = 0; j < layer.coords; ++j){
            layer.output[out_i++] = mask*state.input[in_i++];
        for(j = 0; j < l.coords; ++j){
            l.output[out_i++] = mask*state.input[in_i++];
        }
    }
    if(layer.does_cost && state.train && 0){
    if(l.does_cost && state.train && 0){
        int count = 0;
        float avg = 0;
        *(layer.cost) = 0;
        int size = get_detection_layer_output_size(layer) * layer.batch;
        memset(layer.delta, 0, size * sizeof(float));
        for (i = 0; i < layer.batch*locations; ++i) {
            int classes = layer.nuisance+layer.classes;
            int offset = i*(classes+layer.coords);
        *(l.cost) = 0;
        int size = get_detection_layer_output_size(l) * l.batch;
        memset(l.delta, 0, size * sizeof(float));
        for (i = 0; i < l.batch*locations; ++i) {
            int classes = l.nuisance+l.classes;
            int offset = i*(classes+l.coords);
            for (j = offset; j < offset+classes; ++j) {
                *(layer.cost) += pow(state.truth[j] - layer.output[j], 2);
                layer.delta[j] =  state.truth[j] - layer.output[j];
                *(l.cost) += pow(state.truth[j] - l.output[j], 2);
                l.delta[j] =  state.truth[j] - l.output[j];
            }
            box truth;
            truth.x = state.truth[j+0];
@@ -347,17 +349,17 @@
            truth.w = state.truth[j+2];
            truth.h = state.truth[j+3];
            box out;
            out.x = layer.output[j+0];
            out.y = layer.output[j+1];
            out.w = layer.output[j+2];
            out.h = layer.output[j+3];
            out.x = l.output[j+0];
            out.y = l.output[j+1];
            out.w = l.output[j+2];
            out.h = l.output[j+3];
            if(!(truth.w*truth.h)) continue;
            //printf("iou: %f\n", iou);
            dbox d = diou(out, truth);
            layer.delta[j+0] = d.dx;
            layer.delta[j+1] = d.dy;
            layer.delta[j+2] = d.dw;
            layer.delta[j+3] = d.dh;
            l.delta[j+0] = d.dx;
            l.delta[j+1] = d.dy;
            l.delta[j+2] = d.dw;
            l.delta[j+3] = d.dh;
            int sqr = 1;
            if(sqr){
@@ -367,7 +369,7 @@
                out.h *= out.h;
            }
            float iou = box_iou(truth, out);
            *(layer.cost) += pow((1-iou), 2);
            *(l.cost) += pow((1-iou), 2);
            avg += iou;
            ++count;
        }
@@ -375,24 +377,24 @@
    }
    /*
       int count = 0;
       for(i = 0; i < layer.batch*locations; ++i){
       for(j = 0; j < layer.classes+layer.background; ++j){
       printf("%f, ", layer.output[count++]);
       for(i = 0; i < l.batch*locations; ++i){
       for(j = 0; j < l.classes+l.background; ++j){
       printf("%f, ", l.output[count++]);
       }
       printf("\n");
       for(j = 0; j < layer.coords; ++j){
       printf("%f, ", layer.output[count++]);
       for(j = 0; j < l.coords; ++j){
       printf("%f, ", l.output[count++]);
       }
       printf("\n");
       }
     */
    /*
       if(layer.background || 1){
       for(i = 0; i < layer.batch*locations; ++i){
       int index = i*(layer.classes+layer.coords+layer.background);
       for(j= 0; j < layer.classes; ++j){
       if(state.truth[index+j+layer.background]){
//dark_zone(layer, j, index, state);
       if(l.background || 1){
       for(i = 0; i < l.batch*locations; ++i){
       int index = i*(l.classes+l.coords+l.background);
       for(j= 0; j < l.classes; ++j){
       if(state.truth[index+j+l.background]){
//dark_zone(l, j, index, state);
}
}
}
@@ -400,66 +402,66 @@
     */
}
void backward_detection_layer(const detection_layer layer, network_state state)
void backward_detection_layer(const detection_layer l, network_state state)
{
    int locations = get_detection_layer_locations(layer);
    int locations = get_detection_layer_locations(l);
    int i,j;
    int in_i = 0;
    int out_i = 0;
    for(i = 0; i < layer.batch*locations; ++i){
    for(i = 0; i < l.batch*locations; ++i){
        float scale = 1;
        float latent_delta = 0;
        if(layer.rescore) scale = state.input[in_i++];
        else if (layer.nuisance)   state.delta[in_i++] = -layer.delta[out_i++];
        else if (layer.background) state.delta[in_i++] = scale*layer.delta[out_i++];
        for(j = 0; j < layer.classes; ++j){
            latent_delta += state.input[in_i]*layer.delta[out_i];
            state.delta[in_i++] = scale*layer.delta[out_i++];
        if(l.rescore) scale = state.input[in_i++];
        else if (l.nuisance)   state.delta[in_i++] = -l.delta[out_i++];
        else if (l.background) state.delta[in_i++] = scale*l.delta[out_i++];
        for(j = 0; j < l.classes; ++j){
            latent_delta += state.input[in_i]*l.delta[out_i];
            state.delta[in_i++] = scale*l.delta[out_i++];
        }
        if (layer.nuisance) {
        if (l.nuisance) {
        }else if (layer.background) gradient_array(layer.output + out_i, layer.coords, LOGISTIC, layer.delta + out_i);
        for(j = 0; j < layer.coords; ++j){
            state.delta[in_i++] = layer.delta[out_i++];
        }else if (l.background) gradient_array(l.output + out_i, l.coords, LOGISTIC, l.delta + out_i);
        for(j = 0; j < l.coords; ++j){
            state.delta[in_i++] = l.delta[out_i++];
        }
        if(layer.rescore) state.delta[in_i-layer.coords-layer.classes-layer.rescore-layer.background] = latent_delta;
        if(l.rescore) state.delta[in_i-l.coords-l.classes-l.rescore-l.background] = latent_delta;
    }
}
#ifdef GPU
void forward_detection_layer_gpu(const detection_layer layer, network_state state)
void forward_detection_layer_gpu(const detection_layer l, network_state state)
{
    int outputs = get_detection_layer_output_size(layer);
    float *in_cpu = calloc(layer.batch*layer.inputs, sizeof(float));
    int outputs = get_detection_layer_output_size(l);
    float *in_cpu = calloc(l.batch*l.inputs, sizeof(float));
    float *truth_cpu = 0;
    if(state.truth){
        truth_cpu = calloc(layer.batch*outputs, sizeof(float));
        cuda_pull_array(state.truth, truth_cpu, layer.batch*outputs);
        truth_cpu = calloc(l.batch*outputs, sizeof(float));
        cuda_pull_array(state.truth, truth_cpu, l.batch*outputs);
    }
    cuda_pull_array(state.input, in_cpu, layer.batch*layer.inputs);
    cuda_pull_array(state.input, in_cpu, l.batch*l.inputs);
    network_state cpu_state;
    cpu_state.train = state.train;
    cpu_state.truth = truth_cpu;
    cpu_state.input = in_cpu;
    forward_detection_layer(layer, cpu_state);
    cuda_push_array(layer.output_gpu, layer.output, layer.batch*outputs);
    cuda_push_array(layer.delta_gpu, layer.delta, layer.batch*outputs);
    forward_detection_layer(l, cpu_state);
    cuda_push_array(l.output_gpu, l.output, l.batch*outputs);
    cuda_push_array(l.delta_gpu, l.delta, l.batch*outputs);
    free(cpu_state.input);
    if(cpu_state.truth) free(cpu_state.truth);
}
void backward_detection_layer_gpu(detection_layer layer, network_state state)
void backward_detection_layer_gpu(detection_layer l, network_state state)
{
    int outputs = get_detection_layer_output_size(layer);
    int outputs = get_detection_layer_output_size(l);
    float *in_cpu =    calloc(layer.batch*layer.inputs, sizeof(float));
    float *delta_cpu = calloc(layer.batch*layer.inputs, sizeof(float));
    float *in_cpu    = calloc(l.batch*l.inputs, sizeof(float));
    float *delta_cpu = calloc(l.batch*l.inputs, sizeof(float));
    float *truth_cpu = 0;
    if(state.truth){
        truth_cpu = calloc(layer.batch*outputs, sizeof(float));
        cuda_pull_array(state.truth, truth_cpu, layer.batch*outputs);
        truth_cpu = calloc(l.batch*outputs, sizeof(float));
        cuda_pull_array(state.truth, truth_cpu, l.batch*outputs);
    }
    network_state cpu_state;
    cpu_state.train = state.train;
@@ -467,10 +469,10 @@
    cpu_state.truth = truth_cpu;
    cpu_state.delta = delta_cpu;
    cuda_pull_array(state.input, in_cpu, layer.batch*layer.inputs);
    cuda_pull_array(layer.delta_gpu, layer.delta, layer.batch*outputs);
    backward_detection_layer(layer, cpu_state);
    cuda_push_array(state.delta, delta_cpu, layer.batch*layer.inputs);
    cuda_pull_array(state.input, in_cpu, l.batch*l.inputs);
    cuda_pull_array(l.delta_gpu, l.delta, l.batch*outputs);
    backward_detection_layer(l, cpu_state);
    cuda_push_array(state.delta, delta_cpu, l.batch*l.inputs);
    free(in_cpu);
    free(delta_cpu);
src/detection_layer.h
@@ -2,34 +2,19 @@
#define DETECTION_LAYER_H
#include "params.h"
#include "layer.h"
typedef struct {
    int batch;
    int inputs;
    int classes;
    int coords;
    int background;
    int rescore;
    int nuisance;
    int does_cost;
    float *cost;
    float *output;
    float *delta;
    #ifdef GPU
    float * output_gpu;
    float * delta_gpu;
    #endif
} detection_layer;
typedef layer detection_layer;
detection_layer *make_detection_layer(int batch, int inputs, int classes, int coords, int rescore, int background, int nuisance);
void forward_detection_layer(const detection_layer layer, network_state state);
void backward_detection_layer(const detection_layer layer, network_state state);
int get_detection_layer_output_size(detection_layer layer);
int get_detection_layer_locations(detection_layer layer);
detection_layer make_detection_layer(int batch, int inputs, int classes, int coords, int rescore, int background, int nuisance);
void forward_detection_layer(const detection_layer l, network_state state);
void backward_detection_layer(const detection_layer l, network_state state);
int get_detection_layer_output_size(detection_layer l);
int get_detection_layer_locations(detection_layer l);
#ifdef GPU
void forward_detection_layer_gpu(const detection_layer layer, network_state state);
void backward_detection_layer_gpu(detection_layer layer, network_state state);
void forward_detection_layer_gpu(const detection_layer l, network_state state);
void backward_detection_layer_gpu(detection_layer l, network_state state);
#endif
#endif
src/dropout_layer.c
@@ -5,51 +5,53 @@
#include <stdlib.h>
#include <stdio.h>
dropout_layer *make_dropout_layer(int batch, int inputs, float probability)
dropout_layer make_dropout_layer(int batch, int inputs, float probability)
{
    fprintf(stderr, "Dropout Layer: %d inputs, %f probability\n", inputs, probability);
    dropout_layer *layer = calloc(1, sizeof(dropout_layer));
    layer->probability = probability;
    layer->inputs = inputs;
    layer->batch = batch;
    layer->rand = calloc(inputs*batch, sizeof(float));
    layer->scale = 1./(1.-probability);
    dropout_layer l = {0};
    l.type = DROPOUT;
    l.probability = probability;
    l.inputs = inputs;
    l.outputs = inputs;
    l.batch = batch;
    l.rand = calloc(inputs*batch, sizeof(float));
    l.scale = 1./(1.-probability);
    #ifdef GPU
    layer->rand_gpu = cuda_make_array(layer->rand, inputs*batch);
    l.rand_gpu = cuda_make_array(l.rand, inputs*batch);
    #endif
    return layer;
    return l;
void resize_dropout_layer(dropout_layer *layer, int inputs)
void resize_dropout_layer(dropout_layer *l, int inputs)
{
    layer->rand = realloc(layer->rand, layer->inputs*layer->batch*sizeof(float));
    l->rand = realloc(l->rand, l->inputs*l->batch*sizeof(float));
    #ifdef GPU
    cuda_free(layer->rand_gpu);
    cuda_free(l->rand_gpu);
    layer->rand_gpu = cuda_make_array(layer->rand, inputs*layer->batch);
    l->rand_gpu = cuda_make_array(l->rand, inputs*l->batch);
    #endif
}
void forward_dropout_layer(dropout_layer layer, network_state state)
