| | |
| | | import argparse |
| | | import ast |
| | | import collections |
| | | import cv2 |
| | |
| | | """ |
| | | |
| | | |
| | | def calc_image_hashes(card_pool, save_to=None, hash_size=32, highfreq_factor=4): |
| | | def calc_image_hashes(card_pool, save_to=None, hash_size=None): |
| | | """ |
| | | Calculate perceptual hash (pHash) value for each cards in the database, then store them if needed |
| | | :param card_pool: pandas dataframe containing all card information |
| | | :param save_to: path for the pickle file to be saved |
| | | :param hash_size: param for pHash algorithm |
| | | :param highfreq_factor: param for pHash algorithm |
| | | :return: pandas dataframe |
| | | """ |
| | | if hash_size is None: |
| | | hash_size = [16, 32] |
| | | elif isinstance(hash_size, int): |
| | | hash_size = [hash_size] |
| | | |
| | | # Since some double-faced cards may result in two different cards, create a new dataframe to store the result |
| | | new_pool = pd.DataFrame(columns=list(card_pool.columns.values)) |
| | | new_pool['card_hash'] = np.NaN |
| | | #new_pool['art_hash'] = np.NaN |
| | | for hs in hash_size: |
| | | new_pool['card_hash_%d' % hs] = np.NaN |
| | | #new_pool['art_hash_%d' % hs] = np.NaN |
| | | for ind, card_info in card_pool.iterrows(): |
| | | if ind % 100 == 0: |
| | | print('Calculating hashes: %dth card' % ind) |
| | |
| | | print('WARNING: card %s is not found!' % img_name) |
| | | |
| | | # Compute value of the card's perceptual hash, then store it to the database |
| | | ''' |
| | | img_art = Image.fromarray(card_img[121:580, 63:685]) # For 745*1040 size card image |
| | | art_hash = ih.phash(img_art, hash_size=hash_size, highfreq_factor=highfreq_factor) |
| | | card_info['art_hash'] = art_hash |
| | | ''' |
| | | #img_art = Image.fromarray(card_img[121:580, 63:685]) # For 745*1040 size card image |
| | | img_card = Image.fromarray(card_img) |
| | | card_hash = ih.phash(img_card, hash_size=hash_size, highfreq_factor=highfreq_factor) |
| | | card_info['card_hash'] = card_hash |
| | | for hs in hash_size: |
| | | card_hash = ih.phash(img_card, hash_size=hs) |
| | | card_info['card_hash_%d' % hs] = card_hash |
| | | #art_hash = ih.phash(img_art, hash_size=hs) |
| | | #card_info['art_hash_%d' % hs] = art_hash |
| | | new_pool.loc[0 if new_pool.empty else new_pool.index.max() + 1] = card_info |
| | | |
| | | # Remove uselesss fields, then pickle it if needed |
| | | new_pool = new_pool[['artist', 'border_color', 'collector_number', 'color_identity', 'colors', 'flavor_text', |
| | | 'image_uris', 'mana_cost', 'legalities', 'name', 'oracle_text', 'rarity', 'type_line', |
| | | 'set', 'set_name', 'power', 'toughness', 'art_hash', 'card_hash']] |
| | | if save_to is not None: |
| | | new_pool.to_pickle(save_to) |
| | | return new_pool |
| | |
| | | return warped |
| | | |
| | | |
| | | ''' |
| | | # The following functions are only used in conjunction with YOLO, and is deprecated: |
| | | # - get_outputs_names() |
| | | # - post_process() |
| | | # - draw_pred() |
| | | # Get the names of the output layers |
| | | def get_outputs_names(net): |
| | | # Get the names of all the layers in the network |
| | | layers_names = net.getLayerNames() |
| | | # Get the names of the output layers, i.e. the layers with unconnected outputs |
| | | return [layers_names[i[0] - 1] for i in net.getUnconnectedOutLayers()] |
| | | |
| | | |
| | | # Remove the bounding boxes with low confidence using non-maxima suppression |
| | | # https://www.learnopencv.com/deep-learning-based-object-detection-using-yolov3-with-opencv-python-c/ |
| | | def post_process(frame, outs, thresh_conf, thresh_nms): |
| | | frame_height = frame.shape[0] |
| | | frame_width = frame.shape[1] |
| | | |
| | | # Scan through all the bounding boxes output from the network and keep only the |
| | | # ones with high confidence scores. Assign the box's class label as the class with the highest score. |
| | | class_ids = [] |
| | | confidences = [] |
| | | boxes = [] |
| | | for out in outs: |
