11 files modified
1 files renamed
| | |
| | | LDFLAGS+= -L/usr/local/cuda/lib64 -lcuda -lcudart -lcublas -lcurand |
| | | endif |
| | | |
| | | OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o darknet.o detection_layer.o imagenet.o captcha.o route_layer.o writing.o box.o nightmare.o normalization_layer.o avgpool_layer.o coco.o dice.o yolo.o region_layer.o layer.o compare.o yoloplus.o |
| | | OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o darknet.o detection_layer.o imagenet.o captcha.o route_layer.o writing.o box.o nightmare.o normalization_layer.o avgpool_layer.o coco.o dice.o yolo.o region_layer.o layer.o compare.o swag.o |
| | | ifeq ($(GPU), 1) |
| | | OBJ+=convolutional_kernels.o deconvolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o softmax_layer_kernels.o network_kernels.o avgpool_layer_kernels.o |
| | | endif |
| | |
| | | [net] |
| | | batch=128 |
| | | batch=256 |
| | | subdivisions=1 |
| | | height=256 |
| | | width=256 |
| | | channels=3 |
| | | momentum=0.9 |
| | | decay=0.0005 |
| | | |
| | | learning_rate=0.01 |
| | | policy=poly |
| | | power=.5 |
| | | max_batches=600000 |
| | | policy=step |
| | | scale=.1 |
| | | step=100000 |
| | | max_batches=400000 |
| | | |
| | | [crop] |
| | | crop_height=224 |
| | |
| | | avg_loss = avg_loss*.9 + loss*.1; |
| | | |
| | | printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs); |
| | | if((i-1)*imgs <= N && i*imgs > N){ |
| | | fprintf(stderr, "First stage done\n"); |
| | | net.learning_rate *= 10; |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s_first_stage.weights", backup_directory, base); |
| | | save_weights(net, buff); |
| | | } |
| | | |
| | | if((i-1)*imgs <= 80*N && i*imgs > N*80){ |
| | | fprintf(stderr, "Second stage done.\n"); |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s_second_stage.weights", backup_directory, base); |
| | | save_weights(net, buff); |
| | | } |
| | | if(i%1000==0){ |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i); |
| | |
| | | image im1 = load_image_color(box1.filename, net.w, net.h); |
| | | image im2 = load_image_color(box2.filename, net.w, net.h); |
| | | float *X = calloc(net.w*net.h*net.c, sizeof(float)); |
| | | memcpy(X, im1.data, im1.w*im1.h*im1.c); |
| | | memcpy(X+im1.w*im1.h*im1.c, im2.data, im2.w*im2.h*im2.c); |
| | | memcpy(X, im1.data, im1.w*im1.h*im1.c*sizeof(float)); |
| | | memcpy(X+im1.w*im1.h*im1.c, im2.data, im2.w*im2.h*im2.c*sizeof(float)); |
| | | float *predictions = network_predict(net, X); |
| | | |
| | | free_image(im1); |
| | |
| | | |
| | | extern void run_imagenet(int argc, char **argv); |
| | | extern void run_yolo(int argc, char **argv); |
| | | extern void run_yoloplus(int argc, char **argv); |
| | | extern void run_swag(int argc, char **argv); |
| | | extern void run_coco(int argc, char **argv); |
| | | extern void run_writing(int argc, char **argv); |
| | | extern void run_captcha(int argc, char **argv); |
| | |
| | | average(argc, argv); |
| | | } else if (0 == strcmp(argv[1], "yolo")){ |
| | | run_yolo(argc, argv); |
| | | } else if (0 == strcmp(argv[1], "yoloplus")){ |
| | | run_yoloplus(argc, argv); |
| | | } else if (0 == strcmp(argv[1], "swag")){ |
| | | run_swag(argc, argv); |
| | | } else if (0 == strcmp(argv[1], "coco")){ |
| | | run_coco(argc, argv); |
| | | } else if (0 == strcmp(argv[1], "compare")){ |
| | |
| | | int index = (col+row*num_boxes)*(5+classes); |
| | | if (truth[index]) continue; |
| | | truth[index++] = 1; |
| | | if (classes) truth[index+id] = 1; |
| | | |
| | | if (id < classes) truth[index+id] = 1; |
| | | index += classes; |
| | | |
| | | truth[index++] = x; |
| | | truth[index++] = y; |