void forward_dropout_layer(dropout_layer l, network_state state)
{
    int i;
    if (!state.train) return;
    for(i = 0; i < layer.batch * layer.inputs; ++i){
    for(i = 0; i < l.batch * l.inputs; ++i){
        float r = rand_uniform();
        layer.rand[i] = r;
        if(r < layer.probability) state.input[i] = 0;
        else state.input[i] *= layer.scale;
        l.rand[i] = r;
        if(r < l.probability) state.input[i] = 0;
        else state.input[i] *= l.scale;
    }
}
void backward_dropout_layer(dropout_layer layer, network_state state)
void backward_dropout_layer(dropout_layer l, network_state state)
{
    int i;
    if(!state.delta) return;
    for(i = 0; i < layer.batch * layer.inputs; ++i){
        float r = layer.rand[i];
        if(r < layer.probability) state.delta[i] = 0;
        else state.delta[i] *= layer.scale;
    for(i = 0; i < l.batch * l.inputs; ++i){
        float r = l.rand[i];
        if(r < l.probability) state.delta[i] = 0;
        else state.delta[i] *= l.scale;
    }
}
src/dropout_layer.h
@@ -1,27 +1,20 @@
#ifndef DROPOUT_LAYER_H
#define DROPOUT_LAYER_H
#include "params.h"
#include "layer.h"
typedef struct{
    int batch;
    int inputs;
    float probability;
    float scale;
    float *rand;
    #ifdef GPU
    float * rand_gpu;
    #endif
} dropout_layer;
typedef layer dropout_layer;
dropout_layer *make_dropout_layer(int batch, int inputs, float probability);
dropout_layer make_dropout_layer(int batch, int inputs, float probability);
void forward_dropout_layer(dropout_layer layer, network_state state);
void backward_dropout_layer(dropout_layer layer, network_state state);
void resize_dropout_layer(dropout_layer *layer, int inputs);
void forward_dropout_layer(dropout_layer l, network_state state);
void backward_dropout_layer(dropout_layer l, network_state state);
void resize_dropout_layer(dropout_layer *l, int inputs);
#ifdef GPU
void forward_dropout_layer_gpu(dropout_layer layer, network_state state);
void backward_dropout_layer_gpu(dropout_layer layer, network_state state);
void forward_dropout_layer_gpu(dropout_layer l, network_state state);
void backward_dropout_layer_gpu(dropout_layer l, network_state state);
#endif
#endif
src/maxpool_layer.c
@@ -2,109 +2,115 @@
#include "cuda.h"
#include <stdio.h>
image get_maxpool_image(maxpool_layer layer)
image get_maxpool_image(maxpool_layer l)
{
    int h = (layer.h-1)/layer.stride + 1;
    int w = (layer.w-1)/layer.stride + 1;
    int c = layer.c;
    return float_to_image(w,h,c,layer.output);
    int h = (l.h-1)/l.stride + 1;
    int w = (l.w-1)/l.stride + 1;
    int c = l.c;
    return float_to_image(w,h,c,l.output);
}
image get_maxpool_delta(maxpool_layer layer)
image get_maxpool_delta(maxpool_layer l)
{
    int h = (layer.h-1)/layer.stride + 1;
    int w = (layer.w-1)/layer.stride + 1;
    int c = layer.c;
    return float_to_image(w,h,c,layer.delta);
    int h = (l.h-1)/l.stride + 1;
    int w = (l.w-1)/l.stride + 1;
    int c = l.c;
    return float_to_image(w,h,c,l.delta);
}
maxpool_layer *make_maxpool_layer(int batch, int h, int w, int c, int size, int stride)
maxpool_layer make_maxpool_layer(int batch, int h, int w, int c, int size, int stride)
{
    fprintf(stderr, "Maxpool Layer: %d x %d x %d image, %d size, %d stride\n", h,w,c,size,stride);
    maxpool_layer *layer = calloc(1, sizeof(maxpool_layer));
    layer->batch = batch;
    layer->h = h;
    layer->w = w;
    layer->c = c;
    layer->size = size;
    layer->stride = stride;
    maxpool_layer l = {0};
    l.type = MAXPOOL;
    l.batch = batch;
    l.h = h;
    l.w = w;
    l.c = c;
    l.out_h = h;
    l.out_w = w;
    l.out_c = c;
    l.outputs = l.out_h * l.out_w * l.out_c;
    l.inputs = l.outputs;
    l.size = size;
    l.stride = stride;
    int output_size = ((h-1)/stride+1) * ((w-1)/stride+1) * c * batch;
    layer->indexes = calloc(output_size, sizeof(int));
    layer->output =  calloc(output_size, sizeof(float));
    layer->delta =   calloc(output_size, sizeof(float));
    l.indexes = calloc(output_size, sizeof(int));
    l.output =  calloc(output_size, sizeof(float));
    l.delta =   calloc(output_size, sizeof(float));
    #ifdef GPU
    layer->indexes_gpu = cuda_make_int_array(output_size);
    layer->output_gpu  = cuda_make_array(layer->output, output_size);
    layer->delta_gpu   = cuda_make_array(layer->delta, output_size);
    l.indexes_gpu = cuda_make_int_array(output_size);
    l.output_gpu  = cuda_make_array(l.output, output_size);
    l.delta_gpu   = cuda_make_array(l.delta, output_size);
    #endif
    return layer;
    return l;
}
void resize_maxpool_layer(maxpool_layer *layer, int h, int w)
void resize_maxpool_layer(maxpool_layer *l, int h, int w)
{
    layer->h = h;
    layer->w = w;
    int output_size = ((h-1)/layer->stride+1) * ((w-1)/layer->stride+1) * layer->c * layer->batch;
    layer->output = realloc(layer->output, output_size * sizeof(float));
    layer->delta = realloc(layer->delta, output_size * sizeof(float));
    l->h = h;
    l->w = w;
    int output_size = ((h-1)/l->stride+1) * ((w-1)/l->stride+1) * l->c * l->batch;
    l->output = realloc(l->output, output_size * sizeof(float));
    l->delta = realloc(l->delta, output_size * sizeof(float));
    #ifdef GPU
    cuda_free((float *)layer->indexes_gpu);
    cuda_free(layer->output_gpu);
    cuda_free(layer->delta_gpu);
    layer->indexes_gpu = cuda_make_int_array(output_size);
    layer->output_gpu  = cuda_make_array(layer->output, output_size);
    layer->delta_gpu   = cuda_make_array(layer->delta, output_size);
    cuda_free((float *)l->indexes_gpu);
    cuda_free(l->output_gpu);
    cuda_free(l->delta_gpu);
    l->indexes_gpu = cuda_make_int_array(output_size);
    l->output_gpu  = cuda_make_array(l->output, output_size);
    l->delta_gpu   = cuda_make_array(l->delta, output_size);
    #endif
}
void forward_maxpool_layer(const maxpool_layer layer, network_state state)
void forward_maxpool_layer(const maxpool_layer l, network_state state)
{
    int b,i,j,k,l,m;
    int w_offset = (-layer.size-1)/2 + 1;
    int h_offset = (-layer.size-1)/2 + 1;
    int b,i,j,k,m,n;
    int w_offset = (-l.size-1)/2 + 1;
    int h_offset = (-l.size-1)/2 + 1;
    int h = (layer.h-1)/layer.stride + 1;
    int w = (layer.w-1)/layer.stride + 1;
    int c = layer.c;
    int h = (l.h-1)/l.stride + 1;
    int w = (l.w-1)/l.stride + 1;
    int c = l.c;
    for(b = 0; b < layer.batch; ++b){
    for(b = 0; b < l.batch; ++b){
        for(k = 0; k < c; ++k){
            for(i = 0; i < h; ++i){
                for(j = 0; j < w; ++j){
                    int out_index = j + w*(i + h*(k + c*b));
                    float max = -FLT_MAX;
                    int max_i = -1;
                    for(l = 0; l < layer.size; ++l){
                        for(m = 0; m < layer.size; ++m){
                            int cur_h = h_offset + i*layer.stride + l;
                            int cur_w = w_offset + j*layer.stride + m;
                            int index = cur_w + layer.w*(cur_h + layer.h*(k + b*layer.c));
                            int valid = (cur_h >= 0 && cur_h < layer.h &&
                                         cur_w >= 0 && cur_w < layer.w);
                    for(n = 0; n < l.size; ++n){
                        for(m = 0; m < l.size; ++m){
                            int cur_h = h_offset + i*l.stride + n;
                            int cur_w = w_offset + j*l.stride + m;
                            int index = cur_w + l.w*(cur_h + l.h*(k + b*l.c));
                            int valid = (cur_h >= 0 && cur_h < l.h &&
                                         cur_w >= 0 && cur_w < l.w);
                            float val = (valid != 0) ? state.input[index] : -FLT_MAX;
                            max_i = (val > max) ? index : max_i;
                            max   = (val > max) ? val   : max;
                        }
                    }
                    layer.output[out_index] = max;
                    layer.indexes[out_index] = max_i;
                    l.output[out_index] = max;
                    l.indexes[out_index] = max_i;
                }
            }
        }
    }
}
void backward_maxpool_layer(const maxpool_layer layer, network_state state)
void backward_maxpool_layer(const maxpool_layer l, network_state state)
{
    int i;
    int h = (layer.h-1)/layer.stride + 1;
    int w = (layer.w-1)/layer.stride + 1;
    int c = layer.c;
    memset(state.delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
    for(i = 0; i < h*w*c*layer.batch; ++i){
        int index = layer.indexes[i];
        state.delta[index] += layer.delta[i];
    int h = (l.h-1)/l.stride + 1;
    int w = (l.w-1)/l.stride + 1;
    int c = l.c;
    memset(state.delta, 0, l.batch*l.h*l.w*l.c*sizeof(float));
    for(i = 0; i < h*w*c*l.batch; ++i){
        int index = l.indexes[i];
        state.delta[index] += l.delta[i];
    }
}
src/maxpool_layer.h
@@ -4,31 +4,19 @@
#include "image.h"
#include "params.h"
#include "cuda.h"
#include "layer.h"
typedef struct {
    int batch;
    int h,w,c;
    int stride;
    int size;
    int *indexes;
    float *delta;
    float *output;
    #ifdef GPU
    int *indexes_gpu;
    float *output_gpu;
    float *delta_gpu;
    #endif
} maxpool_layer;
typedef layer maxpool_layer;
image get_maxpool_image(maxpool_layer layer);
maxpool_layer *make_maxpool_layer(int batch, int h, int w, int c, int size, int stride);
void resize_maxpool_layer(maxpool_layer *layer, int h, int w);
void forward_maxpool_layer(const maxpool_layer layer, network_state state);
void backward_maxpool_layer(const maxpool_layer layer, network_state state);
image get_maxpool_image(maxpool_layer l);
maxpool_layer make_maxpool_layer(int batch, int h, int w, int c, int size, int stride);
void resize_maxpool_layer(maxpool_layer *l, int h, int w);
void forward_maxpool_layer(const maxpool_layer l, network_state state);
void backward_maxpool_layer(const maxpool_layer l, network_state state);
#ifdef GPU
void forward_maxpool_layer_gpu(maxpool_layer layer, network_state state);
void backward_maxpool_layer_gpu(maxpool_layer layer, network_state state);
void forward_maxpool_layer_gpu(maxpool_layer l, network_state state);
void backward_maxpool_layer_gpu(maxpool_layer l, network_state state);
#endif
#endif
src/network.c
@@ -12,7 +12,6 @@
#include "detection_layer.h"
#include "maxpool_layer.h"
#include "cost_layer.h"
#include "normalization_layer.h"
#include "softmax_layer.h"
#include "dropout_layer.h"
#include "route_layer.h"
@@ -32,8 +31,6 @@
            return "softmax";
        case DETECTION:
            return "detection";
        case NORMALIZATION:
            return "normalization";
        case DROPOUT:
            return "dropout";
        case CROP:
@@ -50,16 +47,9 @@
network make_network(int n)
{
    network net;
    network net = {0};
    net.n = n;
    net.layers = calloc(net.n, sizeof(void *));
    net.types = calloc(net.n, sizeof(LAYER_TYPE));
    net.outputs = 0;
    net.output = 0;
    net.seen = 0;
    net.batch = 0;
    net.inputs = 0;
    net.h = net.w = net.c = 0;
    net.layers = calloc(net.n, sizeof(layer));
    #ifdef GPU
    net.input_gpu = calloc(1, sizeof(float *));
    net.truth_gpu = calloc(1, sizeof(float *));
@@ -71,40 +61,29 @@
{
    int i;
    for(i = 0; i < net.n; ++i){
        if(net.types[i] == CONVOLUTIONAL){
            forward_convolutional_layer(*(convolutional_layer *)net.layers[i], state);
        layer l = net.layers[i];
        if(l.type == CONVOLUTIONAL){
            forward_convolutional_layer(l, state);
        } else if(l.type == DECONVOLUTIONAL){
            forward_deconvolutional_layer(l, state);