| | | for detection in out: |
| | | scores = detection[5:] |
| | | class_id = np.argmax(scores) |
| | | confidence = scores[class_id] |
| | | if confidence > thresh_conf: |
| | | center_x = int(detection[0] * frame_width) |
| | | center_y = int(detection[1] * frame_height) |
| | | width = int(detection[2] * frame_width) |
| | | height = int(detection[3] * frame_height) |
| | | left = int(center_x - width / 2) |
| | | top = int(center_y - height / 2) |
| | | class_ids.append(class_id) |
| | | confidences.append(float(confidence)) |
| | | boxes.append([left, top, width, height]) |
| | | |
| | | # Perform non maximum suppression to eliminate redundant overlapping boxes with lower confidences. |
| | | indices = [ind[0] for ind in cv2.dnn.NMSBoxes(boxes, confidences, thresh_conf, thresh_nms)] |
| | | |
| | | ret = [[class_ids[i], confidences[i], boxes[i]] for i in indices] |
| | | return ret |
| | | |
| | | |
| | | # Draw the predicted bounding box |
| | | def draw_pred(frame, class_id, classes, conf, left, top, right, bottom): |
| | | # Draw a bounding box. |
| | | cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255)) |
| | | |
| | | label = '%.2f' % conf |
| | | |
| | | # Get the label for the class name and its confidence |
| | | if classes: |
| | | assert (class_id < len(classes)) |
| | | label = '%s:%s' % (classes[class_id], label) |
| | | |
| | | # Display the label at the top of the bounding box |
| | | label_size, base_line = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1) |
| | | top = max(top, label_size[1]) |
| | | cv2.putText(frame, label, (left, top), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255)) |
| | | ''' |
| | | |
| | | |
| | | def remove_glare(img): |
| | | """ |
| | | Reduce the effect of glaring in the image |
| | |
| | | if os.path.exists(img_name): |
| | | card_img = cv2.imread(img_name) |
| | | else: |
| | | card_img = np.ones((h_card, w_card)) |
| | | card_img = np.ones((h_card, w_card, 3)) * 255 |
| | | cv2.putText(card_img, 'X', ((w_card - int(txt_scale * 25)) // 2, (h_card + int(txt_scale * 25)) // 2), |
| | | cv2.FONT_HERSHEY_SIMPLEX, txt_scale, (0, 0, 0), 2) |
| | | |
| | | # Insert the card image, card name, and confidence bar to the graph |
| | | img_graph[y_anchor:y_anchor + h_card, x_anchor:x_anchor + w_card] = card_img |
| | |
| | | return img_graph |
| | | |
| | | |
| | | def detect_frame(img, card_pool, hash_size=32, highfreq_factor=4, size_thresh=10000, |
| | | def detect_frame(img, card_pool, hash_size=32, size_thresh=10000, |
| | | out_path=None, display=True, debug=False): |
| | | """ |
| | | Identify all cards in the input frame, display or save the frame if needed |
| | | :param img: input frame |
| | | :param card_pool: pandas dataframe of all card's information |
| | | :param hash_size: param for pHash algorithm |
| | | :param highfreq_factor: param for pHash algorithm |
| | | :param size_thresh: threshold for size (in pixel) of the contour to be a candidate |
| | | :param out_path: path to save the result |
| | | :param display: flag for displaying the result |
| | |
| | | ''' |
| | | img_art = img_warp[47:249, 22:294] |
| | | img_art = Image.fromarray(img_art.astype('uint8'), 'RGB') |
| | | art_hash = ih.phash(img_art, hash_size=hash_size, highfreq_factor=highfreq_factor).hash.flatten() |
| | | art_hash = ih.phash(img_art, hash_size=hash_size).hash.flatten() |
| | | card_pool['hash_diff'] = card_pool['art_hash'].apply(lambda x: np.count_nonzero(x != art_hash)) |
| | | ''' |
| | | img_card = Image.fromarray(img_warp.astype('uint8'), 'RGB') |
| | | # the stored values of hashes in the dataframe is pre-emptively flattened already to minimize computation time |
| | | card_hash = ih.phash(img_card, hash_size=hash_size, highfreq_factor=highfreq_factor).hash.flatten() |
| | | card_pool['hash_diff'] = card_pool['card_hash'].apply(lambda x: np.count_nonzero(x != card_hash)) |
| | | card_hash = ih.phash(img_card, hash_size=hash_size).hash.flatten() |
| | | card_pool['hash_diff'] = card_pool['card_hash_%d' % hash_size] |
