| | |
| | | |
| | | int main(int argc, char **argv) |
| | | { |
| | | //test_box(); |
| | | //test_convolutional_layer(); |
| | | if(argc < 2){ |
| | | fprintf(stderr, "usage: %s <function>\n", argv[0]); |
| | |
| | | return X; |
| | | } |
| | | |
| | | typedef struct box{ |
| | | typedef struct{ |
| | | int id; |
| | | float x,y,w,h; |
| | | float left, right, top, bottom; |
| | | } box; |
| | | } box_label; |
| | | |
| | | box *read_boxes(char *filename, int *n) |
| | | box_label *read_boxes(char *filename, int *n) |
| | | { |
| | | box *boxes = calloc(1, sizeof(box)); |
| | | box_label *boxes = calloc(1, sizeof(box_label)); |
| | | FILE *file = fopen(filename, "r"); |
| | | if(!file) file_error(filename); |
| | | float x, y, h, w; |
| | | int id; |
| | | int count = 0; |
| | | while(fscanf(file, "%d %f %f %f %f", &id, &x, &y, &w, &h) == 5){ |
| | | boxes = realloc(boxes, (count+1)*sizeof(box)); |
| | | boxes = realloc(boxes, (count+1)*sizeof(box_label)); |
| | | boxes[count].id = id; |
| | | boxes[count].x = x; |
| | | boxes[count].y = y; |
| | |
| | | return boxes; |
| | | } |
| | | |
| | | void randomize_boxes(box *b, int n) |
| | | void randomize_boxes(box_label *b, int n) |
| | | { |
| | | int i; |
| | | for(i = 0; i < n; ++i){ |
| | | box swap = b[i]; |
| | | box_label swap = b[i]; |
| | | int index = rand_r(&data_seed)%n; |
| | | b[i] = b[index]; |
| | | b[index] = swap; |
| | |
| | | labelpath = find_replace(labelpath, ".jpg", ".txt"); |
| | | labelpath = find_replace(labelpath, ".JPEG", ".txt"); |
| | | int count = 0; |
| | | box *boxes = read_boxes(labelpath, &count); |
| | | box_label *boxes = read_boxes(labelpath, &count); |
| | | randomize_boxes(boxes, count); |
| | | float x,y,w,h; |
| | | float left, top, right, bot; |
| | |
| | | if(background) truth[index++] = 0; |
| | | truth[index+id] = 1; |
| | | index += classes; |
| | | truth[index++] = y; |
| | | truth[index++] = x; |
| | | truth[index++] = h; |
| | | truth[index++] = y; |
| | | truth[index++] = w; |
| | | truth[index++] = h; |
| | | } |
| | | free(boxes); |
| | | } |
| | |
| | | if (imgnet){ |
| | | plist = get_paths("/home/pjreddie/data/imagenet/det.train.list"); |
| | | }else{ |
| | | //plist = get_paths("/home/pjreddie/data/voc/trainall.txt"); |
| | | plist = get_paths("/home/pjreddie/data/voc/trainall.txt"); |
| | | //plist = get_paths("/home/pjreddie/data/coco/trainval.txt"); |
| | | plist = get_paths("/home/pjreddie/data/voc/all2007-2012.txt"); |
| | | //plist = get_paths("/home/pjreddie/data/voc/all2007-2012.txt"); |
| | | } |
| | | paths = (char **)list_to_array(plist); |
| | | pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.w, net.h, side, side, background, &buffer); |
| | |
| | | train = buffer; |
| | | load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.w, net.h, side, side, background, &buffer); |
| | | |
| | | /* |
| | | image im = float_to_image(net.w, net.h, 3, train.X.vals[114]); |
| | | image copy = copy_image(im); |
| | | draw_detection(copy, train.y.vals[114], 7); |
| | | free_image(copy); |
| | | */ |
| | | /* |
| | | image im = float_to_image(net.w, net.h, 3, train.X.vals[114]); |
| | | image copy = copy_image(im); |
| | | draw_detection(copy, train.y.vals[114], 7); |
| | | free_image(copy); |
| | | */ |
| | | |
| | | printf("Loaded: %lf seconds\n", sec(clock()-time)); |
| | | time=clock(); |
| | |
| | | |
| | | void predict_detections(network net, data d, float threshold, int offset, int classes, int nuisance, int background, int num_boxes, int per_box) |
| | | { |
| | | matrix pred = network_predict_data(net, d); |
| | | int j, k, class; |
| | | for(j = 0; j < pred.rows; ++j){ |