        } else if(l.type == DETECTION){
            forward_detection_layer(l, state);
        } else if(l.type == CONNECTED){
            forward_connected_layer(l, state);
        } else if(l.type == CROP){
            forward_crop_layer(l, state);
        } else if(l.type == COST){
            forward_cost_layer(l, state);
        } else if(l.type == SOFTMAX){
            forward_softmax_layer(l, state);
        } else if(l.type == MAXPOOL){
            forward_maxpool_layer(l, state);
        } else if(l.type == DROPOUT){
            forward_dropout_layer(l, state);
        } else if(l.type == ROUTE){
            forward_route_layer(l, net);
        }
        else if(net.types[i] == DECONVOLUTIONAL){
            forward_deconvolutional_layer(*(deconvolutional_layer *)net.layers[i], state);
        }
        else if(net.types[i] == DETECTION){
            forward_detection_layer(*(detection_layer *)net.layers[i], state);
        }
        else if(net.types[i] == CONNECTED){
            forward_connected_layer(*(connected_layer *)net.layers[i], state);
        }
        else if(net.types[i] == CROP){
            forward_crop_layer(*(crop_layer *)net.layers[i], state);
        }
        else if(net.types[i] == COST){
            forward_cost_layer(*(cost_layer *)net.layers[i], state);
        }
        else if(net.types[i] == SOFTMAX){
            forward_softmax_layer(*(softmax_layer *)net.layers[i], state);
        }
        else if(net.types[i] == MAXPOOL){
            forward_maxpool_layer(*(maxpool_layer *)net.layers[i], state);
        }
        else if(net.types[i] == NORMALIZATION){
            forward_normalization_layer(*(normalization_layer *)net.layers[i], state);
        }
        else if(net.types[i] == DROPOUT){
            forward_dropout_layer(*(dropout_layer *)net.layers[i], state);
        }
        else if(net.types[i] == ROUTE){
            forward_route_layer(*(route_layer *)net.layers[i], net);
        }
        state.input = get_network_output_layer(net, i);
        state.input = l.output;
    }
}
@@ -113,99 +92,35 @@
    int i;
    int update_batch = net.batch*net.subdivisions;
    for(i = 0; i < net.n; ++i){
        if(net.types[i] == CONVOLUTIONAL){
            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
            update_convolutional_layer(layer, update_batch, net.learning_rate, net.momentum, net.decay);
        }
        else if(net.types[i] == DECONVOLUTIONAL){
            deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
            update_deconvolutional_layer(layer, net.learning_rate, net.momentum, net.decay);
        }
        else if(net.types[i] == CONNECTED){
            connected_layer layer = *(connected_layer *)net.layers[i];
            update_connected_layer(layer, update_batch, net.learning_rate, net.momentum, net.decay);
        layer l = net.layers[i];
        if(l.type == CONVOLUTIONAL){
            update_convolutional_layer(l, update_batch, net.learning_rate, net.momentum, net.decay);
        } else if(l.type == DECONVOLUTIONAL){
            update_deconvolutional_layer(l, net.learning_rate, net.momentum, net.decay);
        } else if(l.type == CONNECTED){
            update_connected_layer(l, update_batch, net.learning_rate, net.momentum, net.decay);
        }
    }
}
float *get_network_output_layer(network net, int i)
{
    if(net.types[i] == CONVOLUTIONAL){
        return ((convolutional_layer *)net.layers[i]) -> output;
    } else if(net.types[i] == DECONVOLUTIONAL){
        return ((deconvolutional_layer *)net.layers[i]) -> output;
    } else if(net.types[i] == MAXPOOL){
        return ((maxpool_layer *)net.layers[i]) -> output;
    } else if(net.types[i] == DETECTION){
        return ((detection_layer *)net.layers[i]) -> output;
    } else if(net.types[i] == SOFTMAX){
        return ((softmax_layer *)net.layers[i]) -> output;
    } else if(net.types[i] == DROPOUT){
        return get_network_output_layer(net, i-1);
    } else if(net.types[i] == CONNECTED){
        return ((connected_layer *)net.layers[i]) -> output;
    } else if(net.types[i] == CROP){
        return ((crop_layer *)net.layers[i]) -> output;
    } else if(net.types[i] == NORMALIZATION){
        return ((normalization_layer *)net.layers[i]) -> output;
    } else if(net.types[i] == ROUTE){
        return ((route_layer *)net.layers[i]) -> output;
    }
    return 0;
}
float *get_network_output(network net)
{
    int i;
    for(i = net.n-1; i > 0; --i) if(net.types[i] != COST) break;
    return get_network_output_layer(net, i);
}
float *get_network_delta_layer(network net, int i)
{
    if(net.types[i] == CONVOLUTIONAL){
        convolutional_layer layer = *(convolutional_layer *)net.layers[i];
        return layer.delta;
    } else if(net.types[i] == DECONVOLUTIONAL){
        deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
        return layer.delta;
    } else if(net.types[i] == MAXPOOL){
        maxpool_layer layer = *(maxpool_layer *)net.layers[i];
        return layer.delta;
    } else if(net.types[i] == SOFTMAX){
        softmax_layer layer = *(softmax_layer *)net.layers[i];
        return layer.delta;
    } else if(net.types[i] == DETECTION){
        detection_layer layer = *(detection_layer *)net.layers[i];
        return layer.delta;
    } else if(net.types[i] == DROPOUT){
        if(i == 0) return 0;
        return get_network_delta_layer(net, i-1);
    } else if(net.types[i] == CONNECTED){
        connected_layer layer = *(connected_layer *)net.layers[i];
        return layer.delta;
    } else if(net.types[i] == ROUTE){
        return ((route_layer *)net.layers[i]) -> delta;
    }
    return 0;
    for(i = net.n-1; i > 0; --i) if(net.layers[i].type != COST) break;
    return net.layers[i].output;
}
float get_network_cost(network net)
{
    if(net.types[net.n-1] == COST){
        return ((cost_layer *)net.layers[net.n-1])->output[0];
    if(net.layers[net.n-1].type == COST){
        return net.layers[net.n-1].output[0];
    }
    if(net.types[net.n-1] == DETECTION){
        return ((detection_layer *)net.layers[net.n-1])->cost[0];
    if(net.layers[net.n-1].type == DETECTION){
        return net.layers[net.n-1].cost[0];
    }
    return 0;
}
float *get_network_delta(network net)
{
    return get_network_delta_layer(net, net.n-1);
}
int get_predicted_class_network(network net)
{
    float *out = get_network_output(net);
@@ -222,46 +137,29 @@
            state.input = original_input;
            state.delta = 0;
        }else{
            state.input = get_network_output_layer(net, i-1);
            state.delta = get_network_delta_layer(net, i-1);
            layer prev = net.layers[i-1];
            state.input = prev.output;
            state.delta = prev.delta;
        }
        if(net.types[i] == CONVOLUTIONAL){
            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
            backward_convolutional_layer(layer, state);
        } else if(net.types[i] == DECONVOLUTIONAL){
            deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
            backward_deconvolutional_layer(layer, state);
        }
        else if(net.types[i] == MAXPOOL){
            maxpool_layer layer = *(maxpool_layer *)net.layers[i];
            if(i != 0) backward_maxpool_layer(layer, state);
        }
        else if(net.types[i] == DROPOUT){
            dropout_layer layer = *(dropout_layer *)net.layers[i];
            backward_dropout_layer(layer, state);
        }
        else if(net.types[i] == DETECTION){
            detection_layer layer = *(detection_layer *)net.layers[i];
            backward_detection_layer(layer, state);
        }
        else if(net.types[i] == NORMALIZATION){
            normalization_layer layer = *(normalization_layer *)net.layers[i];
            if(i != 0) backward_normalization_layer(layer, state);
        }
        else if(net.types[i] == SOFTMAX){
            softmax_layer layer = *(softmax_layer *)net.layers[i];
            if(i != 0) backward_softmax_layer(layer, state);
        }
        else if(net.types[i] == CONNECTED){
            connected_layer layer = *(connected_layer *)net.layers[i];
            backward_connected_layer(layer, state);
        } else if(net.types[i] == COST){
            cost_layer layer = *(cost_layer *)net.layers[i];
            backward_cost_layer(layer, state);
        } else if(net.types[i] == ROUTE){
            route_layer layer = *(route_layer *)net.layers[i];
            backward_route_layer(layer, net);
        layer l = net.layers[i];
        if(l.type == CONVOLUTIONAL){
            backward_convolutional_layer(l, state);
        } else if(l.type == DECONVOLUTIONAL){
            backward_deconvolutional_layer(l, state);
        } else if(l.type == MAXPOOL){
            if(i != 0) backward_maxpool_layer(l, state);
        } else if(l.type == DROPOUT){
            backward_dropout_layer(l, state);
        } else if(l.type == DETECTION){
            backward_detection_layer(l, state);
        } else if(l.type == SOFTMAX){
            if(i != 0) backward_softmax_layer(l, state);
        } else if(l.type == CONNECTED){
            backward_connected_layer(l, state);
        } else if(l.type == COST){
            backward_cost_layer(l, state);
        } else if(l.type == ROUTE){
            backward_route_layer(l, net);
        }
    }
}
@@ -347,127 +245,11 @@
    net->batch = b;
    int i;
    for(i = 0; i < net->n; ++i){
        if(net->types[i] == CONVOLUTIONAL){
            convolutional_layer *layer = (convolutional_layer *)net->layers[i];
            layer->batch = b;
        }else if(net->types[i] == DECONVOLUTIONAL){
            deconvolutional_layer *layer = (deconvolutional_layer *)net->layers[i];
            layer->batch = b;
        }
        else if(net->types[i] == MAXPOOL){
            maxpool_layer *layer = (maxpool_layer *)net->layers[i];
            layer->batch = b;
        }
        else if(net->types[i] == CONNECTED){
            connected_layer *layer = (connected_layer *)net->layers[i];
            layer->batch = b;
        } else if(net->types[i] == DROPOUT){
            dropout_layer *layer = (dropout_layer *) net->layers[i];
            layer->batch = b;
        } else if(net->types[i] == DETECTION){
            detection_layer *layer = (detection_layer *) net->layers[i];
            layer->batch = b;
        }
        else if(net->types[i] == SOFTMAX){
            softmax_layer *layer = (softmax_layer *)net->layers[i];
            layer->batch = b;
        }
        else if(net->types[i] == COST){
            cost_layer *layer = (cost_layer *)net->layers[i];
            layer->batch = b;
        }
        else if(net->types[i] == CROP){
            crop_layer *layer = (crop_layer *)net->layers[i];
            layer->batch = b;
        }
        else if(net->types[i] == ROUTE){
            route_layer *layer = (route_layer *)net->layers[i];
            layer->batch = b;
        }
        net->layers[i].batch = b;
    }
}
int get_network_input_size_layer(network net, int i)
{
    if(net.types[i] == CONVOLUTIONAL){
        convolutional_layer layer = *(convolutional_layer *)net.layers[i];
        return layer.h*layer.w*layer.c;
    }
    if(net.types[i] == DECONVOLUTIONAL){
        deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
        return layer.h*layer.w*layer.c;
    }
    else if(net.types[i] == MAXPOOL){
        maxpool_layer layer = *(maxpool_layer *)net.layers[i];
        return layer.h*layer.w*layer.c;
    }
    else if(net.types[i] == CONNECTED){
        connected_layer layer = *(connected_layer *)net.layers[i];
        return layer.inputs;