| | | truth[index++] = w; |
| | |
| | | int batch; |
| | | int inputs; |
| | | int outputs; |
| | | int truths; |
| | | int h,w,c; |
| | | int out_h, out_w, out_c; |
| | | int n; |
| | |
| | | int pad; |
| | | int crop_width; |
| | | int crop_height; |
| | | int sqrt; |
| | | int flip; |
| | | float angle; |
| | | float saturation; |
| | | float exposure; |
| | | int softmax; |
| | | int classes; |
| | | int coords; |
| | | int background; |
| | |
| | | case POLY: |
| | | return net.learning_rate * pow(1 - (float)batch_num / net.max_batches, net.power); |
| | | case SIG: |
| | | return net.learning_rate * (1/(1+exp(net.gamma*(batch_num - net.step)))); |
| | | return net.learning_rate * (1./(1.+exp(net.gamma*(batch_num - net.step)))); |
| | | default: |
| | | fprintf(stderr, "Policy is weird!\n"); |
| | | return net.learning_rate; |
| | |
| | | network_state state; |
| | | int x_size = get_network_input_size(net)*net.batch; |
| | | int y_size = get_network_output_size(net)*net.batch; |
| | | if(net.layers[net.n-1].type == REGION) y_size = net.layers[net.n-1].truths*net.batch; |
| | | if(!*net.input_gpu){ |
| | | *net.input_gpu = cuda_make_array(x, x_size); |
| | | *net.truth_gpu = cuda_make_array(y, y_size); |
| | |
| | | int num = option_find_int(options, "num", 1); |
| | | int side = option_find_int(options, "side", 7); |
| | | region_layer layer = make_region_layer(params.batch, params.inputs, num, side, classes, coords, rescore); |
| | | int softmax = option_find_int(options, "softmax", 0); |
| | | int sqrt = option_find_int(options, "sqrt", 0); |
| | | layer.softmax = softmax; |
| | | layer.sqrt = sqrt; |
| | | return layer; |
| | | } |
| | | |
| | |
| | | l.coords = coords; |
| | | l.rescore = rescore; |
| | | l.side = side; |
| | | assert(side*side*l.coords*l.n == inputs); |
| | | assert(side*side*((1 + l.coords)*l.n + l.classes) == inputs); |
| | | l.cost = calloc(1, sizeof(float)); |
| | | int outputs = l.n*5*side*side; |
| | | l.outputs = outputs; |
| | | l.output = calloc(batch*outputs, sizeof(float)); |
| | | l.delta = calloc(batch*inputs, sizeof(float)); |
| | | l.outputs = l.inputs; |
| | | l.truths = l.side*l.side*(1+l.coords+l.classes); |
| | | l.output = calloc(batch*l.outputs, sizeof(float)); |
| | | l.delta = calloc(batch*l.outputs, sizeof(float)); |
| | | #ifdef GPU |
| | | l.output_gpu = cuda_make_array(l.output, batch*outputs); |
| | | l.delta_gpu = cuda_make_array(l.delta, batch*inputs); |
| | | l.output_gpu = cuda_make_array(l.output, batch*l.outputs); |
| | | l.delta_gpu = cuda_make_array(l.delta, batch*l.outputs); |
| | | #endif |
| | | |
| | | fprintf(stderr, "Region Layer\n"); |
| | |
| | | { |
| | | int locations = l.side*l.side; |
| | | int i,j; |
| | | memcpy(l.output, state.input, l.outputs*l.batch*sizeof(float)); |
| | | for(i = 0; i < l.batch*locations; ++i){ |
| | | for(j = 0; j < l.n; ++j){ |
| | | int in_index = i*l.n*l.coords + j*l.coords; |
| | | int out_index = i*l.n*5 + j*5; |
| | | |
| | | float prob = state.input[in_index+0]; |
| | | float x = state.input[in_index+1]; |
| | | float y = state.input[in_index+2]; |
| | | float w = state.input[in_index+3]; |
| | | float h = state.input[in_index+4]; |
| | | /* |
| | | float min_w = state.input[in_index+5]; |
| | | float max_w = state.input[in_index+6]; |
| | | float min_h = state.input[in_index+7]; |
| | | float max_h = state.input[in_index+8]; |
| | | */ |
| | | |
| | | l.output[out_index+0] = prob; |
| | | l.output[out_index+1] = x; |
| | | l.output[out_index+2] = y; |
| | | l.output[out_index+3] = w; |
| | | l.output[out_index+4] = h; |
| | | |
| | | int index = i*((1+l.coords)*l.n + l.classes); |
| | | if(l.softmax){ |