| | | for(k = 0; k < pred.cols; k += per_box){ |
| | | float scale = 1.; |
| | | int index = k/per_box; |
| | | int row = index / num_boxes; |
| | | int col = index % num_boxes; |
| | | if (nuisance) scale = 1.-pred.vals[j][k]; |
| | | for (class = 0; class < classes; ++class){ |
| | | int ci = k+classes+background+nuisance; |
| | | float y = (pred.vals[j][ci + 0] + row)/num_boxes; |
| | | float x = (pred.vals[j][ci + 1] + col)/num_boxes; |
| | | float h = pred.vals[j][ci + 2]; //* distance_from_edge(row, num_boxes); |
| | | h = h*h; |
| | | float w = pred.vals[j][ci + 3]; //* distance_from_edge(col, num_boxes); |
| | | w = w*w; |
| | | float prob = scale*pred.vals[j][k+class+background+nuisance]; |
| | | if(prob < threshold) continue; |
| | | printf("%d %d %f %f %f %f %f\n", offset + j, class, prob, y, x, h, w); |
| | | } |
| | | matrix pred = network_predict_data(net, d); |
| | | int j, k, class; |
| | | for(j = 0; j < pred.rows; ++j){ |
| | | for(k = 0; k < pred.cols; k += per_box){ |
| | | float scale = 1.; |
| | | int index = k/per_box; |
| | | int row = index / num_boxes; |
| | | int col = index % num_boxes; |
| | | if (nuisance) scale = 1.-pred.vals[j][k]; |
| | | for (class = 0; class < classes; ++class){ |
| | | int ci = k+classes+background+nuisance; |
| | | float y = (pred.vals[j][ci + 0] + row)/num_boxes; |
| | | float x = (pred.vals[j][ci + 1] + col)/num_boxes; |
| | | float h = pred.vals[j][ci + 2]; //* distance_from_edge(row, num_boxes); |
| | | h = h*h; |
| | | float w = pred.vals[j][ci + 3]; //* distance_from_edge(col, num_boxes); |
| | | w = w*w; |
| | | float prob = scale*pred.vals[j][k+class+background+nuisance]; |
| | | if(prob < threshold) continue; |
| | | printf("%d %d %f %f %f %f %f\n", offset + j, class, prob, y, x, h, w); |
| | | } |
| | | } |
| | | free_matrix(pred); |
| | | } |
| | | free_matrix(pred); |
| | | } |
| | | |
| | | void validate_detection(char *cfgfile, char *weightfile) |
| | |
| | | #include "softmax_layer.h" |
| | | #include "blas.h" |
| | | #include "cuda.h" |
| | | #include "utils.h" |
| | | #include <stdio.h> |
| | | #include <string.h> |
| | | #include <stdlib.h> |
| | | |
| | | int get_detection_layer_locations(detection_layer layer) |
| | |
| | | layer->coords = coords; |
| | | layer->rescore = rescore; |
| | | layer->nuisance = nuisance; |
| | | layer->cost = calloc(1, sizeof(float)); |
| | | layer->does_cost=1; |
| | | layer->background = background; |
| | | int outputs = get_detection_layer_output_size(*layer); |
| | | layer->output = calloc(batch*outputs, sizeof(float)); |
| | |
| | | } |
| | | } |
| | | |
| | | typedef struct{ |
| | | float dx, dy, dw, dh; |
| | | } dbox; |
| | | |
| | | dbox derivative(box a, box b) |
| | | { |
| | | dbox d; |
| | | d.dx = 0; |
| | | d.dw = 0; |
| | | float l1 = a.x - a.w/2; |
| | | float l2 = b.x - b.w/2; |
| | | if (l1 > l2){ |
| | | d.dx -= 1; |
| | | d.dw += .5; |
| | | } |
| | | float r1 = a.x + a.w/2; |
| | | float r2 = b.x + b.w/2; |
| | | if(r1 < r2){ |
| | | d.dx += 1; |
| | | d.dw += .5; |
| | | } |
| | | if (l1 > r2) { |
| | | d.dx = -1; |
| | | d.dw = 0; |
| | | } |
| | | if (r1 < l2){ |
| | | d.dx = 1; |
| | | d.dw = 0; |
| | | } |
| | | |
| | | d.dy = 0; |
| | | d.dh = 0; |
| | | float t1 = a.y - a.h/2; |
| | | float t2 = b.y - b.h/2; |
| | | if (t1 > t2){ |
| | | d.dy -= 1; |
| | | d.dh += .5; |
| | | } |
| | | float b1 = a.y + a.h/2; |
| | | float b2 = b.y + b.h/2; |
| | | if(b1 < b2){ |
| | | d.dy += 1; |
| | | d.dh += .5; |
| | | } |
| | | if (t1 > b2) { |
| | | d.dy = -1; |
| | | d.dh = 0; |
| | | } |
| | | if (b1 < t2){ |
| | | d.dy = 1; |
