Try to use avx_hs() - slow and requires alignment 4096 bits < (l.size*l.size*l.c)
May be faster only from 8192 bits and more.
| | |
| | | // transpose B from NxK to KxN (x-axis (ldb = l.size*l.size*l.c) - should be multiple of 8 bits) |
| | | { |
| | | size_t ldb_align = 256;// 8; |
| | | if (k > 4096)ldb_align = 4096; |
| | | |
| | | size_t new_ldb = k + (ldb_align - k%ldb_align); // (k / 8 + 1) * 8; |
| | | size_t t_intput_size = new_ldb * n; |
| | | size_t t_bit_input_size = t_intput_size / 8;// +1; |
| | |
| | | #include "gemm.h" |
| | | #include "utils.h" |
| | | #include "cuda.h" |
| | | #include <stdlib.h> |
| | | #include <stdio.h> |
| | | #include <math.h> |
| | | |
| | | void gemm_bin(int M, int N, int K, float ALPHA, |
| | | char *A, int lda, |
| | | float *B, int ldb, |
| | | float *C, int ldc) |
| | | { |
| | | int i,j,k; |
| | | for(i = 0; i < M; ++i){ |
| | | for(k = 0; k < K; ++k){ |
| | | char A_PART = A[i*lda+k]; |
| | | if(A_PART){ |
| | | for(j = 0; j < N; ++j){ |
| | | C[i*ldc+j] += B[k*ldb+j]; |
| | | } |
| | | } else { |
| | | for(j = 0; j < N; ++j){ |
| | | C[i*ldc+j] -= B[k*ldb+j]; |
| | | } |
| | | } |
| | | } |
| | | } |
| | | } |
| | | |
| | | float *random_matrix(int rows, int cols) |
| | | { |
| | | int i; |
| | | float *m = calloc(rows*cols, sizeof(float)); |
| | | for(i = 0; i < rows*cols; ++i){ |
| | | m[i] = (float)rand()/RAND_MAX; |
| | | } |
| | | return m; |
| | | } |
| | | |
| | | void time_random_matrix(int TA, int TB, int m, int k, int n) |
| | | { |
| | | float *a; |
| | | if(!TA) a = random_matrix(m,k); |
| | | else a = random_matrix(k,m); |
| | | int lda = (!TA)?k:m; |
| | | float *b; |
| | | if(!TB) b = random_matrix(k,n); |
| | | else b = random_matrix(n,k); |
| | | int ldb = (!TB)?n:k; |
| | | |
| | | float *c = random_matrix(m,n); |
| | | int i; |
| | | clock_t start = clock(), end; |
| | | for(i = 0; i<10; ++i){ |
| | | gemm_cpu(TA,TB,m,n,k,1,a,lda,b,ldb,1,c,n); |
| | | } |
| | | end = clock(); |
| | | printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %lf ms\n",m,k,k,n, TA, TB, (float)(end-start)/CLOCKS_PER_SEC); |
| | | free(a); |
| | | free(b); |
| | | free(c); |
| | | } |
| | | |
| | | |
| | | void gemm(int TA, int TB, int M, int N, int K, float ALPHA, |
| | | float *A, int lda, |
| | | float *B, int ldb, |
| | | float BETA, |
| | | float *C, int ldc) |
| | | { |
| | | gemm_cpu( TA, TB, M, N, K, ALPHA,A,lda, B, ldb,BETA,C,ldc); |
| | | } |
| | | |
| | | |
| | | //-------------------------------------------- |
| | | // XNOR bitwise GEMM for binary neural network |
| | | //-------------------------------------------- |
| | | |
| | | #include <stdint.h> |
| | | |
| | | static inline unsigned char xnor(unsigned char a, unsigned char b) { |
| | | //return a == b; |
| | | return !(a^b); |
| | | } |
| | | |
| | | // INT-32 |
| | | static inline uint32_t get_bit_int32(uint32_t const*const src, size_t index) { |
| | | size_t src_i = index / 32; |
| | | int src_shift = index % 32; |
| | | unsigned char val = (src[src_i] & (1 << src_shift)) > 0; |
| | | return val; |
| | | } |
| | | |
| | | static inline uint32_t xnor_int32(uint32_t a, uint32_t b) { |
| | | return ~(a^b); |
| | | } |
| | | |
| | | static inline uint64_t xnor_int64(uint64_t a, uint64_t b) { |
| | | return ~(a^b); |
| | | } |
| | | |
| | | |
| | | static inline uint32_t fill_bit_int32(char src) { |
| | | if (src == 0) return 0x00000000; |
| | | else return 0xFFFFFFFF; |
| | | } |
| | | |
| | | static inline uint64_t fill_bit_int64(char src) { |
| | | if (src == 0) return 0x0000000000000000; |
| | | else return 0xFFFFFFFFFFFFFFFF; |
| | | } |
| | | |
| | | void binary_int32_printf(uint32_t src) { |
| | | int i; |
| | | for (i = 0; i < 32; ++i) { |
| | | if (src & 1) printf("1"); |
| | | else printf("0"); |
| | | src = src >> 1; |
| | | } |
| | | printf("\n"); |
| | | } |
| | | |
| | | void binary_int64_printf(uint64_t src) { |
| | | int i; |
| | | for (i = 0; i < 64; ++i) { |
| | | if (src & 1) printf("1"); |
| | | else printf("0"); |
| | | src = src >> 1; |
| | | } |
| | | printf("\n"); |
| | | } |
| | | |
| | | /* |
| | | void gemm_nn_custom_bin_mean(int M, int N, int K, float ALPHA_UNUSED, |
| | | unsigned char *A, int lda, |
| | | unsigned char *B, int ldb, |
| | | float *C, int ldc, float *mean_arr) |
| | | { |
| | | int *count_arr = calloc(M*N, sizeof(int)); |
| | | |
| | | int i, j, k; |
| | | for (i = 0; i < M; ++i) { // l.n - filters [16 - 55 - 1024] |
| | | for (k = 0; k < K; ++k) { // l.size*l.size*l.c - one filter size [27 - 9216] |
| | | char a_bit = get_bit(A, i*lda + k); |
| | | |
| | | for (j = 0; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056] |
| | | char b_bit = get_bit(B, k*ldb + j); |
| | | count_arr[i*ldc + j] += xnor(a_bit, b_bit); |
| | | } |
| | | } |
| | | } |
| | | |
| | | for (i = 0; i < M; ++i) { |
| | | float mean_val = mean_arr[i]; |
| | | for (j = 0; j < N; ++j) { |
| | | C[i*ldc + j] = (2 * count_arr[i*ldc + j] - K) * mean_val; |
| | | } |
| | | } |
| | | free(count_arr); |
| | | } |
| | | */ |
| | | |
| | | /* |
| | | void gemm_nn_custom_bin_mean_transposed(int M, int N, int K, float ALPHA_UNUSED, |
| | | unsigned char *A, int lda, |
| | | unsigned char *B, int ldb, |
| | | float *C, int ldc, float *mean_arr) |
| | | { |
| | | int *count_arr = calloc(M*N, sizeof(int)); |
| | | |
| | | int i, j, k; |
| | | for (i = 0; i < M; ++i) { // l.n - filters [16 - 55 - 1024] |
| | | for (j = 0; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056] |
| | | for (k = 0; k < K; ++k) { // l.size*l.size*l.c - one filter size [27 - 9216] |
| | | char a_bit = get_bit(A, i*lda + k); |
| | | char b_bit = get_bit(B, j*ldb + k); |
| | | count_arr[i*ldc + j] += xnor(a_bit, b_bit); |
| | | } |
| | | } |
| | | } |
| | | |
| | | for (i = 0; i < M; ++i) { |
| | | float mean_val = mean_arr[i]; |
| | | for (j = 0; j < N; ++j) { |
| | | C[i*ldc + j] = (2 * count_arr[i*ldc + j] - K) * mean_val; |
| | | } |
| | | } |
| | | free(count_arr); |
| | | } |
| | | */ |
| | | |
| | | /* |
| | | void gemm_nn_custom_bin_mean(int M, int N, int K, float ALPHA_UNUSED, |
| | | unsigned char *A, int lda, |
| | | unsigned char *B, int ldb, |
| | | float *C, int ldc, float *mean_arr) |
| | | { |
| | | int *count_arr = calloc(M*N, sizeof(int)); |
| | | |
| | | int i, j, k, h; |
| | | |
| | | #pragma omp parallel for |
| | | for (i = 0; i < M; ++i) { // l.n - filters [16 - 55 - 1024] |
| | | for (k = 0; k < K; ++k) { // l.size*l.size*l.c - one filter size [27 - 9216] |
| | | const char a_bit = get_bit(A, i*lda + k); |
| | | uint64_t a_bit64 = fill_bit_int64(a_bit); |
| | | int k_ldb = k*ldb; |
| | | |
| | | for (j = 0; j < N; j += 64) { // out_h*out_w - one channel output size [169 - 173056] |
| | | if ((N - j > 64) && (k_ldb % 8 == 0)) { |
| | | uint64_t b_bit64 = *((uint64_t *)(B + (k_ldb + j) / 8)); |
| | | uint64_t c_bit64 = xnor_int64(a_bit64, b_bit64); |
| | | //printf("\n %d \n",__builtin_popcountll(c_bit64)); // gcc |
| | | printf("\n %d \n", __popcnt64(c_bit64)); // msvs |
| | | |
| | | int h; |
| | | for (h = 0; h < 64; ++h) |
| | | if ((c_bit64 >> h) & 1) count_arr[i*ldc + j + h] += 1; |
| | | |
| | | //binary_int64_printf(a_bit64); |
| | | //binary_int64_printf(b_bit64); |
| | | //binary_int64_printf(c_bit64); |
| | | } |
| | | else { |
| | | for (; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056] |
| | | char b_bit = get_bit(B, k_ldb + j); |
| | | if (xnor(a_bit, b_bit)) count_arr[i*ldc + j] += 1; |
| | | } |
| | | } |
| | | |
| | | } |
| | | } |
| | | } |
| | | |
| | | if (mean_arr) { |
| | | //int K_2 = K / 2; |
| | | for (i = 0; i < M; ++i) { |
| | | float mean_val = mean_arr[i]; |
| | | //float mean_val2 = 2 * mean_val; |
| | | for (j = 0; j < N; ++j) { |
| | | C[i*ldc + j] = (2 * count_arr[i*ldc + j] - K) * mean_val; |
| | | //C[i*ldc + j] = (count_arr[i*ldc + j] - K_2) *mean_val2; |
| | | } |
| | | } |
| | | } |