    } else if(net.types[i] == DROPOUT){
        dropout_layer layer = *(dropout_layer *) net.layers[i];
        return layer.inputs;
    } else if(net.types[i] == DETECTION){
        detection_layer layer = *(detection_layer *) net.layers[i];
        return layer.inputs;
    } else if(net.types[i] == CROP){
        crop_layer layer = *(crop_layer *) net.layers[i];
        return layer.c*layer.h*layer.w;
    }
    else if(net.types[i] == SOFTMAX){
        softmax_layer layer = *(softmax_layer *)net.layers[i];
        return layer.inputs;
    }
    fprintf(stderr, "Can't find input size\n");
    return 0;
}
int get_network_output_size_layer(network net, int i)
{
    if(net.types[i] == CONVOLUTIONAL){
        convolutional_layer layer = *(convolutional_layer *)net.layers[i];
        image output = get_convolutional_image(layer);
        return output.h*output.w*output.c;
    }
    else if(net.types[i] == DECONVOLUTIONAL){
        deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
        image output = get_deconvolutional_image(layer);
        return output.h*output.w*output.c;
    }
    else if(net.types[i] == DETECTION){
        detection_layer layer = *(detection_layer *)net.layers[i];
        return get_detection_layer_output_size(layer);
    }
    else if(net.types[i] == MAXPOOL){
        maxpool_layer layer = *(maxpool_layer *)net.layers[i];
        image output = get_maxpool_image(layer);
        return output.h*output.w*output.c;
    }
    else if(net.types[i] == CROP){
        crop_layer layer = *(crop_layer *) net.layers[i];
        return layer.c*layer.crop_height*layer.crop_width;
    }
    else if(net.types[i] == CONNECTED){
        connected_layer layer = *(connected_layer *)net.layers[i];
        return layer.outputs;
    }
    else if(net.types[i] == DROPOUT){
        dropout_layer layer = *(dropout_layer *) net.layers[i];
        return layer.inputs;
    }
    else if(net.types[i] == SOFTMAX){
        softmax_layer layer = *(softmax_layer *)net.layers[i];
        return layer.inputs;
    }
    else if(net.types[i] == ROUTE){
        route_layer layer = *(route_layer *)net.layers[i];
        return layer.outputs;
    }
    fprintf(stderr, "Can't find output size\n");
    return 0;
}
/*
int resize_network(network net, int h, int w, int c)
{
    fprintf(stderr, "Might be broken, careful!!");
@@ -497,74 +279,47 @@
        }else if(net.types[i] == DROPOUT){
            dropout_layer *layer = (dropout_layer *)net.layers[i];
            resize_dropout_layer(layer, h*w*c);
        }else if(net.types[i] == NORMALIZATION){
            normalization_layer *layer = (normalization_layer *)net.layers[i];
            resize_normalization_layer(layer, h, w);
            image output = get_normalization_image(*layer);
            h = output.h;
            w = output.w;
            c = output.c;
        }else{
            error("Cannot resize this type of layer");
        }
    }
    return 0;
}
*/
int get_network_output_size(network net)
{
    int i;
    for(i = net.n-1; i > 0; --i) if(net.types[i] != COST) break;
    return get_network_output_size_layer(net, i);
    for(i = net.n-1; i > 0; --i) if(net.layers[i].type != COST) break;
    return net.layers[i].outputs;
}
int get_network_input_size(network net)
{
    return get_network_input_size_layer(net, 0);
    return net.layers[0].inputs;
}
detection_layer *get_network_detection_layer(network net)
detection_layer get_network_detection_layer(network net)
{
    int i;
    for(i = 0; i < net.n; ++i){
        if(net.types[i] == DETECTION){
            detection_layer *layer = (detection_layer *)net.layers[i];
            return layer;
        if(net.layers[i].type == DETECTION){
            return net.layers[i];
        }
    }
    return 0;
    fprintf(stderr, "Detection layer not found!!\n");
    detection_layer l = {0};
    return l;
}
image get_network_image_layer(network net, int i)
{
    if(net.types[i] == CONVOLUTIONAL){
        convolutional_layer layer = *(convolutional_layer *)net.layers[i];
        return get_convolutional_image(layer);
    layer l = net.layers[i];
    if (l.out_w && l.out_h && l.out_c){
        return float_to_image(l.out_w, l.out_h, l.out_c, l.output);
    }
    else if(net.types[i] == DECONVOLUTIONAL){
        deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
        return get_deconvolutional_image(layer);
    }
    else if(net.types[i] == MAXPOOL){
        maxpool_layer layer = *(maxpool_layer *)net.layers[i];
        return get_maxpool_image(layer);
    }
    else if(net.types[i] == NORMALIZATION){
        normalization_layer layer = *(normalization_layer *)net.layers[i];
        return get_normalization_image(layer);
    }
    else if(net.types[i] == DROPOUT){
        return get_network_image_layer(net, i-1);
    }
    else if(net.types[i] == CROP){
        crop_layer layer = *(crop_layer *)net.layers[i];
        return get_crop_image(layer);
    }
    else if(net.types[i] == ROUTE){
        route_layer layer = *(route_layer *)net.layers[i];
        return get_network_image_layer(net, layer.input_layers[0]);
    }
    return make_empty_image(0,0,0);
    image def = {0};
    return def;
}
image get_network_image(network net)
@@ -574,7 +329,8 @@
        image m = get_network_image_layer(net, i);
        if(m.h != 0) return m;
    }
    return make_empty_image(0,0,0);
    image def = {0};
    return def;
}
void visualize_network(network net)
@@ -582,16 +338,11 @@
    image *prev = 0;
    int i;
    char buff[256];
    //show_image(get_network_image_layer(net, 0), "Crop");
    for(i = 0; i < net.n; ++i){
        sprintf(buff, "Layer %d", i);
        if(net.types[i] == CONVOLUTIONAL){
            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
            prev = visualize_convolutional_layer(layer, buff, prev);
        }
        if(net.types[i] == NORMALIZATION){
            normalization_layer layer = *(normalization_layer *)net.layers[i];
            visualize_normalization_layer(layer, buff);
        layer l = net.layers[i];
        if(l.type == CONVOLUTIONAL){
            prev = visualize_convolutional_layer(l, buff, prev);
        }
    } 
}
@@ -672,36 +423,9 @@
{
    int i,j;
    for(i = 0; i < net.n; ++i){
        float *output = 0;
        int n = 0;
        if(net.types[i] == CONVOLUTIONAL){
            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
            output = layer.output;
            image m = get_convolutional_image(layer);
            n = m.h*m.w*m.c;
        }
        else if(net.types[i] == MAXPOOL){
            maxpool_layer layer = *(maxpool_layer *)net.layers[i];
            output = layer.output;
            image m = get_maxpool_image(layer);
            n = m.h*m.w*m.c;
        }
        else if(net.types[i] == CROP){
            crop_layer layer = *(crop_layer *)net.layers[i];
            output = layer.output;
            image m = get_crop_image(layer);
            n = m.h*m.w*m.c;
        }
        else if(net.types[i] == CONNECTED){
            connected_layer layer = *(connected_layer *)net.layers[i];
            output = layer.output;
            n = layer.outputs;
        }
        else if(net.types[i] == SOFTMAX){
            softmax_layer layer = *(softmax_layer *)net.layers[i];
            output = layer.output;
            n = layer.inputs;
        }
        layer l = net.layers[i];
        float *output = l.output;
        int n = l.outputs;
        float mean = mean_array(output, n);
        float vari = variance_array(output, n);
        fprintf(stderr, "Layer %d - Mean: %f, Variance: %f\n",i,mean, vari);
src/network.h
@@ -4,22 +4,9 @@
#include "image.h"
#include "detection_layer.h"
#include "layer.h"
#include "data.h"
typedef enum {
    CONVOLUTIONAL,
    DECONVOLUTIONAL,
    CONNECTED,
    MAXPOOL,
    SOFTMAX,
    DETECTION,
    NORMALIZATION,
    DROPOUT,
    CROP,
    ROUTE,
    COST
} LAYER_TYPE;
typedef struct {
    int n;
    int batch;
@@ -28,8 +15,7 @@
    float learning_rate;
    float momentum;
    float decay;
    void **layers;
    LAYER_TYPE *types;
    layer *layers;
    int outputs;
    float *output;
@@ -83,7 +69,7 @@
void set_batch_network(network *net, int b);
int get_network_input_size(network net);
float get_network_cost(network net);
detection_layer *get_network_detection_layer(network net);
detection_layer get_network_detection_layer(network net);
int get_network_nuisance(network net);
int get_network_background(network net);
src/network_kernels.cu
@@ -15,7 +15,6 @@
#include "deconvolutional_layer.h"
#include "maxpool_layer.h"
#include "cost_layer.h"
#include "normalization_layer.h"
#include "softmax_layer.h"
#include "dropout_layer.h"
#include "route_layer.h"
@@ -29,37 +28,29 @@
{
    int i;
    for(i = 0; i < net.n; ++i){
        if(net.types[i] == CONVOLUTIONAL){
            forward_convolutional_layer_gpu(*(convolutional_layer *)net.layers[i], state);
        layer l = net.layers[i];
        if(l.type == CONVOLUTIONAL){
            forward_convolutional_layer_gpu(l, state);
        } else if(l.type == DECONVOLUTIONAL){
            forward_deconvolutional_layer_gpu(l, state);
        } else if(l.type == DETECTION){
            forward_detection_layer_gpu(l, state);
        } else if(l.type == CONNECTED){
            forward_connected_layer_gpu(l, state);
        } else if(l.type == CROP){
            forward_crop_layer_gpu(l, state);
        } else if(l.type == COST){
            forward_cost_layer_gpu(l, state);
        } else if(l.type == SOFTMAX){
            forward_softmax_layer_gpu(l, state);
        } else if(l.type == MAXPOOL){
            forward_maxpool_layer_gpu(l, state);
        } else if(l.type == DROPOUT){
            forward_dropout_layer_gpu(l, state);
        } else if(l.type == ROUTE){
            forward_route_layer_gpu(l, net);
        }
        else if(net.types[i] == DECONVOLUTIONAL){
            forward_deconvolutional_layer_gpu(*(deconvolutional_layer *)net.layers[i], state);
        }
        else if(net.types[i] == COST){
            forward_cost_layer_gpu(*(cost_layer *)net.layers[i], state);
        }
        else if(net.types[i] == CONNECTED){
            forward_connected_layer_gpu(*(connected_layer *)net.layers[i], state);
        }
        else if(net.types[i] == DETECTION){
            forward_detection_layer_gpu(*(detection_layer *)net.layers[i], state);
        }
        else if(net.types[i] == MAXPOOL){
            forward_maxpool_layer_gpu(*(maxpool_layer *)net.layers[i], state);
        }
        else if(net.types[i] == SOFTMAX){
            forward_softmax_layer_gpu(*(softmax_layer *)net.layers[i], state);
        }
        else if(net.types[i] == DROPOUT){
            forward_dropout_layer_gpu(*(dropout_layer *)net.layers[i], state);
        }
        else if(net.types[i] == CROP){
            forward_crop_layer_gpu(*(crop_layer *)net.layers[i], state);
        }
        else if(net.types[i] == ROUTE){
            forward_route_layer_gpu(*(route_layer *)net.layers[i], net);
        }
        state.input = get_network_output_gpu_layer(net, i);
        state.input = l.output_gpu;
    }
}
@@ -68,40 +59,33 @@
    int i;
    float * original_input = state.input;
    for(i = net.n-1; i >= 0; --i){
        layer l = net.layers[i];
        if(i == 0){
            state.input = original_input;
            state.delta = 0;
        }else{
            state.input = get_network_output_gpu_layer(net, i-1);
            state.delta = get_network_delta_gpu_layer(net, i-1);
            layer prev = net.layers[i-1];
            state.input = prev.output_gpu;
            state.delta = prev.delta_gpu;
        }
        if(net.types[i] == CONVOLUTIONAL){