| | | card_pool['hash_diff'] = card_pool['hash_diff'].apply(lambda x: np.count_nonzero(x != card_hash)) |
| | | min_card = card_pool[card_pool['hash_diff'] == min(card_pool['hash_diff'])].iloc[0] |
| | | card_name = min_card['name'] |
| | | card_set = min_card['set'] |
| | |
| | | |
| | | # Render the result, and display them if needed |
| | | cv2.drawContours(img_result, [cnt], -1, (0, 255, 0), 2) |
| | | cv2.putText(img_result, card_name, (pts[0][0], pts[0][1]), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2) |
| | | cv2.putText(img_result, card_name, (min(pts[0][0], pts[1][0]), min(pts[0][1], pts[1][1])), |
| | | cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2) |
| | | if debug: |
| | | # cv2.rectangle(img_warp, (22, 47), (294, 249), (0, 255, 0), 2) |
| | | cv2.putText(img_warp, card_name + ', ' + str(hash_diff), (0, 50), |
| | | cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2) |
| | | cv2.putText(img_warp, card_name + ', ' + str(hash_diff), (0, 20), |
| | | cv2.FONT_HERSHEY_SIMPLEX, 0.4, (255, 255, 255), 1) |
| | | cv2.imshow('card#%d' % i, img_warp) |
| | | if display: |
| | | cv2.imshow('Result', img_result) |
| | |
| | | return det_cards, img_result |
| | | |
| | | |
| | | def detect_video(capture, card_pool, hash_size=32, highfreq_factor=4, size_thresh=10000, |
| | | def detect_video(capture, card_pool, hash_size=32, size_thresh=10000, |
| | | out_path=None, display=True, show_graph=True, debug=False): |
| | | """ |
| | | Identify all cards in the continuous video stream, display or save the result if needed |
| | | :param capture: input video stream |
| | | :param card_pool: pandas dataframe of all card's information |
| | | :param hash_size: param for pHash algorithm |
| | | :param highfreq_factor: param for pHash algorithm |
| | | :param size_thresh: threshold for size (in pixel) of the contour to be a candidate |
| | | :param out_path: path to save the result |
| | | :param display: flag for displaying the result |
| | |
| | | cv2.waitKey(0) |
| | | break |
| | | # Detect all cards from the current frame |
| | | det_cards, img_result = detect_frame(frame, card_pool, hash_size=hash_size, highfreq_factor=highfreq_factor, |
| | | size_thresh=size_thresh, out_path=None, display=False, debug=debug) |
| | | det_cards, img_result = detect_frame(frame, card_pool, hash_size=hash_size, size_thresh=size_thresh, |
| | | out_path=None, display=False, debug=debug) |
| | | if show_graph: |
| | | # If the card was already detected in the previous frame, append 1 to the list |
| | | # If the card previously detected was not found in this trame, append 0 to the list |
| | |
| | | cv2.destroyAllWindows() |
| | | |
| | | |
| | | def main(): |
| | | def main(args): |
| | | # Specify paths for all necessary files |
| | | #test_path = os.path.abspath('test_file/test4.mp4') |
| | | test_path = None |
| | | out_dir = 'out' |
| | | hash_size = 32 |
| | | highfreq_factor = 4 |
| | | |
| | | pck_path = os.path.abspath('card_pool_%d_%d.pck' % (hash_size, highfreq_factor)) |
| | | pck_path = os.path.abspath('card_pool.pck') |
| | | if os.path.isfile(pck_path): |
| | | card_pool = pd.read_pickle(pck_path) |
| | | else: |
| | | print('Warning: pickle for card database %s is not found!' % pck_path) |
| | | # Merge database for all cards, then calculate pHash values of each, store them |
| | | df_list = [] |
| | | for set_name in Config.all_set_list: |
| | |
| | | card_pool = pd.concat(df_list, sort=True) |
| | | card_pool.reset_index(drop=True, inplace=True) |
| | | card_pool.drop('Unnamed: 0', axis=1, inplace=True, errors='ignore') |
| | | calc_image_hashes(card_pool, save_to=pck_path) |
| | | ch_key = 'card_hash_%d' % args.hash_size |
| | | card_pool = card_pool[['name', 'set', 'collector_number', ch_key]] |
| | | |
| | | card_pool = calc_image_hashes(card_pool, save_to=pck_path, hash_size=hash_size, highfreq_factor=highfreq_factor) |
| | | card_pool = card_pool[['name', 'set', 'collector_number', 'card_hash']] |
| | | # Processing time is almost linear to the size of the database |