| | | else { |
| | | for (i = 0; i < M; ++i) { |
| | | for (j = 0; j < N; ++j) { |
| | | C[i*ldc + j] = count_arr[i*ldc + j] - K / 2; |
| | | } |
| | | } |
| | | } |
| | | |
| | | free(count_arr); |
| | | |
| | | //getchar(); |
| | | } |
| | | */ |
| | | |
| | | |
| | | /* |
| | | void gemm_nn_custom_bin_mean_transposed(int M, int N, int K, float ALPHA_UNUSED, |
| | | unsigned char *A, int lda, |
| | | unsigned char *B, int ldb, |
| | | float *C, int ldc, float *mean_arr) |
| | | { |
| | | int i, j, k, h; |
| | | |
| | | #pragma omp parallel for |
| | | for (i = 0; i < M; ++i) { // l.n - filters [16 - 55 - 1024] |
| | | float mean_val = mean_arr[i]; |
| | | |
| | | for (j = 0; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056] |
| | | int count = 0; |
| | | |
| | | for (k = 0; k < K; k += 64) { // l.size*l.size*l.c - one filter size [27 - 9216] |
| | | uint64_t a_bit64 = *((uint64_t *)(A + (i*lda + k) / 8)); |
| | | uint64_t b_bit64 = *((uint64_t *)(B + (j*ldb + k) / 8)); |
| | | uint64_t c_bit64 = xnor_int64(a_bit64, b_bit64); |
| | | |
| | | #ifdef WIN32 |
| | | int tmp_count = __popcnt64(c_bit64); |
| | | #else |
| | | int tmp_count = __builtin_popcountll(c_bit64); |
| | | #endif |
| | | |
| | | if (K - k < 64) tmp_count = tmp_count - (64 - (K - k)); // remove extra bits |
| | | count += tmp_count; |
| | | //binary_int64_printf(c_bit64); |
| | | //printf(", count = %d \n\n", tmp_count); |
| | | } |
| | | |
| | | C[i*ldc + j] = (2 * count - K) * mean_val; |
| | | } |
| | | } |
| | | } |
| | | */ |
| | | |
| | | //---------------------------- |
| | | |
| | | |
| | | #if (defined(__AVX__) && defined(__x86_64__)) || defined(_WIN64) |
| | | |
| | | #define OSXSAVEFlag (1UL<<27) |
| | | #define AVXFlag ((1UL<<28)|OSXSAVEFlag) |
| | | #define FMAFlag ((1UL<<12)|AVXFlag|OSXSAVEFlag) |
| | | #define CLMULFlag ((1UL<< 1)|AVXFlag|OSXSAVEFlag) |
| | | #define VAESFlag ((1UL<<25)|AVXFlag|OSXSAVEFlag) |
| | | |
| | | #ifdef _WIN64 |
| | | #include <intrin.h> |
| | | #include <ammintrin.h> |
| | | #include <immintrin.h> |
| | | #include <smmintrin.h> |
| | | |
| | | #else // Linux GCC/Clang |
| | | #include <x86intrin.h> |
| | | #include <ammintrin.h> |
| | | #include <immintrin.h> |
| | | #include <smmintrin.h> |
| | | #include <cpuid.h> |
| | | |
| | | void asm_cpuid(uint32_t* abcd, uint32_t eax) |
| | | { |
| | | uint32_t ebx = 0, edx = 0, ecx = 0; |
| | | |
| | | // EBX is saved to EDI and later restored |
| | | __asm__("movl %%ebx, %%edi;" |
| | | "cpuid;" |
| | | "xchgl %%ebx, %%edi;" |
| | | : "=D"(ebx), |
| | | "+a"(eax), "+c"(ecx), "=d"(edx)); |
| | | |
| | | abcd[0] = eax; |
| | | abcd[1] = ebx; |
| | | abcd[2] = ecx; |
| | | abcd[3] = edx; |
| | | } |
| | | |
| | | #endif |
| | | |
| | | int simd_detect_x86(unsigned int idFeature) |
| | | { |
| | | uint32_t regs[4]; // EAX, EBX, ECX, EDX; |
| | | #ifdef _WIN32 |
| | | __cpuid(regs, 0); |
| | | if (regs[0] > 1U) __cpuid(regs, 1); |
| | | #else |
| | | __get_cpuid(0, ®s[0], ®s[1], ®s[2], ®s[3]); |
| | | if(regs[0] > 1U) __get_cpuid(1, ®s[0], ®s[1], ®s[2], ®s[3]); |
| | | #endif |
| | | |
| | | if ((regs[2] & idFeature) != idFeature) |
| | | return 0; |
| | | return 1; |
| | | } |
| | | |
| | | int is_fma_avx() { |
| | | static int result = -1; |
| | | if (result == -1) { |
| | | result = simd_detect_x86(AVXFlag); |
| | | if (result == 1) printf(" Used AVX \n"); |
| | | else printf(" Not used AVX \n"); |
| | | } |
| | | return result; |
| | | } |
| | | |
| | | // https://software.intel.com/sites/landingpage/IntrinsicsGuide |
| | | void gemm_nn(int M, int N, int K, float ALPHA, |
| | | float *A, int lda, |
| | | float *B, int ldb, |
| | | float *C, int ldc) |
| | | { |
| | | int i, j, k; |
| | | if (is_fma_avx() == 1) { // AVX |
| | | for (i = 0; i < M; ++i) { |
| | | for (k = 0; k < K; ++k) { |
| | | float A_PART = ALPHA*A[i*lda + k]; |
| | | __m256 a256, b256, c256, result256; // AVX |
| | | a256 = _mm256_set1_ps(A_PART); |
| | | for (j = 0; j < N - 8; j += 8) { |
| | | b256 = _mm256_loadu_ps(&B[k*ldb + j]); |
| | | c256 = _mm256_loadu_ps(&C[i*ldc + j]); |
| | | // FMA - Intel Haswell (2013), AMD Piledriver (2012) |
| | | //result256 = _mm256_fmadd_ps(a256, b256, c256); |
| | | result256 = _mm256_mul_ps(a256, b256); |
| | | result256 = _mm256_add_ps(result256, c256); |
| | | _mm256_storeu_ps(&C[i*ldc + j], result256); |
| | | } |
| | | |
| | | int prev_end = (N % 8 == 0) ? (N - 8) : (N / 8) * 8; |
| | | for (j = prev_end; j < N; ++j) |
| | | C[i*ldc + j] += A_PART*B[k*ldb + j]; |
| | | } |
| | | } |
| | | } |
| | | else { |
| | | for (i = 0; i < M; ++i) { |
| | | for (k = 0; k < K; ++k) { |
| | | register float A_PART = ALPHA*A[i*lda + k]; |
| | | for (j = 0; j < N; ++j) { |
| | | C[i*ldc + j] += A_PART*B[k*ldb + j]; |
| | | } |
| | | /* // SSE |
| | | __m128 a128, b128, c128, result128; // SSE |
| | | a128 = _mm_set1_ps(A_PART); |
| | | for (j = 0; j < N - 4; j += 4) { |
| | | b128 = _mm_loadu_ps(&B[k*ldb + j]); |
| | | c128 = _mm_loadu_ps(&C[i*ldc + j]); |
| | | //result128 = _mm_fmadd_ps(a128, b128, c128); |
| | | result128 = _mm_mul_ps(a128, b128); |
| | | result128 = _mm_add_ps(result128, c128); |
| | | _mm_storeu_ps(&C[i*ldc + j], result128); |
| | | } |
| | | |
| | | int prev_end = (N % 4 == 0) ? (N - 4) : (N / 4) * 4; |
| | | for (j = prev_end; j < N; ++j){ |
| | | C[i*ldc + j] += A_PART*B[k*ldb + j]; |
| | | } |
| | | */ |
| | | } |
| | | } |
| | | } |
| | | } |
| | | |
| | | |
| | | // http://graphics.stanford.edu/~seander/bithacks.html |
| | | // https://stackoverflow.com/questions/17354971/fast-counting-the-number-of-set-bits-in-m128i-register |
| | | |
| | | // 2 x faster than popcnt: https://arxiv.org/pdf/1611.07612.pdf |
| | | |
| | | static inline int popcnt128(__m128i n) { |
| | | const __m128i n_hi = _mm_unpackhi_epi64(n, n); |
| | | #ifdef _MSC_VER |
| | | return __popcnt64(_mm_cvtsi128_si64(n)) + __popcnt64(_mm_cvtsi128_si64(n_hi)); |
| | | #else |
| | | return __popcntq(_mm_cvtsi128_si64(n)) + __popcntq(_mm_cvtsi128_si64(n_hi)); |
| | | #endif |
| | | } |
| | | |
| | | static inline int popcnt256(__m256i n) { |
| | | return popcnt128(_mm256_extractf128_si256(n, 0)) + popcnt128(_mm256_extractf128_si256(n, 1)); |
| | | } |
| | | |
| | | void gemm_nn_custom_bin_mean_transposed(int M, int N, int K, float ALPHA_UNUSED, |
| | | unsigned char *A, int lda, |
| | | unsigned char *B, int ldb, |
| | | float *C, int ldc, float *mean_arr) |
| | | { |
| | | __m256i all_1 = _mm256_set1_epi8(255); |
| | | int i, j, k, h; |
| | | |
| | | #pragma omp parallel for |
| | | for (i = 0; i < M; ++i) { // l.n - filters [16 - 55 - 1024] |
| | | float mean_val = mean_arr[i]; |
| | | |
| | | for (j = 0; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056] |
| | | int count = 0; |
| | | const int bit_step = 256; |
| | | |
| | | for (k = 0; k < K; k += bit_step) { // l.size*l.size*l.c - one filter size [27 - 9216] |
| | | |
| | | //__m128i a_bit128 = _mm_loadu_si128((__m128i *)(A + (i*lda + k) / 8)); |
| | | //__m128i b_bit128 = _mm_loadu_si128((__m128i *)(B + (j*ldb + k) / 8)); |
| | | //__m128i xor128 = _mm_xor_si128(a_bit128, b_bit128); |
| | | //__m128i c_bit128 = _mm_andnot_si128(xor128, all_1); |
| | | //int tmp_count = popcnt128(c_bit128); |
| | | |
| | | __m256i a_bit256 = _mm256_loadu_si256((__m256i *)(A + (i*lda + k) / 8)); |
| | | __m256i b_bit256 = _mm256_loadu_si256((__m256i *)(B + (j*ldb + k) / 8)); |
| | | __m256i xor256 = _mm256_xor_si256(a_bit256, b_bit256); |
| | | __m256i c_bit256 = _mm256_andnot_si256(xor256, all_1); //we can do NOT for wegihts once and do not do this NOT |
| | | int tmp_count = popcnt256(c_bit256); |
| | | |
| | | if (K - k < bit_step) tmp_count = tmp_count - (bit_step - (K - k)); // remove extra bits |
| | | count += tmp_count; |
| | | //binary_int64_printf(c_bit64); |
| | | //printf(", count = %d \n\n", tmp_count); |
| | | } |
| | | |
| | | C[i*ldc + j] = (2 * count - K) * mean_val; |