| | | activate_array(l.output + index, l.n*(1+l.coords), LOGISTIC); |
| | | int offset = l.n*(1+l.coords); |
| | | softmax_array(l.output + index + offset, l.classes, |
| | | l.output + index + offset); |
| | | } |
| | | } |
| | | if(state.train){ |
| | | float avg_iou = 0; |
| | | float avg_cat = 0; |
| | | float avg_obj = 0; |
| | | float avg_anyobj = 0; |
| | | int count = 0; |
| | | *(l.cost) = 0; |
| | | int size = l.inputs * l.batch; |
| | | memset(l.delta, 0, size * sizeof(float)); |
| | | for (i = 0; i < l.batch*locations; ++i) { |
| | | |
| | | int index = i*((1+l.coords)*l.n + l.classes); |
| | | for(j = 0; j < l.n; ++j){ |
| | | int in_index = i*l.n*l.coords + j*l.coords; |
| | | l.delta[in_index+0] = .1*(0-state.input[in_index+0]); |
| | | int prob_index = index + j*(1 + l.coords); |
| | | l.delta[prob_index] = (1./l.n)*(0-l.output[prob_index]); |
| | | if(l.softmax){ |
| | | l.delta[prob_index] = 1./(l.n*l.side)*(0-l.output[prob_index]); |
| | | } |
| | | *(l.cost) += (1./l.n)*pow(l.output[prob_index], 2); |
| | | //printf("%f\n", l.output[prob_index]); |
| | | avg_anyobj += l.output[prob_index]; |
| | | } |
| | | |
| | | int truth_index = i*5; |
| | | int truth_index = i*(1 + l.coords + l.classes); |
| | | int best_index = -1; |
| | | float best_iou = 0; |
| | | float best_rmse = 4; |
| | | |
| | | int bg = !state.truth[truth_index]; |
| | | if(bg) continue; |
| | | if(bg) { |
| | | continue; |
| | | } |
| | | |
| | | box truth = {state.truth[truth_index+1], state.truth[truth_index+2], state.truth[truth_index+3], state.truth[truth_index+4]}; |
| | | int class_index = index + l.n*(1+l.coords); |
| | | for(j = 0; j < l.classes; ++j) { |
| | | l.delta[class_index+j] = state.truth[truth_index+1+j] - l.output[class_index+j]; |
| | | *(l.cost) += pow(state.truth[truth_index+1+j] - l.output[class_index+j], 2); |
| | | if(state.truth[truth_index + 1 + j]) avg_cat += l.output[class_index+j]; |
| | | } |
| | | truth_index += l.classes + 1; |
| | | box truth = {state.truth[truth_index+0], state.truth[truth_index+1], state.truth[truth_index+2], state.truth[truth_index+3]}; |
| | | truth.x /= l.side; |
| | | truth.y /= l.side; |
| | | |
| | | for(j = 0; j < l.n; ++j){ |
| | | int out_index = i*l.n*5 + j*5; |
| | | int out_index = index + j*(1+l.coords); |
| | | box out = {l.output[out_index+1], l.output[out_index+2], l.output[out_index+3], l.output[out_index+4]}; |
| | | |
| | | //printf("\n%f %f %f %f %f\n", l.output[out_index+0], out.x, out.y, out.w, out.h); |
| | | |
| | | out.x /= l.side; |
| | | out.y /= l.side; |
| | | if (l.sqrt){ |
| | | out.w = out.w*out.w; |
| | | out.h = out.h*out.h; |
| | | } |
| | | |
| | | float iou = box_iou(out, truth); |
| | | float rmse = box_rmse(out, truth); |
| | |
| | | } |
| | | } |
| | | } |
| | | printf("%d", best_index); |
| | | //int out_index = i*l.n*5 + best_index*5; |
| | | //box out = {l.output[out_index+1], l.output[out_index+2], l.output[out_index+3], l.output[out_index+4]}; |
| | | int in_index = i*l.n*l.coords + best_index*l.coords; |
| | | //printf("%d", best_index); |
| | | int in_index = index + best_index*(1+l.coords); |
| | | *(l.cost) -= pow(l.output[in_index], 2); |
| | | *(l.cost) += pow(1-l.output[in_index], 2); |
| | | avg_obj += l.output[in_index]; |
| | | l.delta[in_index+0] = (1.-l.output[in_index]); |
| | | if(l.softmax){ |
| | | l.delta[in_index+0] = 5*(1.-l.output[in_index]); |
| | | } |
| | | //printf("%f\n", l.output[in_index]); |
| | | |
| | | l.delta[in_index+0] = (1-state.input[in_index+0]); |
| | | l.delta[in_index+1] = state.truth[truth_index+1] - state.input[in_index+1]; |
| | | l.delta[in_index+2] = state.truth[truth_index+2] - state.input[in_index+2]; |