            backward_convolutional_layer_gpu(*(convolutional_layer *)net.layers[i], state);
        }
        else if(net.types[i] == DECONVOLUTIONAL){
            backward_deconvolutional_layer_gpu(*(deconvolutional_layer *)net.layers[i], state);
        }
        else if(net.types[i] == COST){
            backward_cost_layer_gpu(*(cost_layer *)net.layers[i], state);
        }
        else if(net.types[i] == CONNECTED){
            backward_connected_layer_gpu(*(connected_layer *)net.layers[i], state);
        }
        else if(net.types[i] == DETECTION){
            backward_detection_layer_gpu(*(detection_layer *)net.layers[i], state);
        }
        else if(net.types[i] == MAXPOOL){
            backward_maxpool_layer_gpu(*(maxpool_layer *)net.layers[i], state);
        }
        else if(net.types[i] == DROPOUT){
            backward_dropout_layer_gpu(*(dropout_layer *)net.layers[i], state);
        }
        else if(net.types[i] == SOFTMAX){
            backward_softmax_layer_gpu(*(softmax_layer *)net.layers[i], state);
        }
        else if(net.types[i] == ROUTE){
            backward_route_layer_gpu(*(route_layer *)net.layers[i], net);
        if(l.type == CONVOLUTIONAL){
            backward_convolutional_layer_gpu(l, state);
        } else if(l.type == DECONVOLUTIONAL){
            backward_deconvolutional_layer_gpu(l, state);
        } else if(l.type == MAXPOOL){
            if(i != 0) backward_maxpool_layer_gpu(l, state);
        } else if(l.type == DROPOUT){
            backward_dropout_layer_gpu(l, state);
        } else if(l.type == DETECTION){
            backward_detection_layer_gpu(l, state);
        } else if(l.type == SOFTMAX){
            if(i != 0) backward_softmax_layer_gpu(l, state);
        } else if(l.type == CONNECTED){
            backward_connected_layer_gpu(l, state);
        } else if(l.type == COST){
            backward_cost_layer_gpu(l, state);
        } else if(l.type == ROUTE){
            backward_route_layer_gpu(l, net);
        }
    }
}
@@ -111,89 +95,17 @@
    int i;
    int update_batch = net.batch*net.subdivisions;
    for(i = 0; i < net.n; ++i){
        if(net.types[i] == CONVOLUTIONAL){
            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
            update_convolutional_layer_gpu(layer, update_batch, net.learning_rate, net.momentum, net.decay);
        }
        else if(net.types[i] == DECONVOLUTIONAL){
            deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
            update_deconvolutional_layer_gpu(layer, net.learning_rate, net.momentum, net.decay);
        }
        else if(net.types[i] == CONNECTED){
            connected_layer layer = *(connected_layer *)net.layers[i];
            update_connected_layer_gpu(layer, update_batch, net.learning_rate, net.momentum, net.decay);
        layer l = net.layers[i];
        if(l.type == CONVOLUTIONAL){
            update_convolutional_layer_gpu(l, update_batch, net.learning_rate, net.momentum, net.decay);
        } else if(l.type == DECONVOLUTIONAL){
            update_deconvolutional_layer_gpu(l, net.learning_rate, net.momentum, net.decay);
        } else if(l.type == CONNECTED){
            update_connected_layer_gpu(l, update_batch, net.learning_rate, net.momentum, net.decay);
        }
    }
}
float * get_network_output_gpu_layer(network net, int i)
{
    if(net.types[i] == CONVOLUTIONAL){
        return ((convolutional_layer *)net.layers[i]) -> output_gpu;
    }
    else if(net.types[i] == DECONVOLUTIONAL){
        return ((deconvolutional_layer *)net.layers[i]) -> output_gpu;
    }
    else if(net.types[i] == DETECTION){
        return ((detection_layer *)net.layers[i]) -> output_gpu;
    }
    else if(net.types[i] == CONNECTED){
        return ((connected_layer *)net.layers[i]) -> output_gpu;
    }
    else if(net.types[i] == MAXPOOL){
        return ((maxpool_layer *)net.layers[i]) -> output_gpu;
    }
    else if(net.types[i] == CROP){
        return ((crop_layer *)net.layers[i]) -> output_gpu;
    }
    else if(net.types[i] == SOFTMAX){
        return ((softmax_layer *)net.layers[i]) -> output_gpu;
    }
    else if(net.types[i] == ROUTE){
        return ((route_layer *)net.layers[i]) -> output_gpu;
    }
    else if(net.types[i] == DROPOUT){
        return get_network_output_gpu_layer(net, i-1);
    }
    return 0;
}
float * get_network_delta_gpu_layer(network net, int i)
{
    if(net.types[i] == CONVOLUTIONAL){
        convolutional_layer layer = *(convolutional_layer *)net.layers[i];
        return layer.delta_gpu;
    }
    else if(net.types[i] == DETECTION){
        detection_layer layer = *(detection_layer *)net.layers[i];
        return layer.delta_gpu;
    }
    else if(net.types[i] == DECONVOLUTIONAL){
        deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
        return layer.delta_gpu;
    }
    else if(net.types[i] == CONNECTED){
        connected_layer layer = *(connected_layer *)net.layers[i];
        return layer.delta_gpu;
    }
    else if(net.types[i] == MAXPOOL){
        maxpool_layer layer = *(maxpool_layer *)net.layers[i];
        return layer.delta_gpu;
    }
    else if(net.types[i] == ROUTE){
        route_layer layer = *(route_layer *)net.layers[i];
        return layer.delta_gpu;
    }
    else if(net.types[i] == SOFTMAX){
        softmax_layer layer = *(softmax_layer *)net.layers[i];
        return layer.delta_gpu;
    } else if(net.types[i] == DROPOUT){
        if(i == 0) return 0;
        return get_network_delta_gpu_layer(net, i-1);
    }
    return 0;
}
float train_network_datum_gpu(network net, float *x, float *y)
{
    network_state state;
@@ -219,33 +131,22 @@
float *get_network_output_layer_gpu(network net, int i)
{
    if(net.types[i] == CONVOLUTIONAL){
        convolutional_layer layer = *(convolutional_layer *)net.layers[i];
        return layer.output;
    }
    else if(net.types[i] == DECONVOLUTIONAL){
        deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
        return layer.output;
    }
    else if(net.types[i] == CONNECTED){
        connected_layer layer = *(connected_layer *)net.layers[i];
        cuda_pull_array(layer.output_gpu, layer.output, layer.outputs*layer.batch);
        return layer.output;
    }
    else if(net.types[i] == DETECTION){
        detection_layer layer = *(detection_layer *)net.layers[i];
        int outputs = get_detection_layer_output_size(layer);
        cuda_pull_array(layer.output_gpu, layer.output, outputs*layer.batch);
        return layer.output;
    }
    else if(net.types[i] == MAXPOOL){
        maxpool_layer layer = *(maxpool_layer *)net.layers[i];
        return layer.output;
    }
    else if(net.types[i] == SOFTMAX){
        softmax_layer layer = *(softmax_layer *)net.layers[i];
        pull_softmax_layer_output(layer);
        return layer.output;
    layer l = net.layers[i];
    if(l.type == CONVOLUTIONAL){
        return l.output;
    } else if(l.type == DECONVOLUTIONAL){
        return l.output;
    } else if(l.type == CONNECTED){
        cuda_pull_array(l.output_gpu, l.output, l.outputs*l.batch);
        return l.output;
    } else if(l.type == DETECTION){
        cuda_pull_array(l.output_gpu, l.output, l.outputs*l.batch);
        return l.output;
    } else if(l.type == MAXPOOL){
        return l.output;
    } else if(l.type == SOFTMAX){
        pull_softmax_layer_output(l);
        return l.output;
    }
    return 0;
}
@@ -253,7 +154,7 @@
float *get_network_output_gpu(network net)
{
    int i;
    for(i = net.n-1; i > 0; --i) if(net.types[i] != COST) break;
    for(i = net.n-1; i > 0; --i) if(net.layers[i].type != COST) break;
    return get_network_output_layer_gpu(net, i);
}
src/normalization_layer.c
File was deleted
src/normalization_layer.h
File was deleted
src/old.c
@@ -1,3 +1,254 @@
void save_network(network net, char *filename)
{
    FILE *fp = fopen(filename, "w");
    if(!fp) file_error(filename);
    int i;
    for(i = 0; i < net.n; ++i)
    {
        if(net.types[i] == CONVOLUTIONAL)
            print_convolutional_cfg(fp, (convolutional_layer *)net.layers[i], net, i);
        else if(net.types[i] == DECONVOLUTIONAL)
            print_deconvolutional_cfg(fp, (deconvolutional_layer *)net.layers[i], net, i);
        else if(net.types[i] == CONNECTED)
            print_connected_cfg(fp, (connected_layer *)net.layers[i], net, i);
        else if(net.types[i] == CROP)
            print_crop_cfg(fp, (crop_layer *)net.layers[i], net, i);
        else if(net.types[i] == MAXPOOL)
            print_maxpool_cfg(fp, (maxpool_layer *)net.layers[i], net, i);
        else if(net.types[i] == DROPOUT)
            print_dropout_cfg(fp, (dropout_layer *)net.layers[i], net, i);
        else if(net.types[i] == SOFTMAX)
            print_softmax_cfg(fp, (softmax_layer *)net.layers[i], net, i);
        else if(net.types[i] == DETECTION)
            print_detection_cfg(fp, (detection_layer *)net.layers[i], net, i);
        else if(net.types[i] == COST)
            print_cost_cfg(fp, (cost_layer *)net.layers[i], net, i);
    }
    fclose(fp);
}
void print_convolutional_cfg(FILE *fp, convolutional_layer *l, network net, int count)
{
#ifdef GPU
    if(gpu_index >= 0)  pull_convolutional_layer(*l);
#endif
    int i;
    fprintf(fp, "[convolutional]\n");
    fprintf(fp, "filters=%d\n"
            "size=%d\n"
            "stride=%d\n"
            "pad=%d\n"
            "activation=%s\n",
            l->n, l->size, l->stride, l->pad,
            get_activation_string(l->activation));
    fprintf(fp, "biases=");
    for(i = 0; i < l->n; ++i) fprintf(fp, "%g,", l->biases[i]);
    fprintf(fp, "\n");
    fprintf(fp, "weights=");
    for(i = 0; i < l->n*l->c*l->size*l->size; ++i) fprintf(fp, "%g,", l->filters[i]);
    fprintf(fp, "\n\n");
}
void print_deconvolutional_cfg(FILE *fp, deconvolutional_layer *l, network net, int count)
{
#ifdef GPU
    if(gpu_index >= 0)  pull_deconvolutional_layer(*l);
#endif
    int i;
    fprintf(fp, "[deconvolutional]\n");
    fprintf(fp, "filters=%d\n"
            "size=%d\n"
            "stride=%d\n"
            "activation=%s\n",
            l->n, l->size, l->stride,
            get_activation_string(l->activation));
    fprintf(fp, "biases=");
    for(i = 0; i < l->n; ++i) fprintf(fp, "%g,", l->biases[i]);
    fprintf(fp, "\n");
    fprintf(fp, "weights=");
    for(i = 0; i < l->n*l->c*l->size*l->size; ++i) fprintf(fp, "%g,", l->filters[i]);
    fprintf(fp, "\n\n");
}
void print_dropout_cfg(FILE *fp, dropout_layer *l, network net, int count)
{
    fprintf(fp, "[dropout]\n");
    fprintf(fp, "probability=%g\n\n", l->probability);
}
void print_connected_cfg(FILE *fp, connected_layer *l, network net, int count)
{
#ifdef GPU
    if(gpu_index >= 0) pull_connected_layer(*l);
#endif
    int i;
    fprintf(fp, "[connected]\n");
    fprintf(fp, "output=%d\n"
            "activation=%s\n",
            l->outputs,
            get_activation_string(l->activation));
    fprintf(fp, "biases=");
    for(i = 0; i < l->outputs; ++i) fprintf(fp, "%g,", l->biases[i]);
    fprintf(fp, "\n");
    fprintf(fp, "weights=");
    for(i = 0; i < l->outputs*l->inputs; ++i) fprintf(fp, "%g,", l->weights[i]);
    fprintf(fp, "\n\n");
}
void print_crop_cfg(FILE *fp, crop_layer *l, network net, int count)
{
    fprintf(fp, "[crop]\n");
    fprintf(fp, "crop_height=%d\ncrop_width=%d\nflip=%d\n\n", l->crop_height, l->crop_width, l->flip);
}
void print_maxpool_cfg(FILE *fp, maxpool_layer *l, network net, int count)
{
    fprintf(fp, "[maxpool]\n");
    fprintf(fp, "size=%d\nstride=%d\n\n", l->size, l->stride);
}
void print_softmax_cfg(FILE *fp, softmax_layer *l, network net, int count)
{