| | | } |
| | | } |
| | | } |
| | | |
| | | |
| | | void float_to_bit(float *src, unsigned char *dst, size_t size) |
| | | { |
| | | size_t dst_size = size / 8 + 1; |
| | | memset(dst, 0, dst_size); |
| | | |
| | | size_t i; |
| | | __m128i all128_0 = _mm_set_epi32(0, 0, 0, 0); |
| | | __m256 all256_0 = _mm256_set1_ps(0); |
| | | __m256i bits_asc = _mm256_set_epi32(1, 2, 4, 8, 16, 32, 64, 128); |
| | | //for(i = 0; i < 8; ++i) bits_asc.m256i_i32[i] = 1 << i; |
| | | |
| | | for (i = 0; i < size; i+=8) |
| | | { |
| | | __m256 src256 = _mm256_loadu_ps((__m256i *)(&src[i])); // load 256 bits |
| | | __m256 result256 = _mm256_cmp_ps(src256, all256_0, _CMP_GT_OS); // compare dst[i] = (float[i] > 0) |
| | | |
| | | __m256i bits256 = _mm256_castps_si256(result256); // floats to ints32 |
| | | __m256i and256 = _mm256_and_si256(bits256, bits_asc); // bitwise and |
| | | |
| | | // sum all elements from single and256 |
| | | __m128i tmp128 = _mm_hadd_epi32(_mm256_extractf128_si256(and256, 0), _mm256_extractf128_si256(and256, 1)); |
| | | tmp128 = _mm_hadd_epi32(tmp128, all128_0); |
| | | tmp128 = _mm_hadd_epi32(tmp128, all128_0); |
| | | |
| | | dst[i / 8] = tmp128.m128i_i32[0]; |
| | | } |
| | | // int _mm256_movemask_epi8 (__m256i a) |
| | | } |
| | | |
| | | #else |
| | | |
| | | void gemm_nn(int M, int N, int K, float ALPHA, |
| | | float *A, int lda, |
| | | float *B, int ldb, |
| | | float *C, int ldc) |
| | | { |
| | | int i, j, k; |
| | | for (i = 0; i < M; ++i) { |
| | | for (k = 0; k < K; ++k) { |
| | | register float A_PART = ALPHA*A[i*lda + k]; |
| | | for (j = 0; j < N; ++j) { |
| | | C[i*ldc + j] += A_PART*B[k*ldb + j]; |
| | | } |
| | | } |
| | | } |
| | | } |
| | | |
| | | void gemm_nn_custom_bin_mean_transposed(int M, int N, int K, float ALPHA_UNUSED, |
| | | unsigned char *A, int lda, |
| | | unsigned char *B, int ldb, |
| | | float *C, int ldc, float *mean_arr) |
| | | { |
| | | int i, j, k, h; |
| | | |
| | | #pragma omp parallel for |
| | | for (i = 0; i < M; ++i) { // l.n - filters [16 - 55 - 1024] |
| | | float mean_val = mean_arr[i]; |
| | | |
| | | for (j = 0; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056] |
| | | int count = 0; |
| | | |
| | | for (k = 0; k < K; k += 64) { // l.size*l.size*l.c - one filter size [27 - 9216] |
| | | uint64_t a_bit64 = *((uint64_t *)(A + (i*lda + k) / 8)); |
| | | uint64_t b_bit64 = *((uint64_t *)(B + (j*ldb + k) / 8)); |
| | | uint64_t c_bit64 = xnor_int64(a_bit64, b_bit64); |
| | | |
| | | #ifdef WIN32 |
| | | int tmp_count = __popcnt64(c_bit64); |
| | | #else |
| | | int tmp_count = __builtin_popcountll(c_bit64); |
| | | #endif |
| | | |
| | | if (K - k < 64) tmp_count = tmp_count - (64 - (K - k)); // remove extra bits |
| | | count += tmp_count; |
| | | //binary_int64_printf(c_bit64); |
| | | //printf(", count = %d \n\n", tmp_count); |
| | | } |
| | | |
| | | C[i*ldc + j] = (2 * count - K) * mean_val; |
| | | } |
| | | } |
| | | } |
| | | |
| | | void float_to_bit(float *src, unsigned char *dst, size_t size) |
| | | { |
| | | size_t dst_size = size / 8 + 1; |
| | | memset(dst, 0, dst_size); |
| | | |
| | | size_t i; |
| | | char *byte_arr = calloc(size, sizeof(char)); |
| | | for (i = 0; i < size; ++i) { |
| | | if (src[i] > 0) byte_arr[i] = 1; |
| | | } |
| | | |
| | | //for (i = 0; i < size; ++i) { |
| | | // dst[i / 8] |= byte_arr[i] << (i % 8); |
| | | //} |
| | | |
| | | for (i = 0; i < size; i += 8) { |
| | | char dst_tmp = 0; |
| | | dst_tmp |= byte_arr[i + 0] << 0; |
| | | dst_tmp |= byte_arr[i + 1] << 1; |
| | | dst_tmp |= byte_arr[i + 2] << 2; |
| | | dst_tmp |= byte_arr[i + 3] << 3; |
| | | dst_tmp |= byte_arr[i + 4] << 4; |
| | | dst_tmp |= byte_arr[i + 5] << 5; |
| | | dst_tmp |= byte_arr[i + 6] << 6; |
| | | dst_tmp |= byte_arr[i + 7] << 7; |
| | | dst[i / 8] = dst_tmp; |
| | | } |
| | | free(byte_arr); |
| | | } |
| | | #endif // __x86_64 |
| | | |
| | | void gemm_nt(int M, int N, int K, float ALPHA, |
| | | float *A, int lda, |
| | | float *B, int ldb, |
| | | float *C, int ldc) |
| | | { |
| | | int i,j,k; |
| | | for(i = 0; i < M; ++i){ |
| | | for(j = 0; j < N; ++j){ |
| | | register float sum = 0; |
| | | for(k = 0; k < K; ++k){ |
| | | sum += ALPHA*A[i*lda+k]*B[j*ldb + k]; |
| | | } |
| | | C[i*ldc+j] += sum; |
| | | } |
| | | } |
| | | } |
| | | |
| | | void gemm_tn(int M, int N, int K, float ALPHA, |
| | | float *A, int lda, |
| | | float *B, int ldb, |
| | | float *C, int ldc) |
| | | { |
| | | int i,j,k; |
| | | for(i = 0; i < M; ++i){ |
| | | for(k = 0; k < K; ++k){ |
| | | register float A_PART = ALPHA*A[k*lda+i]; |
| | | for(j = 0; j < N; ++j){ |
| | | C[i*ldc+j] += A_PART*B[k*ldb+j]; |
| | | } |
| | | } |
| | | } |
| | | } |
| | | |
| | | void gemm_tt(int M, int N, int K, float ALPHA, |
| | | float *A, int lda, |
| | | float *B, int ldb, |
| | | float *C, int ldc) |
| | | { |
| | | int i,j,k; |
| | | for(i = 0; i < M; ++i){ |
| | | for(j = 0; j < N; ++j){ |
| | | register float sum = 0; |
| | | for(k = 0; k < K; ++k){ |
| | | sum += ALPHA*A[i+k*lda]*B[k+j*ldb]; |
| | | } |
| | | C[i*ldc+j] += sum; |
| | | } |
| | | } |
| | | } |
| | | |
| | | |
| | | void gemm_cpu(int TA, int TB, int M, int N, int K, float ALPHA, |
| | | float *A, int lda, |
| | | float *B, int ldb, |
| | | float BETA, |
| | | float *C, int ldc) |
| | | { |
| | | //printf("cpu: %d %d %d %d %d %f %d %d %f %d\n",TA, TB, M, N, K, ALPHA, lda, ldb, BETA, ldc); |
| | | if (BETA != 1){ |
| | | int i, j; |
| | | for(i = 0; i < M; ++i){ |
| | | for(j = 0; j < N; ++j){ |
| | | C[i*ldc + j] *= BETA; |
| | | } |
| | | } |
| | | } |
| | | |
| | | int t; |
| | | #pragma omp parallel for |
| | | for (t = 0; t < M; ++t) { |
| | | if (!TA && !TB) |
| | | gemm_nn(1, N, K, ALPHA, A + t*lda, lda, B, ldb, C + t*ldc, ldc); |
| | | else if (TA && !TB) |
| | | gemm_tn(1, N, K, ALPHA, A + t, lda, B, ldb, C + t*ldc, ldc); |
| | | else if (!TA && TB) |
| | | gemm_nt(1, N, K, ALPHA, A + t*lda, lda, B, ldb, C + t*ldc, ldc); |
| | | else |
| | | gemm_tt(1, N, K, ALPHA, A + t, lda, B, ldb, C + t*ldc, ldc); |
| | | } |
| | | } |
| | | |
| | | #ifdef GPU |
| | | |
| | | #include <math.h> |
| | | |
| | | void gemm_ongpu(int TA, int TB, int M, int N, int K, float ALPHA, |
| | | float *A_gpu, int lda, |
| | | float *B_gpu, int ldb, |
| | | float BETA, |
| | | float *C_gpu, int ldc) |
| | | { |
| | | cublasHandle_t handle = blas_handle(); |
| | | cudaError_t stream_status = cublasSetStream(handle, get_cuda_stream()); |
| | | cudaError_t status = cublasSgemm(handle, (TB ? CUBLAS_OP_T : CUBLAS_OP_N), |
| | | (TA ? CUBLAS_OP_T : CUBLAS_OP_N), N, M, K, &ALPHA, B_gpu, ldb, A_gpu, lda, &BETA, C_gpu, ldc); |
| | | check_error(status); |
| | | } |
| | | |
| | | void gemm_gpu(int TA, int TB, int M, int N, int K, float ALPHA, |
| | | float *A, int lda, |
| | | float *B, int ldb, |
| | | float BETA, |
| | | float *C, int ldc) |
| | | { |
| | | float *A_gpu = cuda_make_array(A, (TA ? lda*K:lda*M)); |
| | | float *B_gpu = cuda_make_array(B, (TB ? ldb*N : ldb*K)); |
| | | float *C_gpu = cuda_make_array(C, ldc*M); |
| | | |
| | | gemm_ongpu(TA, TB, M, N, K, ALPHA, A_gpu, lda, B_gpu, ldb, BETA, C_gpu, ldc); |
| | | |
| | | cuda_pull_array(C_gpu, C, ldc*M); |
| | | cuda_free(A_gpu); |
| | | cuda_free(B_gpu); |
| | | cuda_free(C_gpu); |
| | | } |
| | | |
| | | #include <stdio.h> |
| | | #include <stdlib.h> |
| | | #include <string.h> |
| | | #include <time.h> |
| | | |
| | | void time_gpu_random_matrix(int TA, int TB, int m, int k, int n) |
| | | { |
| | | float *a; |
| | | if(!TA) a = random_matrix(m,k); |
| | | else a = random_matrix(k,m); |
| | | int lda = (!TA)?k:m; |
| | | float *b; |
| | | if(!TB) b = random_matrix(k,n); |
| | | else b = random_matrix(n,k); |
| | | int ldb = (!TB)?n:k; |
| | | |
| | | float *c = random_matrix(m,n); |
| | | int i; |
| | | clock_t start = clock(), end; |
| | | for(i = 0; i<32; ++i){ |