| | | l.delta[in_index+3] = state.truth[truth_index+3] - state.input[in_index+3]; |
| | | l.delta[in_index+4] = state.truth[truth_index+4] - state.input[in_index+4]; |
| | | /* |
| | | l.delta[in_index+5] = 0 - state.input[in_index+5]; |
| | | l.delta[in_index+6] = 1 - state.input[in_index+6]; |
| | | l.delta[in_index+7] = 0 - state.input[in_index+7]; |
| | | l.delta[in_index+8] = 1 - state.input[in_index+8]; |
| | | */ |
| | | l.delta[in_index+1] = 5*(state.truth[truth_index+0] - l.output[in_index+1]); |
| | | l.delta[in_index+2] = 5*(state.truth[truth_index+1] - l.output[in_index+2]); |
| | | if(l.sqrt){ |
| | | l.delta[in_index+3] = 5*(sqrt(state.truth[truth_index+2]) - l.output[in_index+3]); |
| | | l.delta[in_index+4] = 5*(sqrt(state.truth[truth_index+3]) - l.output[in_index+4]); |
| | | }else{ |
| | | l.delta[in_index+3] = 5*(state.truth[truth_index+2] - l.output[in_index+3]); |
| | | l.delta[in_index+4] = 5*(state.truth[truth_index+3] - l.output[in_index+4]); |
| | | } |
| | | |
| | | /* |
| | | float x = state.input[in_index+1]; |
| | | float y = state.input[in_index+2]; |
| | | float w = state.input[in_index+3]; |
| | | float h = state.input[in_index+4]; |
| | | float min_w = state.input[in_index+5]; |
| | | float max_w = state.input[in_index+6]; |
| | | float min_h = state.input[in_index+7]; |
| | | float max_h = state.input[in_index+8]; |
| | | */ |
| | | |
| | | |
| | | *(l.cost) += pow(1-best_iou, 2); |
| | | avg_iou += best_iou; |
| | | ++count; |
| | | if(l.softmax){ |
| | | gradient_array(l.output + index, l.n*(1+l.coords), LOGISTIC, l.delta + index); |
| | | } |
| | | printf("\nAvg IOU: %f %d\n", avg_iou/count, count); |
| | | } |
| | | printf("Avg IOU: %f, Avg Cat Pred: %f, Avg Obj: %f, Avg Any: %f, count: %d\n", avg_iou/count, avg_cat/count, avg_obj/count, avg_anyobj/(l.batch*locations*l.n), count); |
| | | } |
| | | } |
| | | |
| | | void backward_region_layer(const region_layer l, network_state state) |
| | | { |
| | | axpy_cpu(l.batch*l.inputs, 1, l.delta, 1, state.delta, 1); |
| | | //copy_cpu(l.batch*l.inputs, l.delta, 1, state.delta, 1); |
| | | } |
| | | |
| | | #ifdef GPU |
| | |
| | | float *in_cpu = calloc(l.batch*l.inputs, sizeof(float)); |
| | | float *truth_cpu = 0; |
| | | if(state.truth){ |
| | | truth_cpu = calloc(l.batch*l.outputs, sizeof(float)); |
| | | cuda_pull_array(state.truth, truth_cpu, l.batch*l.outputs); |
| | | int num_truth = l.batch*l.side*l.side*(1+l.coords+l.classes); |
| | | truth_cpu = calloc(num_truth, sizeof(float)); |
| | | cuda_pull_array(state.truth, truth_cpu, num_truth); |
| | | } |
| | | cuda_pull_array(state.input, in_cpu, l.batch*l.inputs); |
| | | network_state cpu_state; |
| File was renamed from src/yoloplus.c |
| | |
| | | |
| | | char *voc_names[] = {"aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"}; |
| | | |
| | | void draw_yoloplus(image im, float *box, int side, int objectness, char *label, float thresh) |
| | | void draw_swag(image im, float *box, int side, int objectness, char *label, float thresh) |
| | | { |
| | | int classes = 20; |
| | | int elems = 4+classes+objectness; |
| | |
| | | show_image(im, label); |
| | | } |
| | | |
| | | void train_yoloplus(char *cfgfile, char *weightfile) |
| | | void train_swag(char *cfgfile, char *weightfile) |
| | | { |
| | | char *train_images = "/home/pjreddie/data/voc/test/train.txt"; |
| | | char *backup_directory = "/home/pjreddie/backup/"; |
| | |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | detection_layer layer = get_network_detection_layer(net); |
| | | int imgs = 128; |
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | int imgs = net.batch*net.subdivisions; |