    fprintf(fp, "[softmax]\n");
    fprintf(fp, "\n");
}
void print_detection_cfg(FILE *fp, detection_layer *l, network net, int count)
{
    fprintf(fp, "[detection]\n");
    fprintf(fp, "classes=%d\ncoords=%d\nrescore=%d\nnuisance=%d\n", l->classes, l->coords, l->rescore, l->nuisance);
    fprintf(fp, "\n");
}
void print_cost_cfg(FILE *fp, cost_layer *l, network net, int count)
{
    fprintf(fp, "[cost]\ntype=%s\n", get_cost_string(l->type));
    fprintf(fp, "\n");
}
#ifndef NORMALIZATION_LAYER_H
#define NORMALIZATION_LAYER_H
#include "image.h"
#include "params.h"
typedef struct {
    int batch;
    int h,w,c;
    int size;
    float alpha;
    float beta;
    float kappa;
    float *delta;
    float *output;
    float *sums;
} normalization_layer;
image get_normalization_image(normalization_layer layer);
normalization_layer *make_normalization_layer(int batch, int h, int w, int c, int size, float alpha, float beta, float kappa);
void resize_normalization_layer(normalization_layer *layer, int h, int w);
void forward_normalization_layer(const normalization_layer layer, network_state state);
void backward_normalization_layer(const normalization_layer layer, network_state state);
void visualize_normalization_layer(normalization_layer layer, char *window);
#endif
#include "normalization_layer.h"
#include <stdio.h>
image get_normalization_image(normalization_layer layer)
{
    int h = layer.h;
    int w = layer.w;
    int c = layer.c;
    return float_to_image(w,h,c,layer.output);
}
image get_normalization_delta(normalization_layer layer)
{
    int h = layer.h;
    int w = layer.w;
    int c = layer.c;
    return float_to_image(w,h,c,layer.delta);
}
normalization_layer *make_normalization_layer(int batch, int h, int w, int c, int size, float alpha, float beta, float kappa)
{
    fprintf(stderr, "Local Response Normalization Layer: %d x %d x %d image, %d size\n", h,w,c,size);
    normalization_layer *layer = calloc(1, sizeof(normalization_layer));
    layer->batch = batch;
    layer->h = h;
    layer->w = w;
    layer->c = c;
    layer->kappa = kappa;
    layer->size = size;
    layer->alpha = alpha;
    layer->beta = beta;
    layer->output = calloc(h * w * c * batch, sizeof(float));
    layer->delta = calloc(h * w * c * batch, sizeof(float));
    layer->sums = calloc(h*w, sizeof(float));
    return layer;
}
void resize_normalization_layer(normalization_layer *layer, int h, int w)
{
    layer->h = h;
    layer->w = w;
    layer->output = realloc(layer->output, h * w * layer->c * layer->batch * sizeof(float));
    layer->delta = realloc(layer->delta, h * w * layer->c * layer->batch * sizeof(float));
    layer->sums = realloc(layer->sums, h*w * sizeof(float));
}
void add_square_array(float *src, float *dest, int n)
{
    int i;
    for(i = 0; i < n; ++i){
        dest[i] += src[i]*src[i];
    }
}
void sub_square_array(float *src, float *dest, int n)
{
    int i;
    for(i = 0; i < n; ++i){
        dest[i] -= src[i]*src[i];
    }
}
void forward_normalization_layer(const normalization_layer layer, network_state state)
{
    int i,j,k;
    memset(layer.sums, 0, layer.h*layer.w*sizeof(float));
    int imsize = layer.h*layer.w;
    for(j = 0; j < layer.size/2; ++j){
        if(j < layer.c) add_square_array(state.input+j*imsize, layer.sums, imsize);
    }
    for(k = 0; k < layer.c; ++k){
        int next = k+layer.size/2;
        int prev = k-layer.size/2-1;
        if(next < layer.c) add_square_array(state.input+next*imsize, layer.sums, imsize);
        if(prev > 0)       sub_square_array(state.input+prev*imsize, layer.sums, imsize);
        for(i = 0; i < imsize; ++i){
            layer.output[k*imsize + i] = state.input[k*imsize+i] / pow(layer.kappa + layer.alpha * layer.sums[i], layer.beta);
        }
    }
}
void backward_normalization_layer(const normalization_layer layer, network_state state)
{
    // TODO!
    // OR NOT TODO!!
}
void visualize_normalization_layer(normalization_layer layer, char *window)
{
    image delta = get_normalization_image(layer);
    image dc = collapse_image_layers(delta, 1);
    char buff[256];
    sprintf(buff, "%s: Output", window);
    show_image(dc, buff);
    save_image(dc, buff);
    free_image(dc);
}
void test_load()
{
src/parser.c
@@ -10,7 +10,6 @@
#include "deconvolutional_layer.h"
#include "connected_layer.h"
#include "maxpool_layer.h"
#include "normalization_layer.h"
#include "softmax_layer.h"
#include "dropout_layer.h"
#include "detection_layer.h"
@@ -34,7 +33,6 @@
int is_crop(section *s);
int is_cost(section *s);
int is_detection(section *s);
int is_normalization(section *s);
int is_route(section *s);
list *read_cfg(char *filename);
@@ -78,7 +76,7 @@
    int c;
} size_params;
deconvolutional_layer *parse_deconvolutional(list *options, size_params params)
deconvolutional_layer parse_deconvolutional(list *options, size_params params)
{
    int n = option_find_int(options, "filters",1);
    int size = option_find_int(options, "size",1);
@@ -93,20 +91,20 @@
    batch=params.batch;
    if(!(h && w && c)) error("Layer before deconvolutional layer must output image.");
    deconvolutional_layer *layer = make_deconvolutional_layer(batch,h,w,c,n,size,stride,activation);
    deconvolutional_layer layer = make_deconvolutional_layer(batch,h,w,c,n,size,stride,activation);
    char *weights = option_find_str(options, "weights", 0);
    char *biases = option_find_str(options, "biases", 0);
    parse_data(weights, layer->filters, c*n*size*size);
    parse_data(biases, layer->biases, n);
    parse_data(weights, layer.filters, c*n*size*size);
    parse_data(biases, layer.biases, n);
    #ifdef GPU
    if(weights || biases) push_deconvolutional_layer(*layer);
    if(weights || biases) push_deconvolutional_layer(layer);
    #endif
    option_unused(options);
    return layer;
}
convolutional_layer *parse_convolutional(list *options, size_params params)
convolutional_layer parse_convolutional(list *options, size_params params)
{
    int n = option_find_int(options, "filters",1);
    int size = option_find_int(options, "size",1);
@@ -122,68 +120,68 @@
    batch=params.batch;
    if(!(h && w && c)) error("Layer before convolutional layer must output image.");
    convolutional_layer *layer = make_convolutional_layer(batch,h,w,c,n,size,stride,pad,activation);
    convolutional_layer layer = make_convolutional_layer(batch,h,w,c,n,size,stride,pad,activation);
    char *weights = option_find_str(options, "weights", 0);
    char *biases = option_find_str(options, "biases", 0);
    parse_data(weights, layer->filters, c*n*size*size);
    parse_data(biases, layer->biases, n);
    parse_data(weights, layer.filters, c*n*size*size);
    parse_data(biases, layer.biases, n);
    #ifdef GPU
    if(weights || biases) push_convolutional_layer(*layer);
    if(weights || biases) push_convolutional_layer(layer);
    #endif
    option_unused(options);
    return layer;
}
connected_layer *parse_connected(list *options, size_params params)
connected_layer parse_connected(list *options, size_params params)
{
    int output = option_find_int(options, "output",1);
    char *activation_s = option_find_str(options, "activation", "logistic");
    ACTIVATION activation = get_activation(activation_s);
    connected_layer *layer = make_connected_layer(params.batch, params.inputs, output, activation);
    connected_layer layer = make_connected_layer(params.batch, params.inputs, output, activation);
    char *weights = option_find_str(options, "weights", 0);
    char *biases = option_find_str(options, "biases", 0);
    parse_data(biases, layer->biases, output);
    parse_data(weights, layer->weights, params.inputs*output);
    parse_data(biases, layer.biases, output);
    parse_data(weights, layer.weights, params.inputs*output);
    #ifdef GPU
    if(weights || biases) push_connected_layer(*layer);
    if(weights || biases) push_connected_layer(layer);
    #endif
    option_unused(options);
    return layer;
}
softmax_layer *parse_softmax(list *options, size_params params)
softmax_layer parse_softmax(list *options, size_params params)
{
    int groups = option_find_int(options, "groups",1);
    softmax_layer *layer = make_softmax_layer(params.batch, params.inputs, groups);
    softmax_layer layer = make_softmax_layer(params.batch, params.inputs, groups);
    option_unused(options);
    return layer;
}
detection_layer *parse_detection(list *options, size_params params)
detection_layer parse_detection(list *options, size_params params)
{
    int coords = option_find_int(options, "coords", 1);
    int classes = option_find_int(options, "classes", 1);
    int rescore = option_find_int(options, "rescore", 1);
    int nuisance = option_find_int(options, "nuisance", 0);
    int background = option_find_int(options, "background", 1);
    detection_layer *layer = make_detection_layer(params.batch, params.inputs, classes, coords, rescore, background, nuisance);
    detection_layer layer = make_detection_layer(params.batch, params.inputs, classes, coords, rescore, background, nuisance);
    option_unused(options);
    return layer;
}
cost_layer *parse_cost(list *options, size_params params)
cost_layer parse_cost(list *options, size_params params)
{
    char *type_s = option_find_str(options, "type", "sse");
    COST_TYPE type = get_cost_type(type_s);
    cost_layer *layer = make_cost_layer(params.batch, params.inputs, type);
    cost_layer layer = make_cost_layer(params.batch, params.inputs, type);
    option_unused(options);
    return layer;
}
crop_layer *parse_crop(list *options, size_params params)
crop_layer parse_crop(list *options, size_params params)
{
    int crop_height = option_find_int(options, "crop_height",1);
    int crop_width = option_find_int(options, "crop_width",1);
@@ -199,12 +197,12 @@
    batch=params.batch;
    if(!(h && w && c)) error("Layer before crop layer must output image.");
    crop_layer *layer = make_crop_layer(batch,h,w,c,crop_height,crop_width,flip, angle, saturation, exposure);
    crop_layer l = make_crop_layer(batch,h,w,c,crop_height,crop_width,flip, angle, saturation, exposure);
    option_unused(options);
    return layer;
    return l;
}
maxpool_layer *parse_maxpool(list *options, size_params params)
maxpool_layer parse_maxpool(list *options, size_params params)
{
    int stride = option_find_int(options, "stride",1);
    int size = option_find_int(options, "size",stride);
@@ -216,39 +214,20 @@
    batch=params.batch;
    if(!(h && w && c)) error("Layer before maxpool layer must output image.");
    maxpool_layer *layer = make_maxpool_layer(batch,h,w,c,size,stride);
    maxpool_layer layer = make_maxpool_layer(batch,h,w,c,size,stride);
    option_unused(options);
    return layer;
}
dropout_layer *parse_dropout(list *options, size_params params)
dropout_layer parse_dropout(list *options, size_params params)
{
    float probability = option_find_float(options, "probability", .5);
    dropout_layer *layer = make_dropout_layer(params.batch, params.inputs, probability);
    dropout_layer layer = make_dropout_layer(params.batch, params.inputs, probability);
    option_unused(options);
    return layer;
}
normalization_layer *parse_normalization(list *options, size_params params)
{
    int size = option_find_int(options, "size",1);
    float alpha = option_find_float(options, "alpha", 0.);
    float beta = option_find_float(options, "beta", 1.);
    float kappa = option_find_float(options, "kappa", 1.);
    int batch,h,w,c;
    h = params.h;
    w = params.w;
    c = params.c;
    batch=params.batch;
    if(!(h && w && c)) error("Layer before normalization layer must output image.");