| | | gemm_gpu(TA,TB,m,n,k,1,a,lda,b,ldb,1,c,n); |
| | | } |
| | | end = clock(); |
| | | printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %lf s\n",m,k,k,n, TA, TB, (float)(end-start)/CLOCKS_PER_SEC); |
| | | free(a); |
| | | free(b); |
| | | free(c); |
| | | } |
| | | |
| | | void time_ongpu(int TA, int TB, int m, int k, int n) |
| | | { |
| | | int iter = 10; |
| | | float *a = random_matrix(m,k); |
| | | float *b = random_matrix(k,n); |
| | | |
| | | int lda = (!TA)?k:m; |
| | | int ldb = (!TB)?n:k; |
| | | |
| | | float *c = random_matrix(m,n); |
| | | |
| | | float *a_cl = cuda_make_array(a, m*k); |
| | | float *b_cl = cuda_make_array(b, k*n); |
| | | float *c_cl = cuda_make_array(c, m*n); |
| | | |
| | | int i; |
| | | clock_t start = clock(), end; |
| | | for(i = 0; i<iter; ++i){ |
| | | gemm_ongpu(TA,TB,m,n,k,1,a_cl,lda,b_cl,ldb,1,c_cl,n); |
| | | cudaThreadSynchronize(); |
| | | } |
| | | double flop = ((double)m)*n*(2.*k + 2.)*iter; |
| | | double gflop = flop/pow(10., 9); |
| | | end = clock(); |
| | | double seconds = sec(end-start); |
| | | printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %lf s, %lf GFLOPS\n",m,k,k,n, TA, TB, seconds, gflop/seconds); |
| | | cuda_free(a_cl); |
| | | cuda_free(b_cl); |
| | | cuda_free(c_cl); |
| | | free(a); |
| | | free(b); |
| | | free(c); |
| | | } |
| | | |
| | | |
| | | void test_gpu_accuracy(int TA, int TB, int m, int k, int n) |
| | | { |
| | | srand(0); |
| | | float *a; |
| | | if(!TA) a = random_matrix(m,k); |
| | | else a = random_matrix(k,m); |
| | | int lda = (!TA)?k:m; |
| | | float *b; |
| | | if(!TB) b = random_matrix(k,n); |
| | | else b = random_matrix(n,k); |
| | | int ldb = (!TB)?n:k; |
| | | |
| | | float *c = random_matrix(m,n); |
| | | float *c_gpu = random_matrix(m,n); |
| | | memset(c, 0, m*n*sizeof(float)); |
| | | memset(c_gpu, 0, m*n*sizeof(float)); |
| | | int i; |
| | | //pm(m,k,b); |
| | | gemm_gpu(TA,TB,m,n,k,1,a,lda,b,ldb,1,c_gpu,n); |
| | | //printf("GPU\n"); |
| | | //pm(m, n, c_gpu); |
| | | |
| | | gemm_cpu(TA,TB,m,n,k,1,a,lda,b,ldb,1,c,n); |
| | | //printf("\n\nCPU\n"); |
| | | //pm(m, n, c); |
| | | double sse = 0; |
| | | for(i = 0; i < m*n; ++i) { |
| | | //printf("%f %f\n", c[i], c_gpu[i]); |
| | | sse += pow(c[i]-c_gpu[i], 2); |
| | | } |
| | | printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %g SSE\n",m,k,k,n, TA, TB, sse/(m*n)); |
| | | free(a); |
| | | free(b); |
| | | free(c); |
| | | free(c_gpu); |
| | | } |
| | | |
| | | int test_gpu_blas() |
| | | { |
| | | /* |
| | | test_gpu_accuracy(0,0,10,576,75); |
| | | |
| | | test_gpu_accuracy(0,0,17,10,10); |
| | | test_gpu_accuracy(1,0,17,10,10); |
| | | test_gpu_accuracy(0,1,17,10,10); |
| | | test_gpu_accuracy(1,1,17,10,10); |
| | | |
| | | test_gpu_accuracy(0,0,1000,10,100); |
| | | test_gpu_accuracy(1,0,1000,10,100); |
| | | test_gpu_accuracy(0,1,1000,10,100); |
| | | test_gpu_accuracy(1,1,1000,10,100); |
| | | |
| | | test_gpu_accuracy(0,0,10,10,10); |
| | | |
| | | time_ongpu(0,0,64,2916,363); |
| | | time_ongpu(0,0,64,2916,363); |
| | | time_ongpu(0,0,64,2916,363); |
| | | time_ongpu(0,0,192,729,1600); |
| | | time_ongpu(0,0,384,196,1728); |
| | | time_ongpu(0,0,256,196,3456); |
| | | time_ongpu(0,0,256,196,2304); |
| | | time_ongpu(0,0,128,4096,12544); |
| | | time_ongpu(0,0,128,4096,4096); |
| | | */ |
| | | time_ongpu(0,0,64,75,12544); |
| | | time_ongpu(0,0,64,75,12544); |
| | | time_ongpu(0,0,64,75,12544); |
| | | time_ongpu(0,0,64,576,12544); |
| | | time_ongpu(0,0,256,2304,784); |
| | | time_ongpu(1,1,2304,256,784); |
| | | time_ongpu(0,0,512,4608,196); |
| | | time_ongpu(1,1,4608,512,196); |
| | | |
| | | return 0; |
| | | } |
| | | #endif |
| | | |
| | | #include "gemm.h"
|
| | | #include "utils.h"
|
| | | #include "cuda.h"
|
| | | #include <stdlib.h>
|
| | | #include <stdio.h>
|
| | | #include <math.h>
|
| | |
|
| | | void gemm_bin(int M, int N, int K, float ALPHA,
|
| | | char *A, int lda,
|
| | | float *B, int ldb,
|
| | | float *C, int ldc)
|
| | | {
|
| | | int i,j,k;
|
| | | for(i = 0; i < M; ++i){
|
| | | for(k = 0; k < K; ++k){
|
| | | char A_PART = A[i*lda+k];
|
| | | if(A_PART){
|
| | | for(j = 0; j < N; ++j){
|
| | | C[i*ldc+j] += B[k*ldb+j];
|
| | | }
|
| | | } else {
|
| | | for(j = 0; j < N; ++j){
|
| | | C[i*ldc+j] -= B[k*ldb+j];
|
| | | }
|
| | | }
|
| | | }
|
| | | }
|
| | | }
|
| | |
|
| | | float *random_matrix(int rows, int cols)
|
| | | {
|
| | | int i;
|
| | | float *m = calloc(rows*cols, sizeof(float));
|
| | | for(i = 0; i < rows*cols; ++i){
|
| | | m[i] = (float)rand()/RAND_MAX;
|
| | | }
|
| | | return m;
|
| | | }
|
| | |
|
| | | void time_random_matrix(int TA, int TB, int m, int k, int n)
|
| | | {
|
| | | float *a;
|
| | | if(!TA) a = random_matrix(m,k);
|
| | | else a = random_matrix(k,m);
|
| | | int lda = (!TA)?k:m;
|
| | | float *b;
|
| | | if(!TB) b = random_matrix(k,n);
|
| | | else b = random_matrix(n,k);
|
| | | int ldb = (!TB)?n:k;
|
| | |
|
| | | float *c = random_matrix(m,n);
|
| | | int i;
|
| | | clock_t start = clock(), end;
|
| | | for(i = 0; i<10; ++i){
|
| | | gemm_cpu(TA,TB,m,n,k,1,a,lda,b,ldb,1,c,n);
|
| | | }
|
| | | end = clock();
|
| | | printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %lf ms\n",m,k,k,n, TA, TB, (float)(end-start)/CLOCKS_PER_SEC);
|
| | | free(a);
|
| | | free(b);
|
| | | free(c);
|
| | | }
|
| | |
|
| | |
|
| | | void gemm(int TA, int TB, int M, int N, int K, float ALPHA,
|
| | | float *A, int lda,
|
| | | float *B, int ldb,
|
| | | float BETA,
|
| | | float *C, int ldc)
|
| | | {
|
| | | gemm_cpu( TA, TB, M, N, K, ALPHA,A,lda, B, ldb,BETA,C,ldc);
|
| | | }
|
| | |
|
| | |
|
| | | //--------------------------------------------
|
| | | // XNOR bitwise GEMM for binary neural network
|
| | | //--------------------------------------------
|
| | |
|
| | | #include <stdint.h>
|
| | |
|
| | | static inline unsigned char xnor(unsigned char a, unsigned char b) {
|
| | | //return a == b;
|
| | | return !(a^b);
|
| | | }
|
| | |
|
| | | // INT-32
|
| | | static inline uint32_t get_bit_int32(uint32_t const*const src, size_t index) {
|
| | | size_t src_i = index / 32;
|
| | | int src_shift = index % 32;
|
| | | unsigned char val = (src[src_i] & (1 << src_shift)) > 0;
|
| | | return val;
|
| | | }
|
| | |
|
| | | static inline uint32_t xnor_int32(uint32_t a, uint32_t b) {
|
| | | return ~(a^b);
|
| | | }
|
| | |
|
| | | static inline uint64_t xnor_int64(uint64_t a, uint64_t b) {
|
| | | return ~(a^b);
|
| | | }
|
| | |
|
| | |
|
| | | static inline uint32_t fill_bit_int32(char src) {
|
| | | if (src == 0) return 0x00000000;
|
| | | else return 0xFFFFFFFF;
|
| | | }
|
| | |
|
| | | static inline uint64_t fill_bit_int64(char src) {
|
| | | if (src == 0) return 0x0000000000000000;
|
| | | else return 0xFFFFFFFFFFFFFFFF;
|
| | | }
|
| | |
|
| | | void binary_int32_printf(uint32_t src) {
|
| | | int i;
|
| | | for (i = 0; i < 32; ++i) {
|
| | | if (src & 1) printf("1");
|
| | | else printf("0");
|
| | | src = src >> 1;
|
| | | }
|
| | | printf("\n");
|
| | | }
|
| | |
|
| | | void binary_int64_printf(uint64_t src) {
|
| | | int i;
|
| | | for (i = 0; i < 64; ++i) {
|
| | | if (src & 1) printf("1");
|
| | | else printf("0");
|
| | | src = src >> 1;
|
| | | }
|
| | | printf("\n");
|
| | | }
|
| | |
|
| | | /*
|
| | | void gemm_nn_custom_bin_mean(int M, int N, int K, float ALPHA_UNUSED,
|
| | | unsigned char *A, int lda,
|
| | | unsigned char *B, int ldb,
|
| | | float *C, int ldc, float *mean_arr)
|
| | | {
|
| | | int *count_arr = calloc(M*N, sizeof(int));
|
| | |
|
| | | int i, j, k;
|
| | | for (i = 0; i < M; ++i) { // l.n - filters [16 - 55 - 1024]
|
| | | for (k = 0; k < K; ++k) { // l.size*l.size*l.c - one filter size [27 - 9216]
|
| | | char a_bit = get_bit(A, i*lda + k);
|
| | |
|
| | | for (j = 0; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056]
|
| | | char b_bit = get_bit(B, k*ldb + j);
|