| | | int i = *net.seen/imgs; |
| | | |
| | | char **paths; |
| | | list *plist = get_paths(train_images); |
| | | int N = plist->size; |
| | | paths = (char **)list_to_array(plist); |
| | | |
| | | if(i*imgs > N*120){ |
| | | net.layers[net.n-1].rescore = 1; |
| | | } |
| | | data train, buffer; |
| | | |
| | | int classes = layer.classes; |
| | | int background = layer.objectness; |
| | | int side = sqrt(get_detection_layer_locations(layer)); |
| | | |
| | | layer l = net.layers[net.n - 1]; |
| | | |
| | | int side = l.side; |
| | | int classes = l.classes; |
| | | |
| | | list *plist = get_paths(train_images); |
| | | int N = plist->size; |
| | | char **paths = (char **)list_to_array(plist); |
| | | |
| | | load_args args = {0}; |
| | | args.w = net.w; |
| | |
| | | args.m = plist->size; |
| | | args.classes = classes; |
| | | args.num_boxes = side; |
| | | args.background = background; |
| | | args.d = &buffer; |
| | | args.type = DETECTION_DATA; |
| | | args.type = REGION_DATA; |
| | | |
| | | pthread_t load_thread = load_data_in_thread(args); |
| | | clock_t time; |
| | | //while(i*imgs < N*120){ |
| | | while(get_current_batch(net) < net.max_batches){ |
| | | i += 1; |
| | | time=clock(); |
| | |
| | | load_thread = load_data_in_thread(args); |
| | | |
| | | printf("Loaded: %lf seconds\n", sec(clock()-time)); |
| | | |
| | | /* |
| | | image im = float_to_image(net.w, net.h, 3, train.X.vals[113]); |
| | | image copy = copy_image(im); |
| | | draw_swag(copy, train.y.vals[113], 7, "truth"); |
| | | cvWaitKey(0); |
| | | free_image(copy); |
| | | */ |
| | | |
| | | time=clock(); |
| | | float loss = train_network(net, train); |
| | | if (avg_loss < 0) avg_loss = loss; |
| | | avg_loss = avg_loss*.9 + loss*.1; |
| | | |
| | | printf("%d: %f, %f avg, %lf seconds, %f rate, %d images, epoch: %f\n", get_current_batch(net), loss, avg_loss, sec(clock()-time), get_current_rate(net), *net.seen, (float)*net.seen/N); |
| | | |
| | | if((i-1)*imgs <= 80*N && i*imgs > N*80){ |
| | | fprintf(stderr, "Second stage done.\n"); |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s_second_stage.weights", backup_directory, base); |
| | | save_weights(net, buff); |
| | | net.layers[net.n-1].joint = 1; |
| | | net.layers[net.n-1].objectness = 0; |
| | | background = 0; |
| | | |
| | | pthread_join(load_thread, 0); |
| | | free_data(buffer); |
| | | args.background = background; |
| | | load_thread = load_data_in_thread(args); |
| | | } |
| | | |
| | | if((i-1)*imgs <= 120*N && i*imgs > N*120){ |
| | | fprintf(stderr, "Third stage done.\n"); |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s_final.weights", backup_directory, base); |
| | | net.layers[net.n-1].rescore = 1; |
| | | save_weights(net, buff); |
| | | } |
| | | |
| | | printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs); |
| | | if(i%1000==0){ |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i); |
| | |
| | | free_data(train); |
| | | } |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s_rescore.weights", backup_directory, base); |
| | | sprintf(buff, "%s/%s_final.weights", backup_directory, base); |
| | | save_weights(net, buff); |
| | | } |
| | | |
| | | void convert_yoloplus_detections(float *predictions, int classes, int objectness, int background, int num_boxes, int w, int h, float thresh, float **probs, box *boxes) |
| | | void convert_swag_detections(float *predictions, int classes, int num, int square, int side, int w, int h, float thresh, float **probs, box *boxes) |
| | | { |
| | | int i,j; |
| | | int per_box = 4+classes+(background || objectness); |
| | | for (i = 0; i < num_boxes*num_boxes; ++i){ |