    normalization_layer *layer = make_normalization_layer(batch,h,w,c,size, alpha, beta, kappa);
    option_unused(options);
    return layer;
}
route_layer *parse_route(list *options, size_params params, network net)
route_layer parse_route(list *options, size_params params, network net)
{
    char *l = option_find(options, "layers");   
    int len = strlen(l);
@@ -265,11 +244,26 @@
        int index = atoi(l);
        l = strchr(l, ',')+1;
        layers[i] = index;
        sizes[i] = get_network_output_size_layer(net, index);
        sizes[i] = net.layers[index].outputs;
    }
    int batch = params.batch;
    route_layer *layer = make_route_layer(batch, n, layers, sizes);
    route_layer layer = make_route_layer(batch, n, layers, sizes);
    convolutional_layer first = net.layers[layers[0]];
    layer.out_w = first.out_w;
    layer.out_h = first.out_h;
    layer.out_c = first.out_c;
    for(i = 1; i < n; ++i){
        int index = layers[i];
        convolutional_layer next = net.layers[index];
        if(next.out_w == first.out_w && next.out_h == first.out_h){
            layer.out_c += next.out_c;
        }else{
            layer.out_h = layer.out_w = layer.out_c = 0;
        }
    }
    option_unused(options);
    return layer;
}
@@ -318,61 +312,44 @@
        fprintf(stderr, "%d: ", count);
        s = (section *)n->val;
        options = s->options;
        layer l = {0};
        if(is_convolutional(s)){
            convolutional_layer *layer = parse_convolutional(options, params);
            net.types[count] = CONVOLUTIONAL;
            net.layers[count] = layer;
            l = parse_convolutional(options, params);
        }else if(is_deconvolutional(s)){
            deconvolutional_layer *layer = parse_deconvolutional(options, params);
            net.types[count] = DECONVOLUTIONAL;
            net.layers[count] = layer;
            l = parse_deconvolutional(options, params);
        }else if(is_connected(s)){
            connected_layer *layer = parse_connected(options, params);
            net.types[count] = CONNECTED;
            net.layers[count] = layer;
            l = parse_connected(options, params);
        }else if(is_crop(s)){
            crop_layer *layer = parse_crop(options, params);
            net.types[count] = CROP;
            net.layers[count] = layer;
            l = parse_crop(options, params);
        }else if(is_cost(s)){
            cost_layer *layer = parse_cost(options, params);
            net.types[count] = COST;
            net.layers[count] = layer;
            l = parse_cost(options, params);
        }else if(is_detection(s)){
            detection_layer *layer = parse_detection(options, params);
            net.types[count] = DETECTION;
            net.layers[count] = layer;
            l = parse_detection(options, params);
        }else if(is_softmax(s)){
            softmax_layer *layer = parse_softmax(options, params);
            net.types[count] = SOFTMAX;
            net.layers[count] = layer;
            l = parse_softmax(options, params);
        }else if(is_maxpool(s)){
            maxpool_layer *layer = parse_maxpool(options, params);
            net.types[count] = MAXPOOL;
            net.layers[count] = layer;
        }else if(is_normalization(s)){
            normalization_layer *layer = parse_normalization(options, params);
            net.types[count] = NORMALIZATION;
            net.layers[count] = layer;
            l = parse_maxpool(options, params);
        }else if(is_route(s)){
            route_layer *layer = parse_route(options, params, net);
            net.types[count] = ROUTE;
            net.layers[count] = layer;
            l = parse_route(options, params, net);
        }else if(is_dropout(s)){
            dropout_layer *layer = parse_dropout(options, params);
            net.types[count] = DROPOUT;
            net.layers[count] = layer;
            l = parse_dropout(options, params);
            l.output = net.layers[count-1].output;
            l.delta = net.layers[count-1].delta;
            #ifdef GPU
            l.output_gpu = net.layers[count-1].output_gpu;
            l.delta_gpu = net.layers[count-1].delta_gpu;
            #endif
        }else{
            fprintf(stderr, "Type not recognized: %s\n", s->type);
        }
        net.layers[count] = l;
        free_section(s);
        n = n->next;
        if(n){
            image im = get_network_image_layer(net, count);
            params.h = im.h;
            params.w = im.w;
            params.c = im.c;
            params.inputs = get_network_output_size_layer(net, count);
            params.h = l.out_h;
            params.w = l.out_w;
            params.c = l.out_c;
            params.inputs = l.outputs;
        }
        ++count;
    }   
@@ -429,11 +406,6 @@
    return (strcmp(s->type, "[soft]")==0
            || strcmp(s->type, "[softmax]")==0);
}
int is_normalization(section *s)
{
    return (strcmp(s->type, "[lrnorm]")==0
            || strcmp(s->type, "[localresponsenormalization]")==0);
}
int is_route(section *s)
{
    return (strcmp(s->type, "[route]")==0);
@@ -492,114 +464,6 @@
    return sections;
}
void print_convolutional_cfg(FILE *fp, convolutional_layer *l, network net, int count)
{
#ifdef GPU
    if(gpu_index >= 0)  pull_convolutional_layer(*l);
#endif
    int i;
    fprintf(fp, "[convolutional]\n");
    fprintf(fp, "filters=%d\n"
            "size=%d\n"
            "stride=%d\n"
            "pad=%d\n"
            "activation=%s\n",
            l->n, l->size, l->stride, l->pad,
            get_activation_string(l->activation));
    fprintf(fp, "biases=");
    for(i = 0; i < l->n; ++i) fprintf(fp, "%g,", l->biases[i]);
    fprintf(fp, "\n");
    fprintf(fp, "weights=");
    for(i = 0; i < l->n*l->c*l->size*l->size; ++i) fprintf(fp, "%g,", l->filters[i]);
    fprintf(fp, "\n\n");
}
void print_deconvolutional_cfg(FILE *fp, deconvolutional_layer *l, network net, int count)
{
#ifdef GPU
    if(gpu_index >= 0)  pull_deconvolutional_layer(*l);
#endif
    int i;
    fprintf(fp, "[deconvolutional]\n");
    fprintf(fp, "filters=%d\n"
            "size=%d\n"
            "stride=%d\n"
            "activation=%s\n",
            l->n, l->size, l->stride,
            get_activation_string(l->activation));
    fprintf(fp, "biases=");
    for(i = 0; i < l->n; ++i) fprintf(fp, "%g,", l->biases[i]);
    fprintf(fp, "\n");
    fprintf(fp, "weights=");
    for(i = 0; i < l->n*l->c*l->size*l->size; ++i) fprintf(fp, "%g,", l->filters[i]);
    fprintf(fp, "\n\n");
}
void print_dropout_cfg(FILE *fp, dropout_layer *l, network net, int count)
{
    fprintf(fp, "[dropout]\n");
    fprintf(fp, "probability=%g\n\n", l->probability);
}
void print_connected_cfg(FILE *fp, connected_layer *l, network net, int count)
{
#ifdef GPU
    if(gpu_index >= 0) pull_connected_layer(*l);
#endif
    int i;
    fprintf(fp, "[connected]\n");
    fprintf(fp, "output=%d\n"
            "activation=%s\n",
            l->outputs,
            get_activation_string(l->activation));
    fprintf(fp, "biases=");
    for(i = 0; i < l->outputs; ++i) fprintf(fp, "%g,", l->biases[i]);
    fprintf(fp, "\n");
    fprintf(fp, "weights=");
    for(i = 0; i < l->outputs*l->inputs; ++i) fprintf(fp, "%g,", l->weights[i]);
    fprintf(fp, "\n\n");
}
void print_crop_cfg(FILE *fp, crop_layer *l, network net, int count)
{
    fprintf(fp, "[crop]\n");
    fprintf(fp, "crop_height=%d\ncrop_width=%d\nflip=%d\n\n", l->crop_height, l->crop_width, l->flip);
}
void print_maxpool_cfg(FILE *fp, maxpool_layer *l, network net, int count)
{
    fprintf(fp, "[maxpool]\n");
    fprintf(fp, "size=%d\nstride=%d\n\n", l->size, l->stride);
}
void print_normalization_cfg(FILE *fp, normalization_layer *l, network net, int count)
{
    fprintf(fp, "[localresponsenormalization]\n");
    fprintf(fp, "size=%d\n"
            "alpha=%g\n"
            "beta=%g\n"
            "kappa=%g\n\n", l->size, l->alpha, l->beta, l->kappa);
}
void print_softmax_cfg(FILE *fp, softmax_layer *l, network net, int count)
{
    fprintf(fp, "[softmax]\n");
    fprintf(fp, "\n");
}
void print_detection_cfg(FILE *fp, detection_layer *l, network net, int count)
{
    fprintf(fp, "[detection]\n");
    fprintf(fp, "classes=%d\ncoords=%d\nrescore=%d\nnuisance=%d\n", l->classes, l->coords, l->rescore, l->nuisance);
    fprintf(fp, "\n");
}
void print_cost_cfg(FILE *fp, cost_layer *l, network net, int count)
{
    fprintf(fp, "[cost]\ntype=%s\n", get_cost_string(l->type));
    fprintf(fp, "\n");
}
void save_weights(network net, char *filename)
{
    fprintf(stderr, "Saving weights to %s\n", filename);
@@ -613,37 +477,35 @@
    int i;
    for(i = 0; i < net.n; ++i){
        if(net.types[i] == CONVOLUTIONAL){
            convolutional_layer layer = *(convolutional_layer *) net.layers[i];
        layer l = net.layers[i];
        if(l.type == CONVOLUTIONAL){
#ifdef GPU
            if(gpu_index >= 0){
                pull_convolutional_layer(layer);
                pull_convolutional_layer(l);
            }
#endif
            int num = layer.n*layer.c*layer.size*layer.size;
            fwrite(layer.biases, sizeof(float), layer.n, fp);
            fwrite(layer.filters, sizeof(float), num, fp);
            int num = l.n*l.c*l.size*l.size;
            fwrite(l.biases, sizeof(float), l.n, fp);
            fwrite(l.filters, sizeof(float), num, fp);
        }
        if(net.types[i] == DECONVOLUTIONAL){
            deconvolutional_layer layer = *(deconvolutional_layer *) net.layers[i];
        if(l.type == DECONVOLUTIONAL){
#ifdef GPU
            if(gpu_index >= 0){
                pull_deconvolutional_layer(layer);
                pull_deconvolutional_layer(l);
            }
#endif
            int num = layer.n*layer.c*layer.size*layer.size;
            fwrite(layer.biases, sizeof(float), layer.n, fp);
            fwrite(layer.filters, sizeof(float), num, fp);
            int num = l.n*l.c*l.size*l.size;
            fwrite(l.biases, sizeof(float), l.n, fp);
            fwrite(l.filters, sizeof(float), num, fp);
        }
        if(net.types[i] == CONNECTED){
            connected_layer layer = *(connected_layer *) net.layers[i];
        if(l.type == CONNECTED){
#ifdef GPU
            if(gpu_index >= 0){
                pull_connected_layer(layer);
                pull_connected_layer(l);
            }
#endif
            fwrite(layer.biases, sizeof(float), layer.outputs, fp);
            fwrite(layer.weights, sizeof(float), layer.outputs*layer.inputs, fp);
            fwrite(l.biases, sizeof(float), l.outputs, fp);
            fwrite(l.weights, sizeof(float), l.outputs*l.inputs, fp);
        }
    }
    fclose(fp);
@@ -663,35 +525,33 @@
    int i;
    for(i = 0; i < net->n && i < cutoff; ++i){
        if(net->types[i] == CONVOLUTIONAL){
            convolutional_layer layer = *(convolutional_layer *) net->layers[i];
            int num = layer.n*layer.c*layer.size*layer.size;
            fread(layer.biases, sizeof(float), layer.n, fp);
            fread(layer.filters, sizeof(float), num, fp);
        layer l = net->layers[i];
        if(l.type == CONVOLUTIONAL){
            int num = l.n*l.c*l.size*l.size;
            fread(l.biases, sizeof(float), l.n, fp);
            fread(l.filters, sizeof(float), num, fp);
#ifdef GPU
            if(gpu_index >= 0){
                push_convolutional_layer(layer);
                push_convolutional_layer(l);
            }
#endif
        }
        if(net->types[i] == DECONVOLUTIONAL){
            deconvolutional_layer layer = *(deconvolutional_layer *) net->layers[i];
            int num = layer.n*layer.c*layer.size*layer.size;
            fread(layer.biases, sizeof(float), layer.n, fp);