| | | count_arr[i*ldc + j] += xnor(a_bit, b_bit);
|
| | | }
|
| | | }
|
| | | }
|
| | |
|
| | | for (i = 0; i < M; ++i) {
|
| | | float mean_val = mean_arr[i];
|
| | | for (j = 0; j < N; ++j) {
|
| | | C[i*ldc + j] = (2 * count_arr[i*ldc + j] - K) * mean_val;
|
| | | }
|
| | | }
|
| | | free(count_arr);
|
| | | }
|
| | | */
|
| | |
|
| | | /*
|
| | | void gemm_nn_custom_bin_mean_transposed(int M, int N, int K, float ALPHA_UNUSED,
|
| | | unsigned char *A, int lda,
|
| | | unsigned char *B, int ldb,
|
| | | float *C, int ldc, float *mean_arr)
|
| | | {
|
| | | int *count_arr = calloc(M*N, sizeof(int));
|
| | |
|
| | | int i, j, k;
|
| | | for (i = 0; i < M; ++i) { // l.n - filters [16 - 55 - 1024]
|
| | | for (j = 0; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056]
|
| | | for (k = 0; k < K; ++k) { // l.size*l.size*l.c - one filter size [27 - 9216]
|
| | | char a_bit = get_bit(A, i*lda + k);
|
| | | char b_bit = get_bit(B, j*ldb + k);
|
| | | count_arr[i*ldc + j] += xnor(a_bit, b_bit);
|
| | | }
|
| | | }
|
| | | }
|
| | |
|
| | | for (i = 0; i < M; ++i) {
|
| | | float mean_val = mean_arr[i];
|
| | | for (j = 0; j < N; ++j) {
|
| | | C[i*ldc + j] = (2 * count_arr[i*ldc + j] - K) * mean_val;
|
| | | }
|
| | | }
|
| | | free(count_arr);
|
| | | }
|
| | | */
|
| | |
|
| | | /*
|
| | | void gemm_nn_custom_bin_mean(int M, int N, int K, float ALPHA_UNUSED,
|
| | | unsigned char *A, int lda,
|
| | | unsigned char *B, int ldb,
|
| | | float *C, int ldc, float *mean_arr)
|
| | | {
|
| | | int *count_arr = calloc(M*N, sizeof(int));
|
| | |
|
| | | int i, j, k, h;
|
| | |
|
| | | #pragma omp parallel for
|
| | | for (i = 0; i < M; ++i) { // l.n - filters [16 - 55 - 1024]
|
| | | for (k = 0; k < K; ++k) { // l.size*l.size*l.c - one filter size [27 - 9216]
|
| | | const char a_bit = get_bit(A, i*lda + k);
|
| | | uint64_t a_bit64 = fill_bit_int64(a_bit);
|
| | | int k_ldb = k*ldb;
|
| | |
|
| | | for (j = 0; j < N; j += 64) { // out_h*out_w - one channel output size [169 - 173056]
|
| | | if ((N - j > 64) && (k_ldb % 8 == 0)) {
|
| | | uint64_t b_bit64 = *((uint64_t *)(B + (k_ldb + j) / 8));
|
| | | uint64_t c_bit64 = xnor_int64(a_bit64, b_bit64);
|
| | | //printf("\n %d \n",__builtin_popcountll(c_bit64)); // gcc
|
| | | printf("\n %d \n", __popcnt64(c_bit64)); // msvs
|
| | |
|
| | | int h;
|
| | | for (h = 0; h < 64; ++h)
|
| | | if ((c_bit64 >> h) & 1) count_arr[i*ldc + j + h] += 1;
|
| | |
|
| | | //binary_int64_printf(a_bit64);
|
| | | //binary_int64_printf(b_bit64);
|
| | | //binary_int64_printf(c_bit64);
|
| | | }
|
| | | else {
|
| | | for (; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056]
|
| | | char b_bit = get_bit(B, k_ldb + j);
|
| | | if (xnor(a_bit, b_bit)) count_arr[i*ldc + j] += 1;
|
| | | }
|
| | | }
|
| | |
|
| | | }
|
| | | }
|
| | | }
|
| | |
|
| | | if (mean_arr) {
|
| | | //int K_2 = K / 2;
|
| | | for (i = 0; i < M; ++i) {
|
| | | float mean_val = mean_arr[i];
|
| | | //float mean_val2 = 2 * mean_val;
|
| | | for (j = 0; j < N; ++j) {
|
| | | C[i*ldc + j] = (2 * count_arr[i*ldc + j] - K) * mean_val;
|
| | | //C[i*ldc + j] = (count_arr[i*ldc + j] - K_2) *mean_val2;
|
| | | }
|
| | | }
|
| | | }
|
| | | else {
|
| | | for (i = 0; i < M; ++i) {
|
| | | for (j = 0; j < N; ++j) {
|
| | | C[i*ldc + j] = count_arr[i*ldc + j] - K / 2;
|
| | | }
|
| | | }
|
| | | }
|
| | |
|
| | | free(count_arr);
|
| | |
|
| | | //getchar();
|
| | | }
|
| | | */
|
| | |
|
| | |
|
| | | /*
|
| | | void gemm_nn_custom_bin_mean_transposed(int M, int N, int K, float ALPHA_UNUSED,
|
| | | unsigned char *A, int lda,
|
| | | unsigned char *B, int ldb,
|
| | | float *C, int ldc, float *mean_arr)
|
| | | {
|
| | | int i, j, k, h;
|
| | |
|
| | | #pragma omp parallel for
|
| | | for (i = 0; i < M; ++i) { // l.n - filters [16 - 55 - 1024]
|
| | | float mean_val = mean_arr[i];
|
| | |
|
| | | for (j = 0; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056]
|
| | | int count = 0;
|
| | |
|
| | | for (k = 0; k < K; k += 64) { // l.size*l.size*l.c - one filter size [27 - 9216]
|
| | | uint64_t a_bit64 = *((uint64_t *)(A + (i*lda + k) / 8));
|
| | | uint64_t b_bit64 = *((uint64_t *)(B + (j*ldb + k) / 8));
|
| | | uint64_t c_bit64 = xnor_int64(a_bit64, b_bit64);
|
| | |
|
| | | #ifdef WIN32
|
| | | int tmp_count = __popcnt64(c_bit64);
|
| | | #else
|
| | | int tmp_count = __builtin_popcountll(c_bit64);
|
| | | #endif
|
| | |
|
| | | if (K - k < 64) tmp_count = tmp_count - (64 - (K - k)); // remove extra bits
|
| | | count += tmp_count;
|
| | | //binary_int64_printf(c_bit64);
|
| | | //printf(", count = %d \n\n", tmp_count);
|
| | | }
|
| | |
|
| | | C[i*ldc + j] = (2 * count - K) * mean_val;
|
| | | }
|
| | | }
|
| | | }
|
| | | */
|
| | |
|
| | | //----------------------------
|
| | |
|
| | |
|
| | | #if (defined(__AVX__) && defined(__x86_64__)) || defined(_WIN64)
|
| | |
|
| | | #define OSXSAVEFlag (1UL<<27)
|
| | | #define AVXFlag ((1UL<<28)|OSXSAVEFlag)
|
| | | #define FMAFlag ((1UL<<12)|AVXFlag|OSXSAVEFlag)
|
| | | #define CLMULFlag ((1UL<< 1)|AVXFlag|OSXSAVEFlag)
|
| | | #define VAESFlag ((1UL<<25)|AVXFlag|OSXSAVEFlag)
|
| | |
|
| | | #ifdef _WIN64
|
| | | #include <intrin.h>
|
| | | #include <ammintrin.h>
|
| | | #include <immintrin.h>
|
| | | #include <smmintrin.h>
|
| | |
|
| | | #else // Linux GCC/Clang
|
| | | #include <x86intrin.h>
|
| | | #include <ammintrin.h>
|
| | | #include <immintrin.h>
|
| | | #include <smmintrin.h>
|
| | | #include <cpuid.h>
|
| | |
|
| | | void asm_cpuid(uint32_t* abcd, uint32_t eax)
|
| | | {
|
| | | uint32_t ebx = 0, edx = 0, ecx = 0;
|
| | |
|
| | | // EBX is saved to EDI and later restored
|
| | | __asm__("movl %%ebx, %%edi;"
|
| | | "cpuid;"
|
| | | "xchgl %%ebx, %%edi;"
|
| | | : "=D"(ebx),
|
| | | "+a"(eax), "+c"(ecx), "=d"(edx));
|
| | |
|
| | | abcd[0] = eax;
|
| | | abcd[1] = ebx;
|
| | | abcd[2] = ecx;
|
| | | abcd[3] = edx;
|
| | | }
|
| | |
|
| | | #endif
|
| | |
|
| | | int simd_detect_x86(unsigned int idFeature)
|
| | | {
|
| | | uint32_t regs[4]; // EAX, EBX, ECX, EDX;
|
| | | #ifdef _WIN32
|
| | | __cpuid(regs, 0);
|
| | | if (regs[0] > 1U) __cpuid(regs, 1);
|
| | | #else
|
| | | __get_cpuid(0, ®s[0], ®s[1], ®s[2], ®s[3]);
|
| | | if(regs[0] > 1U) __get_cpuid(1, ®s[0], ®s[1], ®s[2], ®s[3]);
|
| | | #endif
|
| | |
|
| | | if ((regs[2] & idFeature) != idFeature)
|
| | | return 0;
|
| | | return 1;
|
| | | }
|
| | |
|
| | | int is_fma_avx() {
|
| | | static int result = -1;
|
| | | if (result == -1) {
|
| | | result = simd_detect_x86(AVXFlag);
|
| | | if (result == 1) printf(" Used AVX \n");
|
| | | else printf(" Not used AVX \n");
|
| | | }
|
| | | return result;
|
| | | }
|
| | |
|
| | | // https://software.intel.com/sites/landingpage/IntrinsicsGuide
|
| | | void gemm_nn(int M, int N, int K, float ALPHA,
|
| | | float *A, int lda,
|
| | | float *B, int ldb,
|
| | | float *C, int ldc)
|
| | | {
|
| | | int i, j, k;
|
| | | if (is_fma_avx() == 1) { // AVX
|
| | | for (i = 0; i < M; ++i) {
|
| | | for (k = 0; k < K; ++k) {
|
| | | float A_PART = ALPHA*A[i*lda + k];
|
| | | __m256 a256, b256, c256, result256; // AVX
|
| | | a256 = _mm256_set1_ps(A_PART);
|
| | | for (j = 0; j < N - 8; j += 8) {
|
| | | b256 = _mm256_loadu_ps(&B[k*ldb + j]);
|
| | | c256 = _mm256_loadu_ps(&C[i*ldc + j]);
|
| | | // FMA - Intel Haswell (2013), AMD Piledriver (2012)
|
| | | //result256 = _mm256_fmadd_ps(a256, b256, c256);
|
| | | result256 = _mm256_mul_ps(a256, b256);
|
| | | result256 = _mm256_add_ps(result256, c256);
|
| | | _mm256_storeu_ps(&C[i*ldc + j], result256);
|
| | | }
|
| | |
|
| | | int prev_end = (N % 8 == 0) ? (N - 8) : (N / 8) * 8;
|
| | | for (j = prev_end; j < N; ++j)
|
| | | C[i*ldc + j] += A_PART*B[k*ldb + j];
|
| | | }
|
| | | }
|
| | | }
|
| | | else {
|
| | | for (i = 0; i < M; ++i) {
|
| | | for (k = 0; k < K; ++k) {
|
| | | register float A_PART = ALPHA*A[i*lda + k];
|
| | | for (j = 0; j < N; ++j) {
|
| | | C[i*ldc + j] += A_PART*B[k*ldb + j];