| | | d.dh = 0; |
| | | } |
| | | return d; |
| | | } |
| | | |
| | | float overlap(float x1, float w1, float x2, float w2) |
| | | { |
| | | float l1 = x1 - w1/2; |
| | | float l2 = x2 - w2/2; |
| | | float left = l1 > l2 ? l1 : l2; |
| | | float r1 = x1 + w1/2; |
| | | float r2 = x2 + w2/2; |
| | | float right = r1 < r2 ? r1 : r2; |
| | | return right - left; |
| | | } |
| | | |
| | | float box_intersection(box a, box b) |
| | | { |
| | | float w = overlap(a.x, a.w, b.x, b.w); |
| | | float h = overlap(a.y, a.h, b.y, b.h); |
| | | if(w < 0 || h < 0) return 0; |
| | | float area = w*h; |
| | | return area; |
| | | } |
| | | |
| | | float box_union(box a, box b) |
| | | { |
| | | float i = box_intersection(a, b); |
| | | float u = a.w*a.h + b.w*b.h - i; |
| | | return u; |
| | | } |
| | | |
| | | float box_iou(box a, box b) |
| | | { |
| | | return box_intersection(a, b)/box_union(a, b); |
| | | } |
| | | |
| | | dbox dintersect(box a, box b) |
| | | { |
| | | float w = overlap(a.x, a.w, b.x, b.w); |
| | | float h = overlap(a.y, a.h, b.y, b.h); |
| | | dbox dover = derivative(a, b); |
| | | dbox di; |
| | | |
| | | di.dw = dover.dw*h; |
| | | di.dx = dover.dx*h; |
| | | di.dh = dover.dh*w; |
| | | di.dy = dover.dy*w; |
| | | if(h < 0 || w < 0){ |
| | | di.dx = dover.dx; |
| | | di.dy = dover.dy; |
| | | } |
| | | return di; |
| | | } |
| | | |
| | | dbox dunion(box a, box b) |
| | | { |
| | | dbox du = {0,0,0,0};; |
| | | float w = overlap(a.x, a.w, b.x, b.w); |
| | | float h = overlap(a.y, a.h, b.y, b.h); |
| | | if(w > 0 && h > 0){ |
| | | dbox di = dintersect(a, b); |
| | | du.dw = h - di.dw; |
| | | du.dh = w - di.dw; |
| | | du.dx = -di.dx; |
| | | du.dy = -di.dy; |
| | | } |
| | | return du; |
| | | } |
| | | |
| | | dbox diou(box a, box b) |
| | | { |
| | | float u = box_union(a,b); |
| | | float i = box_intersection(a,b); |
| | | dbox di = dintersect(a,b); |
| | | dbox du = dunion(a,b); |
| | | dbox dd = {0,0,0,0}; |
| | | if(i < 0) { |
| | | dd.dx = b.x - a.x; |
| | | dd.dy = b.y - a.y; |
| | | dd.dw = b.w - a.w; |
| | | dd.dh = b.h - a.h; |
| | | return dd; |
| | | } |
| | | dd.dx = 2*pow((1-(i/u)),1)*(di.dx*u - du.dx*i)/(u*u); |
| | | dd.dy = 2*pow((1-(i/u)),1)*(di.dy*u - du.dy*i)/(u*u); |
| | | dd.dw = 2*pow((1-(i/u)),1)*(di.dw*u - du.dw*i)/(u*u); |
| | | dd.dh = 2*pow((1-(i/u)),1)*(di.dh*u - du.dh*i)/(u*u); |
| | | return dd; |
| | | } |
| | | |
| | | void test_box() |
| | | { |
| | | box a = {1, 1, 1, 1}; |
| | | box b = {0, 0, .5, .2}; |
| | | int count = 0; |
| | | while(count++ < 300){ |
| | | dbox d = diou(a, b); |
| | | printf("%f %f %f %f\n", a.x, a.y, a.w, a.h); |
| | | a.x += .1*d.dx; |
| | | a.w += .1*d.dw; |
| | | a.y += .1*d.dy; |
| | | a.h += .1*d.dh; |
| | | printf("inter: %f\n", box_intersection(a, b)); |
| | | printf("union: %f\n", box_union(a, b)); |
| | | printf("IOU: %f\n", box_iou(a, b)); |
| | | if(d.dx==0 && d.dw==0 && d.dy==0 && d.dh==0) { |
| | | printf("break!!!\n"); |
| | | break; |
| | | } |
| | | } |
| | | } |
| | | |
| | | void forward_detection_layer(const detection_layer layer, network_state state) |
| | | { |
| | | int in_i = 0; |
| | |
| | | layer.output[out_i++] = mask*state.input[in_i++]; |
| | | } |
| | | } |
| | | /* |
| | | int count = 0; |
| | | for(i = 0; i < layer.batch*locations; ++i){ |
| | | for(j = 0; j < layer.classes+layer.background; ++j){ |
| | | printf("%f, ", layer.output[count++]); |
| | | } |
| | | printf("\n"); |
| | | for(j = 0; j < layer.coords; ++j){ |
| | | printf("%f, ", layer.output[count++]); |
| | | } |
| | | printf("\n"); |
| | | } |
| | | */ |
| | | /* |
| | | if(layer.background || 1){ |