            fread(layer.filters, sizeof(float), num, fp);
        if(l.type == DECONVOLUTIONAL){
            int num = l.n*l.c*l.size*l.size;
            fread(l.biases, sizeof(float), l.n, fp);
            fread(l.filters, sizeof(float), num, fp);
#ifdef GPU
            if(gpu_index >= 0){
                push_deconvolutional_layer(layer);
                push_deconvolutional_layer(l);
            }
#endif
        }
        if(net->types[i] == CONNECTED){
            connected_layer layer = *(connected_layer *) net->layers[i];
            fread(layer.biases, sizeof(float), layer.outputs, fp);
            fread(layer.weights, sizeof(float), layer.outputs*layer.inputs, fp);
        if(l.type == CONNECTED){
            fread(l.biases, sizeof(float), l.outputs, fp);
            fread(l.weights, sizeof(float), l.outputs*l.inputs, fp);
#ifdef GPU
            if(gpu_index >= 0){
                push_connected_layer(layer);
                push_connected_layer(l);
            }
#endif
        }
@@ -704,34 +564,3 @@
    load_weights_upto(net, filename, net->n);
}
void save_network(network net, char *filename)
{
    FILE *fp = fopen(filename, "w");
    if(!fp) file_error(filename);
    int i;
    for(i = 0; i < net.n; ++i)
    {
        if(net.types[i] == CONVOLUTIONAL)
            print_convolutional_cfg(fp, (convolutional_layer *)net.layers[i], net, i);
        else if(net.types[i] == DECONVOLUTIONAL)
            print_deconvolutional_cfg(fp, (deconvolutional_layer *)net.layers[i], net, i);
        else if(net.types[i] == CONNECTED)
            print_connected_cfg(fp, (connected_layer *)net.layers[i], net, i);
        else if(net.types[i] == CROP)
            print_crop_cfg(fp, (crop_layer *)net.layers[i], net, i);
        else if(net.types[i] == MAXPOOL)
            print_maxpool_cfg(fp, (maxpool_layer *)net.layers[i], net, i);
        else if(net.types[i] == DROPOUT)
            print_dropout_cfg(fp, (dropout_layer *)net.layers[i], net, i);
        else if(net.types[i] == NORMALIZATION)
            print_normalization_cfg(fp, (normalization_layer *)net.layers[i], net, i);
        else if(net.types[i] == SOFTMAX)
            print_softmax_cfg(fp, (softmax_layer *)net.layers[i], net, i);
        else if(net.types[i] == DETECTION)
            print_detection_cfg(fp, (detection_layer *)net.layers[i], net, i);
        else if(net.types[i] == COST)
            print_cost_cfg(fp, (cost_layer *)net.layers[i], net, i);
    }
    fclose(fp);
}
src/route_layer.c
@@ -3,83 +3,89 @@
#include "blas.h"
#include <stdio.h>
route_layer *make_route_layer(int batch, int n, int *input_layers, int *input_sizes)
route_layer make_route_layer(int batch, int n, int *input_layers, int *input_sizes)
{
    printf("Route Layer:");
    route_layer *layer = calloc(1, sizeof(route_layer));
    layer->batch = batch;
    layer->n = n;
    layer->input_layers = input_layers;
    layer->input_sizes = input_sizes;
    fprintf(stderr,"Route Layer:");
    route_layer l = {0};
    l.type = ROUTE;
    l.batch = batch;
    l.n = n;
    l.input_layers = input_layers;
    l.input_sizes = input_sizes;
    int i;
    int outputs = 0;
    for(i = 0; i < n; ++i){
        printf(" %d", input_layers[i]);
        fprintf(stderr," %d", input_layers[i]);
        outputs += input_sizes[i];
    }
    printf("\n");
    layer->outputs = outputs;
    layer->delta = calloc(outputs*batch, sizeof(float));
    layer->output = calloc(outputs*batch, sizeof(float));;
    fprintf(stderr, "\n");
    l.outputs = outputs;
    l.inputs = outputs;
    l.delta = calloc(outputs*batch, sizeof(float));
    l.output = calloc(outputs*batch, sizeof(float));;
    #ifdef GPU
    layer->delta_gpu = cuda_make_array(0, outputs*batch);
    layer->output_gpu = cuda_make_array(0, outputs*batch);
    l.delta_gpu = cuda_make_array(0, outputs*batch);
    l.output_gpu = cuda_make_array(0, outputs*batch);
    #endif
    return layer;
    return l;
}
void forward_route_layer(const route_layer layer, network net)
void forward_route_layer(const route_layer l, network net)
{
    int i, j;
    int offset = 0;
    for(i = 0; i < layer.n; ++i){
        float *input = get_network_output_layer(net, layer.input_layers[i]);
        int input_size = layer.input_sizes[i];
        for(j = 0; j < layer.batch; ++j){
            copy_cpu(input_size, input + j*input_size, 1, layer.output + offset + j*layer.outputs, 1);
    for(i = 0; i < l.n; ++i){
        int index = l.input_layers[i];
        float *input = net.layers[index].output;
        int input_size = l.input_sizes[i];
        for(j = 0; j < l.batch; ++j){
            copy_cpu(input_size, input + j*input_size, 1, l.output + offset + j*l.outputs, 1);
        }
        offset += input_size;
    }
}
void backward_route_layer(const route_layer layer, network net)
void backward_route_layer(const route_layer l, network net)
{
    int i, j;
    int offset = 0;
    for(i = 0; i < layer.n; ++i){
        float *delta = get_network_delta_layer(net, layer.input_layers[i]);
        int input_size = layer.input_sizes[i];
        for(j = 0; j < layer.batch; ++j){
            copy_cpu(input_size, layer.delta + offset + j*layer.outputs, 1, delta + j*input_size, 1);
    for(i = 0; i < l.n; ++i){
        int index = l.input_layers[i];
        float *delta = net.layers[index].delta;
        int input_size = l.input_sizes[i];
        for(j = 0; j < l.batch; ++j){
            copy_cpu(input_size, l.delta + offset + j*l.outputs, 1, delta + j*input_size, 1);
        }
        offset += input_size;
    }
}
#ifdef GPU
void forward_route_layer_gpu(const route_layer layer, network net)
void forward_route_layer_gpu(const route_layer l, network net)
{
    int i, j;
    int offset = 0;
    for(i = 0; i < layer.n; ++i){
        float *input = get_network_output_gpu_layer(net, layer.input_layers[i]);
        int input_size = layer.input_sizes[i];
        for(j = 0; j < layer.batch; ++j){
            copy_ongpu(input_size, input + j*input_size, 1, layer.output_gpu + offset + j*layer.outputs, 1);
    for(i = 0; i < l.n; ++i){
        int index = l.input_layers[i];
        float *input = net.layers[index].output_gpu;
        int input_size = l.input_sizes[i];
        for(j = 0; j < l.batch; ++j){
            copy_ongpu(input_size, input + j*input_size, 1, l.output_gpu + offset + j*l.outputs, 1);
        }
        offset += input_size;
    }
}
void backward_route_layer_gpu(const route_layer layer, network net)
void backward_route_layer_gpu(const route_layer l, network net)
{
    int i, j;
    int offset = 0;
    for(i = 0; i < layer.n; ++i){
        float *delta = get_network_delta_gpu_layer(net, layer.input_layers[i]);
        int input_size = layer.input_sizes[i];
        for(j = 0; j < layer.batch; ++j){
            copy_ongpu(input_size, layer.delta_gpu + offset + j*layer.outputs, 1, delta + j*input_size, 1);
    for(i = 0; i < l.n; ++i){
        int index = l.input_layers[i];
        float *delta = net.layers[index].delta_gpu;
        int input_size = l.input_sizes[i];
        for(j = 0; j < l.batch; ++j){
            copy_ongpu(input_size, l.delta_gpu + offset + j*l.outputs, 1, delta + j*input_size, 1);
        }
        offset += input_size;
    }
src/route_layer.h
@@ -1,28 +1,17 @@
#ifndef ROUTE_LAYER_H
#define ROUTE_LAYER_H
#include "network.h"
#include "layer.h"
typedef struct {
    int batch;
    int outputs;
    int n;
    int   * input_layers;
    int   * input_sizes;
    float * delta;
    float * output;
    #ifdef GPU
    float * delta_gpu;
    float * output_gpu;
    #endif
} route_layer;
typedef layer route_layer;
route_layer *make_route_layer(int batch, int n, int *input_layers, int *input_size);
void forward_route_layer(const route_layer layer, network net);
void backward_route_layer(const route_layer layer, network net);
route_layer make_route_layer(int batch, int n, int *input_layers, int *input_size);
void forward_route_layer(const route_layer l, network net);
void backward_route_layer(const route_layer l, network net);
#ifdef GPU
void forward_route_layer_gpu(const route_layer layer, network net);
void backward_route_layer_gpu(const route_layer layer, network net);
void forward_route_layer_gpu(const route_layer l, network net);
void backward_route_layer_gpu(const route_layer l, network net);
#endif
#endif
src/softmax_layer.c
@@ -7,21 +7,23 @@
#include <stdio.h>
#include <assert.h>
softmax_layer *make_softmax_layer(int batch, int inputs, int groups)
softmax_layer make_softmax_layer(int batch, int inputs, int groups)
{
    assert(inputs%groups == 0);
    fprintf(stderr, "Softmax Layer: %d inputs\n", inputs);
    softmax_layer *layer = calloc(1, sizeof(softmax_layer));
    layer->batch = batch;
    layer->groups = groups;
    layer->inputs = inputs;
    layer->output = calloc(inputs*batch, sizeof(float));
    layer->delta = calloc(inputs*batch, sizeof(float));
    softmax_layer l = {0};
    l.type = SOFTMAX;
    l.batch = batch;
    l.groups = groups;
    l.inputs = inputs;
    l.outputs = inputs;
    l.output = calloc(inputs*batch, sizeof(float));
    l.delta = calloc(inputs*batch, sizeof(float));
    #ifdef GPU
    layer->output_gpu = cuda_make_array(layer->output, inputs*batch);
    layer->delta_gpu = cuda_make_array(layer->delta, inputs*batch);
    l.output_gpu = cuda_make_array(l.output, inputs*batch);
    l.delta_gpu = cuda_make_array(l.delta, inputs*batch);
    #endif
    return layer;
    return l;
}
void softmax_array(float *input, int n, float *output)
@@ -42,21 +44,21 @@
    }
}
void forward_softmax_layer(const softmax_layer layer, network_state state)
void forward_softmax_layer(const softmax_layer l, network_state state)
{
    int b;
    int inputs = layer.inputs / layer.groups;
    int batch = layer.batch * layer.groups;
    int inputs = l.inputs / l.groups;
    int batch = l.batch * l.groups;
    for(b = 0; b < batch; ++b){
        softmax_array(state.input+b*inputs, inputs, layer.output+b*inputs);
        softmax_array(state.input+b*inputs, inputs, l.output+b*inputs);
    }
}
void backward_softmax_layer(const softmax_layer layer, network_state state)
void backward_softmax_layer(const softmax_layer l, network_state state)
{
    int i;
    for(i = 0; i < layer.inputs*layer.batch; ++i){
        state.delta[i] = layer.delta[i];
    for(i = 0; i < l.inputs*l.batch; ++i){
        state.delta[i] = l.delta[i];
    }
}
src/softmax_layer.h
@@ -1,28 +1,19 @@
#ifndef SOFTMAX_LAYER_H
#define SOFTMAX_LAYER_H
#include "params.h"
#include "layer.h"
typedef struct {
    int inputs;
    int batch;
    int groups;
    float *delta;
    float *output;
    #ifdef GPU
    float * delta_gpu;
    float * output_gpu;
    #endif
} softmax_layer;
typedef layer softmax_layer;
void softmax_array(float *input, int n, float *output);
softmax_layer *make_softmax_layer(int batch, int inputs, int groups);
void forward_softmax_layer(const softmax_layer layer, network_state state);
void backward_softmax_layer(const softmax_layer layer, network_state state);
softmax_layer make_softmax_layer(int batch, int inputs, int groups);
void forward_softmax_layer(const softmax_layer l, network_state state);
void backward_softmax_layer(const softmax_layer l, network_state state);
#ifdef GPU
void pull_softmax_layer_output(const softmax_layer layer);
void forward_softmax_layer_gpu(const softmax_layer layer, network_state state);
void backward_softmax_layer_gpu(const softmax_layer layer, network_state state);
void pull_softmax_layer_output(const softmax_layer l);
void forward_softmax_layer_gpu(const softmax_layer l, network_state state);
void backward_softmax_layer_gpu(const softmax_layer l, network_state state);
#endif
#endif