|
| | | }
|
| | | /* // SSE
|
| | | __m128 a128, b128, c128, result128; // SSE
|
| | | a128 = _mm_set1_ps(A_PART);
|
| | | for (j = 0; j < N - 4; j += 4) {
|
| | | b128 = _mm_loadu_ps(&B[k*ldb + j]);
|
| | | c128 = _mm_loadu_ps(&C[i*ldc + j]);
|
| | | //result128 = _mm_fmadd_ps(a128, b128, c128);
|
| | | result128 = _mm_mul_ps(a128, b128);
|
| | | result128 = _mm_add_ps(result128, c128);
|
| | | _mm_storeu_ps(&C[i*ldc + j], result128);
|
| | | }
|
| | |
|
| | | int prev_end = (N % 4 == 0) ? (N - 4) : (N / 4) * 4;
|
| | | for (j = prev_end; j < N; ++j){
|
| | | C[i*ldc + j] += A_PART*B[k*ldb + j];
|
| | | }
|
| | | */
|
| | | }
|
| | | }
|
| | | }
|
| | | }
|
| | |
|
| | |
|
| | | // http://graphics.stanford.edu/~seander/bithacks.html
|
| | | // https://stackoverflow.com/questions/17354971/fast-counting-the-number-of-set-bits-in-m128i-register
|
| | |
|
| | |
|
| | | static inline int popcnt128(__m128i n) {
|
| | | const __m128i n_hi = _mm_unpackhi_epi64(n, n);
|
| | | #ifdef _MSC_VER
|
| | | return __popcnt64(_mm_cvtsi128_si64(n)) + __popcnt64(_mm_cvtsi128_si64(n_hi));
|
| | | #else
|
| | | return __popcntq(_mm_cvtsi128_si64(n)) + __popcntq(_mm_cvtsi128_si64(n_hi));
|
| | | #endif
|
| | | }
|
| | |
|
| | | static inline int popcnt256(__m256i n) {
|
| | | return popcnt128(_mm256_extractf128_si256(n, 0)) + popcnt128(_mm256_extractf128_si256(n, 1));
|
| | | }
|
| | |
|
| | | static inline __m256i count256(__m256i v) {
|
| | | __m256i lookup =
|
| | | _mm256_setr_epi8(0, 1, 1, 2, 1, 2, 2, 3, 1, 2,
|
| | | 2, 3, 2, 3, 3, 4, 0, 1, 1, 2, 1, 2, 2, 3,
|
| | | 1, 2, 2, 3, 2, 3, 3, 4);
|
| | |
|
| | | __m256i low_mask = _mm256_set1_epi8(0x0f);
|
| | |
|
| | | __m256i lo = _mm256_and_si256(v, low_mask);
|
| | | __m256i hi = _mm256_and_si256(_mm256_srli_epi32(v, 4), low_mask);
|
| | | __m256i popcnt1 = _mm256_shuffle_epi8(lookup, lo);
|
| | | __m256i popcnt2 = _mm256_shuffle_epi8(lookup, hi);
|
| | | __m256i total = _mm256_add_epi8(popcnt1, popcnt2);
|
| | |
|
| | | return _mm256_sad_epu8(total, _mm256_setzero_si256());
|
| | | }
|
| | | static inline int popcnt256_custom(__m256i n) {
|
| | | return _mm_popcnt_u64(n.m256i_i64[0]) +
|
| | | _mm_popcnt_u64(n.m256i_i64[1]) +
|
| | | _mm_popcnt_u64(n.m256i_i64[2]) +
|
| | | _mm_popcnt_u64(n.m256i_i64[3]);
|
| | | }
|
| | |
|
| | | static inline void CSA(__m256i * h, __m256i * l, __m256i a, __m256i b, __m256i c)
|
| | | {
|
| | | __m256i u = _mm256_xor_si256(a, b);
|
| | | *h = _mm256_or_si256(_mm256_and_si256(a, b), _mm256_and_si256(u, c));
|
| | | *l = _mm256_xor_si256(u, c);
|
| | | }
|
| | |
|
| | | static inline __m256i xnor256(__m256i a_bit256, __m256i b_bit256) {
|
| | | __m256i all_1 = _mm256_set1_epi8(255);
|
| | | __m256i xor256 = _mm256_xor_si256(a_bit256, b_bit256);
|
| | | __m256i c_bit256 = _mm256_andnot_si256(xor256, all_1);
|
| | |
|
| | | return c_bit256;
|
| | |
|
| | | }
|
| | |
|
| | | // 2 x faster than popcnt: https://arxiv.org/pdf/1611.07612.pdf
|
| | | // step = 16*256/8 = 512 bytes = 4096 bit (ldb, lda, bit_step, align - all should be aligned by 4096 bit)
|
| | | static inline uint64_t avx_hs_custom(__m256i * A, __m256i * B, uint64_t size) {
|
| | | __m256i total = _mm256_setzero_si256();
|
| | | __m256i ones = _mm256_setzero_si256();
|
| | | __m256i twos = _mm256_setzero_si256();
|
| | | __m256i fours = _mm256_setzero_si256();
|
| | | __m256i eights = _mm256_setzero_si256();
|
| | | __m256i sixteens = _mm256_setzero_si256();
|
| | | __m256i twosA, twosB, foursA, foursB, eightsA, eightsB;
|
| | |
|
| | | for (uint64_t i = 0; i < size; i += 16) {
|
| | | //CSA(&twosA, &ones, ones, d[i], d[i + 1]);
|
| | | CSA(&twosA, &ones, ones, xnor256(A[i], B[i]), xnor256(A[i + 1], B[i + 1]));
|
| | | CSA(&twosB, &ones, ones, xnor256(A[i + 2], B[i + 2]), xnor256(A[i + 3], B[i + 3]));
|
| | | CSA(&foursA, &twos, twos, twosA, twosB);
|
| | | CSA(&twosA, &ones, ones, xnor256(A[i + 4], B[i + 4]), xnor256(A[i + 5], B[i + 5]));
|
| | | CSA(&twosB, &ones, ones, xnor256(A[i + 6], B[i + 6]), xnor256(A[i + 7], B[i + 7]));
|
| | | CSA(&foursB, &twos, twos, twosA, twosB);
|
| | | CSA(&eightsA, &fours, fours, foursA, foursB);
|
| | | CSA(&twosA, &ones, ones, xnor256(A[i + 8], B[i + 8]), xnor256(A[i + 9], B[i + 9]));
|
| | | CSA(&twosB, &ones, ones, xnor256(A[i + 10], B[i + 10]), xnor256(A[i + 11], B[i + 11]));
|
| | | CSA(&foursA, &twos, twos, twosA, twosB);
|
| | | CSA(&twosA, &ones, ones, xnor256(A[i + 12], B[i + 12]), xnor256(A[i + 13], B[i + 13]));
|
| | | CSA(&twosB, &ones, ones, xnor256(A[i + 14], B[i + 14]), xnor256(A[i + 15], B[i + 15]));
|
| | | CSA(&foursB, &twos, twos, twosA, twosB);
|
| | | CSA(&eightsB, &fours, fours, foursA, foursB);
|
| | | CSA(&sixteens, &eights, eights, eightsA, eightsB);
|
| | |
|
| | | total = _mm256_add_epi64(total, count256(sixteens));
|
| | | }
|
| | | total = _mm256_slli_epi64(total, 4);
|
| | | total = _mm256_add_epi64(total,
|
| | | _mm256_slli_epi64(count256(eights), 3));
|
| | | total = _mm256_add_epi64(total,
|
| | | _mm256_slli_epi64(count256(fours), 2));
|
| | | total = _mm256_add_epi64(total,
|
| | | _mm256_slli_epi64(count256(twos), 1));
|
| | | total = _mm256_add_epi64(total, count256(ones));
|
| | |
|
| | | return total.m256i_i64[0] +
|
| | | total.m256i_i64[1] +
|
| | | total.m256i_i64[2] +
|
| | | total.m256i_i64[3];
|
| | |
|
| | | //return _mm256_extract_epi64(total, 0)
|
| | | // + _mm256_extract_epi64(total, 1)
|
| | | // + _mm256_extract_epi64(total, 2)
|
| | | // + _mm256_extract_epi64(total, 3);
|
| | | }
|
| | |
|
| | | void gemm_nn_custom_bin_mean_transposed(int M, int N, int K, float ALPHA_UNUSED,
|
| | | unsigned char *A, int lda,
|
| | | unsigned char *B, int ldb,
|
| | | float *C, int ldc, float *mean_arr)
|
| | | {
|
| | | __m256i all_1 = _mm256_set1_epi8(255);
|
| | | int i, j, k;
|
| | |
|
| | | //printf("\n M = %d, N = %d, K = %d, ldb = %d, M*ldb/8 = %d, N*ldb/8= %d \n", M, N, K, ldb, M*ldb/8, N*ldb/8);
|
| | | //if (K > 4096) printf("!!!avx_hs!!! \n\n");
|
| | |
|
| | | #pragma omp parallel for
|
| | | for (i = 0; i < M; ++i) { // l.n - filters [16 - 55 - 1024]
|
| | | float mean_val = mean_arr[i];
|
| | |
|
| | | for (j = 0; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056]
|
| | | int count = 0;
|
| | | const int bit_step = 256;
|
| | |
|
| | |
|
| | | int hs_count = 0;
|
| | | if (K > 4096) {
|
| | | hs_count = avx_hs_custom(A + (i*lda) / 8, B + (j*ldb) / 8, K / 256);
|
| | |
|
| | | int local_bit_step = 4096;
|
| | |
|
| | | int f1 = (K % local_bit_step == 0) ? 0 : (local_bit_step - (K % local_bit_step));
|
| | | hs_count = hs_count - f1; // remove extra bits
|
| | | count = hs_count;
|
| | | }
|
| | | else {
|
| | | for (k = 0; k < K; k += bit_step) { // l.size*l.size*l.c - one filter size [27 - 9216]
|
| | |
|
| | | //__m128i a_bit128 = _mm_loadu_si128((__m128i *)(A + (i*lda + k) / 8));
|
| | | //__m128i b_bit128 = _mm_loadu_si128((__m128i *)(B + (j*ldb + k) / 8));
|
| | | //__m128i xor128 = _mm_xor_si128(a_bit128, b_bit128);
|
| | | //__m128i c_bit128 = _mm_andnot_si128(xor128, all_1);
|
| | | //int tmp_count = popcnt128(c_bit128);
|
| | |
|
| | | __m256i a_bit256 = _mm256_loadu_si256((__m256i *)(A + (i*lda + k) / 8));
|
| | | __m256i b_bit256 = _mm256_loadu_si256((__m256i *)(B + (j*ldb + k) / 8));
|
| | | __m256i xor256 = _mm256_xor_si256(a_bit256, b_bit256);
|
| | | __m256i c_bit256 = _mm256_andnot_si256(xor256, all_1); //we can do NOT for wegihts once and do not do this NOT
|
| | | int tmp_count = popcnt256(c_bit256);
|
| | | //int tmp_count = popcnt256_custom(c_bit256);
|
| | | count += tmp_count;
|
| | |
|
| | | //binary_int64_printf(c_bit64);
|
| | | //printf(", count = %d \n\n", tmp_count);
|
| | | }
|
| | |
|
| | | int f1 = (K % bit_step == 0) ? 0 : (bit_step - (K % bit_step));
|
| | | count = count - f1; // remove extra bits
|
| | | }
|
| | |
|
| | | C[i*ldc + j] = (2 * count - K) * mean_val;
|
| | | }
|
| | | }