| | | # Program can be much faster if the search scope for the card can be reduced |
| | | card_pool = card_pool[card_pool['set'].isin(Config.set_2003_list)] |
| | | |
| | | # ImageHash is basically just one numpy.ndarray with (hash_size)^2 number of bits. pre-emptively flattening it |
| | | # significantly increases speed for subtracting hashes in the future. |
| | | card_pool['card_hash'] = card_pool['card_hash'].apply(lambda x: x.hash.flatten()) |
| | | |
| | | card_pool[ch_key] = card_pool[ch_key].apply(lambda x: x.hash.flatten()) |
| | | |
| | | # If the test file isn't given, use webcam to capture video |
| | | if test_path is None: |
| | | if args.in_path is None: |
| | | capture = cv2.VideoCapture(0) |
| | | detect_video(capture, card_pool, out_path='%s/result.avi' % out_dir, display=True, show_graph=True, debug=False) |
| | | detect_video(capture, card_pool, hash_size=args.hash_size, out_path='%s/result.avi' % args.out_path, |
| | | display=args.display, show_graph=args.show_graph, debug=args.debug) |
| | | capture.release() |
| | | else: |
| | | # Save the detection result if out_dir is provided |
| | | if out_dir is None or out_dir == '': |
| | | # Save the detection result if args.out_path is provided |
| | | if args.out_path is None: |
| | | out_path = None |
| | | else: |
| | | f_name = os.path.split(test_path)[1] |
| | | out_path = '%s/%s.avi' % (out_dir, f_name[:f_name.find('.')]) |
| | | f_name = os.path.split(args.in_path)[1] |
| | | out_path = '%s/%s.avi' % (args.out_path, f_name[:f_name.find('.')]) |
| | | |
| | | if not os.path.isfile(test_path): |
| | | print('The test file %s doesn\'t exist!' % os.path.abspath(test_path)) |
| | | if not os.path.isfile(args.in_path): |
| | | print('The test file %s doesn\'t exist!' % os.path.abspath(args.in_path)) |
| | | return |
| | | # Check if test file is image or video |
| | | test_ext = test_path[test_path.find('.') + 1:] |
| | | test_ext = args.in_path[args.in_path.find('.') + 1:] |
| | | if test_ext in ['jpg', 'jpeg', 'bmp', 'png', 'tiff']: |
| | | # Test file is an image |
| | | img = cv2.imread(test_path) |
| | | detect_frame(img, card_pool, out_path=out_path) |
| | | img = cv2.imread(args.in_path) |
| | | detect_frame(img, card_pool, hash_size=args.hash_size, out_path=out_path, display=args.display, |
| | | debug=args.debug) |
| | | else: |
| | | # Test file is a video |
| | | capture = cv2.VideoCapture(test_path) |
| | | detect_video(capture, card_pool, out_path=out_path, display=True, show_graph=True, debug=False) |
| | | capture = cv2.VideoCapture(args.in_path) |
| | | detect_video(capture, card_pool, hash_size=args.hash_size, out_path=out_path, display=args.display, |
| | | show_graph=args.show_graph, debug=args.debug) |
| | | capture.release() |
| | | pass |
| | | |
| | | |
| | | if __name__ == '__main__': |
| | | main() |
| | | parser = argparse.ArgumentParser() |
| | | parser.add_argument('-i', '--in', dest='in_path', help='Path of the input file. For webcam, leave it blank', |
| | | type=str) |
| | | parser.add_argument('-o', '--out', dest='out_path', help='Path of the output directory to save the result', |
| | | type=str) |
| | | parser.add_argument('-hs', '--hash_size', dest='hash_size', |
| | | help='Size of the hash for pHash algorithm', type=int, default=16) |
| | | parser.add_argument('-dsp', '--display', dest='display', help='Display the result', action='store_true', |
| | | default=False) |
| | | parser.add_argument('-dbg', '--debug', dest='debug', help='Enable debug mode', action='store_true', default=False) |
| | | parser.add_argument('-gph', '--show_graph', dest='show_graph', help='Display the graph for video output', |
| | | action='store_true', default=False) |
| | | args = parser.parse_args() |
| | | if not args.display and args.out_path is None: |
| | | # Then why the heck are you running this thing in the first place? |
| | | print('The program isn\'t displaying nor saving any output file. Please change the setting and try again.') |
| | | exit() |
| | | main(args) |