| | | if(layer.does_cost){ |
| | | *(layer.cost) = 0; |
| | | int size = get_detection_layer_output_size(layer) * layer.batch; |
| | | memset(layer.delta, 0, size * sizeof(float)); |
| | | for(i = 0; i < layer.batch*locations; ++i){ |
| | | int index = i*(layer.classes+layer.coords+layer.background); |
| | | for(j= 0; j < layer.classes; ++j){ |
| | | if(state.truth[index+j+layer.background]){ |
| | | //dark_zone(layer, j, index, state); |
| | | } |
| | | int classes = layer.nuisance+layer.classes; |
| | | int offset = i*(classes+layer.coords); |
| | | for(j = offset; j < offset+classes; ++j){ |
| | | *(layer.cost) += pow(state.truth[j] - layer.output[j], 2); |
| | | layer.delta[j] = state.truth[j] - layer.output[j]; |
| | | } |
| | | box truth; |
| | | truth.x = state.truth[j+0]; |
| | | truth.y = state.truth[j+1]; |
| | | truth.w = state.truth[j+2]; |
| | | truth.h = state.truth[j+3]; |
| | | box out; |
| | | out.x = layer.output[j+0]; |
| | | out.y = layer.output[j+1]; |
| | | out.w = layer.output[j+2]; |
| | | out.h = layer.output[j+3]; |
| | | if(!(truth.w*truth.h)) continue; |
| | | float iou = box_iou(truth, out); |
| | | //printf("iou: %f\n", iou); |
| | | *(layer.cost) += pow((1-iou), 2); |
| | | dbox d = diou(out, truth); |
| | | layer.delta[j+0] = d.dx; |
| | | layer.delta[j+1] = d.dy; |
| | | layer.delta[j+2] = d.dw; |
| | | layer.delta[j+3] = d.dh; |
| | | } |
| | | } |
| | | */ |
| | | /* |
| | | int count = 0; |
| | | for(i = 0; i < layer.batch*locations; ++i){ |
| | | for(j = 0; j < layer.classes+layer.background; ++j){ |
| | | printf("%f, ", layer.output[count++]); |
| | | } |
| | | printf("\n"); |
| | | for(j = 0; j < layer.coords; ++j){ |
| | | printf("%f, ", layer.output[count++]); |
| | | } |
| | | printf("\n"); |
| | | } |
| | | */ |
| | | /* |
| | | if(layer.background || 1){ |
| | | for(i = 0; i < layer.batch*locations; ++i){ |
| | | int index = i*(layer.classes+layer.coords+layer.background); |
| | | for(j= 0; j < layer.classes; ++j){ |
| | | if(state.truth[index+j+layer.background]){ |
| | | //dark_zone(layer, j, index, state); |
| | | } |
| | | } |
| | | } |
| | | } |
| | | */ |
| | | } |
| | | |
| | | void backward_detection_layer(const detection_layer layer, network_state state) |
| | |
| | | cpu_state.input = in_cpu; |
| | | forward_detection_layer(layer, cpu_state); |
| | | cuda_push_array(layer.output_gpu, layer.output, layer.batch*outputs); |
| | | cuda_push_array(layer.delta_gpu, layer.delta, layer.batch*outputs); |
| | | free(cpu_state.input); |
| | | if(cpu_state.truth) free(cpu_state.truth); |
| | | } |
| | |
| | | int background; |
| | | int rescore; |
| | | int nuisance; |
| | | int does_cost; |
| | | float *cost; |
| | | float *output; |
| | | float *delta; |
| | | #ifdef GPU |
| | |
| | | printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), net.seen); |
| | | free_data(train); |
| | | //if(i%100 == 0 && net.learning_rate > .00001) net.learning_rate *= .97; |
| | | if(i%100==0){ |
| | | if(i%1000==0){ |
| | | char buff[256]; |
| | | sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.weights",base, i); |
| | | save_weights(net, buff); |
| | |
| | | if(net.types[net.n-1] == COST){ |
| | | return ((cost_layer *)net.layers[net.n-1])->output[0]; |
| | | } |
| | | if(net.types[net.n-1] == DETECTION){ |
| | | return ((detection_layer *)net.layers[net.n-1])->cost[0]; |
| | | } |
| | | return 0; |
| | | } |
| | | |
| | |
| | | float mag_array(float *a, int n); |
| | | float **one_hot_encode(float *a, int n, int k); |
| | | float sec(clock_t clocks); |
| | | |
| | | typedef struct{ |
| | | float x, y, w, h; |
| | | } box; |
| | | #endif |
| | | |