|
| | | }
|
| | |
|
| | |
|
| | | void float_to_bit(float *src, unsigned char *dst, size_t size)
|
| | | {
|
| | | size_t dst_size = size / 8 + 1;
|
| | | memset(dst, 0, dst_size);
|
| | |
|
| | | size_t i;
|
| | | __m256i all256_sing1 = _mm256_set_epi32(0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000);
|
| | |
|
| | | for (i = 0; i < size; i+=8)
|
| | | {
|
| | | __m256i src256 = _mm256_loadu_si256((__m256i *)(&src[i]));
|
| | | __m256i result256 = _mm256_and_si256(src256, all256_sing1); // check sign in 8 x 32-bit floats
|
| | |
|
| | | uint32_t mask = _mm256_movemask_ps(_mm256_castsi256_ps(result256)); // (val >= 0) ? 0 : 1
|
| | | mask = ~mask; // inverse mask, (val >= 0) ? 1 : 0
|
| | |
|
| | | dst[i / 8] = mask;
|
| | | }
|
| | | }
|
| | |
|
| | | #else
|
| | |
|
| | | void gemm_nn(int M, int N, int K, float ALPHA,
|
| | | float *A, int lda,
|
| | | float *B, int ldb,
|
| | | float *C, int ldc)
|
| | | {
|
| | | int i, j, k;
|
| | | for (i = 0; i < M; ++i) {
|
| | | for (k = 0; k < K; ++k) {
|
| | | register float A_PART = ALPHA*A[i*lda + k];
|
| | | for (j = 0; j < N; ++j) {
|
| | | C[i*ldc + j] += A_PART*B[k*ldb + j];
|
| | | }
|
| | | }
|
| | | }
|
| | | }
|
| | |
|
| | | void gemm_nn_custom_bin_mean_transposed(int M, int N, int K, float ALPHA_UNUSED,
|
| | | unsigned char *A, int lda,
|
| | | unsigned char *B, int ldb,
|
| | | float *C, int ldc, float *mean_arr)
|
| | | {
|
| | | int i, j, k, h;
|
| | |
|
| | | #pragma omp parallel for
|
| | | for (i = 0; i < M; ++i) { // l.n - filters [16 - 55 - 1024]
|
| | | float mean_val = mean_arr[i];
|
| | |
|
| | | for (j = 0; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056]
|
| | | int count = 0;
|
| | |
|
| | | for (k = 0; k < K; k += 64) { // l.size*l.size*l.c - one filter size [27 - 9216]
|
| | | uint64_t a_bit64 = *((uint64_t *)(A + (i*lda + k) / 8));
|
| | | uint64_t b_bit64 = *((uint64_t *)(B + (j*ldb + k) / 8));
|
| | | uint64_t c_bit64 = xnor_int64(a_bit64, b_bit64);
|
| | |
|
| | | #ifdef WIN32
|
| | | int tmp_count = __popcnt64(c_bit64);
|
| | | #else
|
| | | int tmp_count = __builtin_popcountll(c_bit64);
|
| | | #endif
|
| | |
|
| | | if (K - k < 64) tmp_count = tmp_count - (64 - (K - k)); // remove extra bits
|
| | | count += tmp_count;
|
| | | //binary_int64_printf(c_bit64);
|
| | | //printf(", count = %d \n\n", tmp_count);
|
| | | }
|
| | |
|
| | | C[i*ldc + j] = (2 * count - K) * mean_val;
|
| | | }
|
| | | }
|
| | | }
|
| | |
|
| | | void float_to_bit(float *src, unsigned char *dst, size_t size)
|
| | | {
|
| | | size_t dst_size = size / 8 + 1;
|
| | | memset(dst, 0, dst_size);
|
| | |
|
| | | size_t i;
|
| | | char *byte_arr = calloc(size, sizeof(char));
|
| | | for (i = 0; i < size; ++i) {
|
| | | if (src[i] > 0) byte_arr[i] = 1;
|
| | | }
|
| | |
|
| | | //for (i = 0; i < size; ++i) {
|
| | | // dst[i / 8] |= byte_arr[i] << (i % 8);
|
| | | //}
|
| | |
|
| | | for (i = 0; i < size; i += 8) {
|
| | | char dst_tmp = 0;
|
| | | dst_tmp |= byte_arr[i + 0] << 0;
|
| | | dst_tmp |= byte_arr[i + 1] << 1;
|
| | | dst_tmp |= byte_arr[i + 2] << 2;
|
| | | dst_tmp |= byte_arr[i + 3] << 3;
|
| | | dst_tmp |= byte_arr[i + 4] << 4;
|
| | | dst_tmp |= byte_arr[i + 5] << 5;
|
| | | dst_tmp |= byte_arr[i + 6] << 6;
|
| | | dst_tmp |= byte_arr[i + 7] << 7;
|
| | | dst[i / 8] = dst_tmp;
|
| | | }
|
| | | free(byte_arr);
|
| | | }
|
| | | #endif // __x86_64
|
| | |
|
| | | void gemm_nt(int M, int N, int K, float ALPHA,
|
| | | float *A, int lda,
|
| | | float *B, int ldb,
|
| | | float *C, int ldc)
|
| | | {
|
| | | int i,j,k;
|
| | | for(i = 0; i < M; ++i){
|
| | | for(j = 0; j < N; ++j){
|
| | | register float sum = 0;
|
| | | for(k = 0; k < K; ++k){
|
| | | sum += ALPHA*A[i*lda+k]*B[j*ldb + k];
|
| | | }
|
| | | C[i*ldc+j] += sum;
|
| | | }
|
| | | }
|
| | | }
|
| | |
|
| | | void gemm_tn(int M, int N, int K, float ALPHA,
|
| | | float *A, int lda,
|
| | | float *B, int ldb,
|
| | | float *C, int ldc)
|
| | | {
|
| | | int i,j,k;
|
| | | for(i = 0; i < M; ++i){
|
| | | for(k = 0; k < K; ++k){
|
| | | register float A_PART = ALPHA*A[k*lda+i];
|
| | | for(j = 0; j < N; ++j){
|
| | | C[i*ldc+j] += A_PART*B[k*ldb+j];
|
| | | }
|
| | | }
|
| | | }
|
| | | }
|
| | |
|
| | | void gemm_tt(int M, int N, int K, float ALPHA,
|
| | | float *A, int lda,
|
| | | float *B, int ldb,
|
| | | float *C, int ldc)
|
| | | {
|
| | | int i,j,k;
|
| | | for(i = 0; i < M; ++i){
|
| | | for(j = 0; j < N; ++j){
|
| | | register float sum = 0;
|
| | | for(k = 0; k < K; ++k){
|
| | | sum += ALPHA*A[i+k*lda]*B[k+j*ldb];
|
| | | }
|
| | | C[i*ldc+j] += sum;
|
| | | }
|
| | | }
|
| | | }
|
| | |
|
| | |
|
| | | void gemm_cpu(int TA, int TB, int M, int N, int K, float ALPHA,
|
| | | float *A, int lda,
|
| | | float *B, int ldb,
|
| | | float BETA,
|
| | | float *C, int ldc)
|
| | | {
|
| | | //printf("cpu: %d %d %d %d %d %f %d %d %f %d\n",TA, TB, M, N, K, ALPHA, lda, ldb, BETA, ldc);
|
| | | if (BETA != 1){
|
| | | int i, j;
|
| | | for(i = 0; i < M; ++i){
|
| | | for(j = 0; j < N; ++j){
|
| | | C[i*ldc + j] *= BETA;
|
| | | }
|
| | | }
|
| | | }
|
| | |
|
| | | int t;
|
| | | #pragma omp parallel for
|
| | | for (t = 0; t < M; ++t) {
|
| | | if (!TA && !TB)
|
| | | gemm_nn(1, N, K, ALPHA, A + t*lda, lda, B, ldb, C + t*ldc, ldc);
|
| | | else if (TA && !TB)
|
| | | gemm_tn(1, N, K, ALPHA, A + t, lda, B, ldb, C + t*ldc, ldc);
|
| | | else if (!TA && TB)
|
| | | gemm_nt(1, N, K, ALPHA, A + t*lda, lda, B, ldb, C + t*ldc, ldc);
|
| | | else
|
| | | gemm_tt(1, N, K, ALPHA, A + t, lda, B, ldb, C + t*ldc, ldc);
|
| | | }
|
| | | }
|
| | |
|
| | | #ifdef GPU
|
| | |
|
| | | #include <math.h>
|
| | |
|
| | | void gemm_ongpu(int TA, int TB, int M, int N, int K, float ALPHA,
|
| | | float *A_gpu, int lda,
|
| | | float *B_gpu, int ldb,
|
| | | float BETA,
|
| | | float *C_gpu, int ldc)
|
| | | {
|
| | | cublasHandle_t handle = blas_handle();
|
| | | cudaError_t stream_status = cublasSetStream(handle, get_cuda_stream());
|
| | | cudaError_t status = cublasSgemm(handle, (TB ? CUBLAS_OP_T : CUBLAS_OP_N),
|
| | | (TA ? CUBLAS_OP_T : CUBLAS_OP_N), N, M, K, &ALPHA, B_gpu, ldb, A_gpu, lda, &BETA, C_gpu, ldc);
|
| | | check_error(status);
|
| | | }
|
| | |
|
| | | void gemm_gpu(int TA, int TB, int M, int N, int K, float ALPHA,
|
| | | float *A, int lda,
|
| | | float *B, int ldb,
|
| | | float BETA,
|
| | | float *C, int ldc)
|
| | | {
|
| | | float *A_gpu = cuda_make_array(A, (TA ? lda*K:lda*M));
|
| | | float *B_gpu = cuda_make_array(B, (TB ? ldb*N : ldb*K));
|
| | | float *C_gpu = cuda_make_array(C, ldc*M);
|
| | |
|
| | | gemm_ongpu(TA, TB, M, N, K, ALPHA, A_gpu, lda, B_gpu, ldb, BETA, C_gpu, ldc);
|
| | |
|
| | | cuda_pull_array(C_gpu, C, ldc*M);
|
| | | cuda_free(A_gpu);
|
| | | cuda_free(B_gpu);
|
| | | cuda_free(C_gpu);
|
| | | }
|
| | |
|
| | | #include <stdio.h>
|
| | | #include <stdlib.h>
|
| | | #include <string.h>
|
| | | #include <time.h>
|
| | |
|
| | | void time_gpu_random_matrix(int TA, int TB, int m, int k, int n)
|
| | | {
|
| | | float *a;
|
| | | if(!TA) a = random_matrix(m,k);
|
| | | else a = random_matrix(k,m);
|
| | | int lda = (!TA)?k:m;
|
| | | float *b;
|
| | | if(!TB) b = random_matrix(k,n);
|
| | | else b = random_matrix(n,k);
|
| | | int ldb = (!TB)?n:k;
|
| | |
|
| | | float *c = random_matrix(m,n);
|
| | | int i;
|
| | | clock_t start = clock(), end;
|
| | | for(i = 0; i<32; ++i){
|
| | | gemm_gpu(TA,TB,m,n,k,1,a,lda,b,ldb,1,c,n);
|
| | | }
|
| | | end = clock();
|
| | | printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %lf s\n",m,k,k,n, TA, TB, (float)(end-start)/CLOCKS_PER_SEC);
|
| | | free(a);
|
| | | free(b);
|
| | | free(c);
|
| | | }
|
| | |
|
| | | void time_ongpu(int TA, int TB, int m, int k, int n)
|
| | | {
|
| | | int iter = 10;
|
| | | float *a = random_matrix(m,k);
|
| | | float *b = random_matrix(k,n);
|
| | |
|
| | | int lda = (!TA)?k:m;
|
| | | int ldb = (!TB)?n:k;
|
| | |
|
| | | float *c = random_matrix(m,n);
|
| | |
|
| | | float *a_cl = cuda_make_array(a, m*k);
|
| | | float *b_cl = cuda_make_array(b, k*n);
|
| | | float *c_cl = cuda_make_array(c, m*n);
|
| | |
|
| | | int i;
|
| | | clock_t start = clock(), end;
|
| | | for(i = 0; i<iter; ++i){
|
| | | gemm_ongpu(TA,TB,m,n,k,1,a_cl,lda,b_cl,ldb,1,c_cl,n);
|
| | | cudaThreadSynchronize();
|
| | | }
|
| | | double flop = ((double)m)*n*(2.*k + 2.)*iter;
|
| | | double gflop = flop/pow(10., 9);
|
| | | end = clock();
|
| | | double seconds = sec(end-start);
|
| | | printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %lf s, %lf GFLOPS\n",m,k,k,n, TA, TB, seconds, gflop/seconds);
|
| | | cuda_free(a_cl);
|
| | | cuda_free(b_cl);
|
| | | cuda_free(c_cl);
|
| | | free(a);
|
| | | free(b);
|
| | | free(c);
|
| | | }
|
| | |
|
| | |
|
| | | void test_gpu_accuracy(int TA, int TB, int m, int k, int n)
|
| | | {
|
| | | srand(0);
|
| | | float *a;
|
| | | if(!TA) a = random_matrix(m,k);
|
| | | else a = random_matrix(k,m);
|
| | | int lda = (!TA)?k:m;
|
| | | float *b;
|
| | | if(!TB) b = random_matrix(k,n);
|
| | | else b = random_matrix(n,k);
|
| | | int ldb = (!TB)?n:k;
|
| | |
|
| | | float *c = random_matrix(m,n);
|
| | | float *c_gpu = random_matrix(m,n);
|
| | | memset(c, 0, m*n*sizeof(float));
|
| | | memset(c_gpu, 0, m*n*sizeof(float));
|
| | | int i;
|
| | | //pm(m,k,b);
|
| | | gemm_gpu(TA,TB,m,n,k,1,a,lda,b,ldb,1,c_gpu,n);
|
| | | //printf("GPU\n");
|
| | | //pm(m, n, c_gpu);
|
| | |
|
| | | gemm_cpu(TA,TB,m,n,k,1,a,lda,b,ldb,1,c,n);
|
| | | //printf("\n\nCPU\n");
|
| | | //pm(m, n, c);
|
| | | double sse = 0;
|
| | | for(i = 0; i < m*n; ++i) {
|
| | | //printf("%f %f\n", c[i], c_gpu[i]);
|
| | | sse += pow(c[i]-c_gpu[i], 2);
|
| | | }
|
| | | printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %g SSE\n",m,k,k,n, TA, TB, sse/(m*n));
|
| | | free(a);
|
| | | free(b);
|
| | | free(c);
|
| | | free(c_gpu);
|
| | | }
|
| | |
|
| | | int test_gpu_blas()
|
| | | {
|
| | | /*
|
| | | test_gpu_accuracy(0,0,10,576,75);
|
| | |
|
| | | test_gpu_accuracy(0,0,17,10,10);
|
| | | test_gpu_accuracy(1,0,17,10,10);
|
| | | test_gpu_accuracy(0,1,17,10,10);
|
| | | test_gpu_accuracy(1,1,17,10,10);
|
| | |
|
| | | test_gpu_accuracy(0,0,1000,10,100);
|
| | | test_gpu_accuracy(1,0,1000,10,100);
|
| | | test_gpu_accuracy(0,1,1000,10,100);
|
| | | test_gpu_accuracy(1,1,1000,10,100);
|
| | |
|
| | | test_gpu_accuracy(0,0,10,10,10);
|
| | |
|
| | | time_ongpu(0,0,64,2916,363);
|
| | | time_ongpu(0,0,64,2916,363);
|
| | | time_ongpu(0,0,64,2916,363);
|
| | | time_ongpu(0,0,192,729,1600);
|
| | | time_ongpu(0,0,384,196,1728);
|
| | | time_ongpu(0,0,256,196,3456);
|
| | | time_ongpu(0,0,256,196,2304);
|
| | | time_ongpu(0,0,128,4096,12544);
|
| | | time_ongpu(0,0,128,4096,4096);
|
| | | */
|
| | | time_ongpu(0,0,64,75,12544);
|
| | | time_ongpu(0,0,64,75,12544);
|
| | | time_ongpu(0,0,64,75,12544);
|
| | | time_ongpu(0,0,64,576,12544);
|
| | | time_ongpu(0,0,256,2304,784);
|
| | | time_ongpu(1,1,2304,256,784);
|
| | | time_ongpu(0,0,512,4608,196);
|
| | | time_ongpu(1,1,4608,512,196);
|
| | |
|
| | | return 0;
|
| | | }
|
| | | #endif
|
| | |
|
| | |
| | | if(a.w == 0) return copy_image(b); |
| | | image c = make_image(a.w + b.w + dx, (a.h > b.h) ? a.h : b.h, (a.c > b.c) ? a.c : b.c); |
| | | fill_cpu(c.w*c.h*c.c, 1, c.data, 1); |
| | | embed_image(a, c, 0, 0); |
| | | embed_image(a, c, 0, 0); |
| | | composite_image(b, c, a.w + dx, 0); |
| | | return c; |
| | | } |
| | |
| | | return delta < 0 ? -1 : delta > 0 ? 1 : 0; |
| | | } |
| | | |
| | | // compare to sort detection** by best_class probability |
| | | // compare to sort detection** by best_class probability |
| | | int compare_by_probs(const void *a_ptr, const void *b_ptr) { |
| | | const detection_with_class* a = (detection_with_class*)a_ptr; |
| | | const detection_with_class* b = (detection_with_class*)b_ptr; |
| | |
| | | if(top < 0) top = 0; |
| | | if(bot > im.h-1) bot = im.h-1; |
| | | printf("%s: %.0f%%", names[class_id], prob * 100); |
| | | |
| | | |
| | | //printf(" - id: %d, x_center: %d, y_center: %d, width: %d, height: %d", |
| | | // class_id, (right + left) / 2, (bot - top) / 2, right - left, bot - top); |
| | | |
| | |
| | | rgb[1] = green; |
| | | rgb[2] = blue; |
| | | box b = dets[i].bbox; |
| | | b.w = (b.w < 1) ? b.w : 1; |
| | | b.h = (b.h < 1) ? b.h : 1; |
| | | b.x = (b.x < 1) ? b.x : 1; |
| | | b.y = (b.y < 1) ? b.y : 1; |
| | | //printf("%f %f %f %f\n", b.x, b.y, b.w, b.h); |
| | | |
| | | int left = (b.x - b.w / 2.)*show_img->width; |
| | |
| | | |
| | | cvRectangle(show_img, pt1, pt2, color, width, 8, 0); |
| | | if (ext_output) |
| | | printf("\t(left_x: %4.0f top_y: %4.0f width: %4.0f height: %4.0f)\n", |
| | | printf("\t(left_x: %4.0f top_y: %4.0f width: %4.0f height: %4.0f)\n", |
| | | (float)left, (float)top, b.w*show_img->width, b.h*show_img->height); |
| | | else |
| | | printf("\n"); |
| | | |
| | | cvRectangle(show_img, pt_text_bg1, pt_text_bg2, color, width, 8, 0); |
| | | cvRectangle(show_img, pt_text_bg1, pt_text_bg2, color, CV_FILLED, 8, 0); // filled |
| | | CvScalar black_color; |
| | |
| | | CvScalar black_color; |
| | | black_color.val[0] = 0; |
| | | CvFont font; |
| | | cvInitFont(&font, CV_FONT_HERSHEY_SIMPLEX, font_size, font_size, 0, font_size * 3, 8); |
| | | cvInitFont(&font, CV_FONT_HERSHEY_SIMPLEX, font_size, font_size, 0, font_size * 3, 8); |
| | | cvPutText(show_img, names[class_id], pt_text, &font, black_color); |
| | | } |
| | | } |
| | |
| | | |
| | | IplImage *disp = cvCreateImage(cvSize(p.w,p.h), IPL_DEPTH_8U, p.c); |
| | | int step = disp->widthStep; |
| | | cvNamedWindow(buff, CV_WINDOW_NORMAL); |
| | | cvNamedWindow(buff, CV_WINDOW_NORMAL); |
| | | //cvMoveWindow(buff, 100*(windows%10) + 200*(windows/10), 100*(windows%10)); |
| | | ++windows; |
| | | for(y = 0; y < p.h; ++y){ |
| | |
| | | } |
| | | else src = cvQueryFrame(cap); |
| | | |
| | | if (cpp_video_capture) |
| | | if (cpp_video_capture) |
| | | if(!wait_for_stream(cap, src, dont_close)) return make_empty_image(0, 0, 0); |
| | | IplImage* new_img = cvCreateImage(cvSize(w, h), IPL_DEPTH_8U, c); |
| | | *in_img = cvCreateImage(cvSize(src->width, src->height), IPL_DEPTH_8U, c); |
| | |
| | | for(k = 0; k < fore.c; ++k){ |
| | | for(j = 0; j < fore.h; ++j){ |
| | | for(i = 0; i < fore.w; ++i){ |
| | | float val = alpha * get_pixel(fore, i, j, k) + |
| | | float val = alpha * get_pixel(fore, i, j, k) + |
| | | (1 - alpha)* get_pixel(back, i, j, k); |
| | | set_pixel(blend, i, j, k, val); |
| | | } |
| | |
| | | float dx = x - ix; |
| | | float dy = y - iy; |
| | | |
| | | float val = (1-dy) * (1-dx) * get_pixel_extend(im, ix, iy, c) + |
| | | dy * (1-dx) * get_pixel_extend(im, ix, iy+1, c) + |
| | | float val = (1-dy) * (1-dx) * get_pixel_extend(im, ix, iy, c) + |
| | | dy * (1-dx) * get_pixel_extend(im, ix, iy+1, c) + |
| | | (1-dy) * dx * get_pixel_extend(im, ix+1, iy, c) + |
| | | dy * dx * get_pixel_extend(im, ix+1, iy+1, c); |
| | | return val; |
| | |
| | | |
| | | image resize_image(image im, int w, int h) |
| | | { |
| | | image resized = make_image(w, h, im.c); |
| | | image resized = make_image(w, h, im.c); |
| | | image part = make_image(w, im.h, im.c); |
| | | int r, c, k; |
| | | float w_scale = (float)(im.w - 1) / (w - 1); |
| | |
| | | free_image(copy); |
| | | } |
| | | return filters; |
| | | } |
| | | } |
| | | |
| | | image collapse_images_horz(image *ims, int n) |
| | | { |
| | |
| | | free_image(copy); |
| | | } |
| | | return filters; |
| | | } |
| | | } |
| | | |
| | | void show_image_normalized(image im, const char *name) |
| | | { |
| | |
| | | if (l->xnor) { |
| | | //printf("\n %d \n", j); |
| | | size_t ldb_align = 256; // 256bit for AVX2 |
| | | if (l->size*l->size*l->c > 4096) ldb_align = 4096; |
| | | |
| | | binary_transpose_align_weights(l, ldb_align); |
| | | } |
| | | } |