| | | float scale = 1; |
| | | if(objectness) scale = 1-predictions[i*per_box]; |
| | | int offset = i*per_box+(background||objectness); |
| | | int i,j,n; |
| | | int per_cell = 5*num+classes; |
| | | for (i = 0; i < side*side; ++i){ |
| | | int row = i / side; |
| | | int col = i % side; |
| | | for(n = 0; n < num; ++n){ |
| | | int offset = i*per_cell + 5*n; |
| | | float scale = predictions[offset]; |
| | | int index = i*num + n; |
| | | boxes[index].x = (predictions[offset + 1] + col) / side * w; |
| | | boxes[index].y = (predictions[offset + 2] + row) / side * h; |
| | | boxes[index].w = pow(predictions[offset + 3], (square?2:1)) * w; |
| | | boxes[index].h = pow(predictions[offset + 4], (square?2:1)) * h; |
| | | for(j = 0; j < classes; ++j){ |
| | | offset = i*per_cell + 5*num; |
| | | float prob = scale*predictions[offset+j]; |
| | | probs[i][j] = (prob > thresh) ? prob : 0; |
| | | probs[index][j] = (prob > thresh) ? prob : 0; |
| | | } |
| | | int row = i / num_boxes; |
| | | int col = i % num_boxes; |
| | | offset += classes; |
| | | boxes[i].x = (predictions[offset + 0] + col) / num_boxes * w; |
| | | boxes[i].y = (predictions[offset + 1] + row) / num_boxes * h; |
| | | boxes[i].w = pow(predictions[offset + 2], 2) * w; |
| | | boxes[i].h = pow(predictions[offset + 3], 2) * h; |
| | | } |
| | | } |
| | | } |
| | | |
| | | void print_yoloplus_detections(FILE **fps, char *id, box *boxes, float **probs, int num_boxes, int classes, int w, int h) |
| | | void print_swag_detections(FILE **fps, char *id, box *boxes, float **probs, int total, int classes, int w, int h) |
| | | { |
| | | int i, j; |
| | | for(i = 0; i < num_boxes*num_boxes; ++i){ |
| | | for(i = 0; i < total; ++i){ |
| | | float xmin = boxes[i].x - boxes[i].w/2.; |
| | | float xmax = boxes[i].x + boxes[i].w/2.; |
| | | float ymin = boxes[i].y - boxes[i].h/2.; |
| | |
| | | } |
| | | } |
| | | |
| | | void validate_yoloplus(char *cfgfile, char *weightfile) |
| | | void validate_swag(char *cfgfile, char *weightfile) |
| | | { |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | set_batch_network(&net, 1); |
| | | detection_layer layer = get_network_detection_layer(net); |
| | | fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | srand(time(0)); |
| | | |
| | |
| | | list *plist = get_paths("/home/pjreddie/data/voc/test/2007_test.txt"); |
| | | char **paths = (char **)list_to_array(plist); |
| | | |
| | | int classes = layer.classes; |
| | | int objectness = layer.objectness; |
| | | int background = layer.background; |
| | | int num_boxes = sqrt(get_detection_layer_locations(layer)); |
| | | layer l = net.layers[net.n-1]; |
| | | int classes = l.classes; |
| | | int square = l.sqrt; |
| | | int side = l.side; |
| | | |
| | | int j; |
| | | FILE **fps = calloc(classes, sizeof(FILE *)); |
| | |
| | | snprintf(buff, 1024, "%s%s.txt", base, voc_names[j]); |
| | | fps[j] = fopen(buff, "w"); |
| | | } |
| | | box *boxes = calloc(num_boxes*num_boxes, sizeof(box)); |
| | | float **probs = calloc(num_boxes*num_boxes, sizeof(float *)); |
| | | for(j = 0; j < num_boxes*num_boxes; ++j) probs[j] = calloc(classes, sizeof(float *)); |
| | | box *boxes = calloc(side*side*l.n, sizeof(box)); |
| | | float **probs = calloc(side*side*l.n, sizeof(float *)); |
| | | for(j = 0; j < side*side*l.n; ++j) probs[j] = calloc(classes, sizeof(float *)); |
| | | |
| | | int m = plist->size; |
| | | int i=0; |
| | |
| | | float *predictions = network_predict(net, X); |
| | | int w = val[t].w; |
| | | int h = val[t].h; |
| | | convert_yoloplus_detections(predictions, classes, objectness, background, num_boxes, w, h, thresh, probs, boxes); |
| | | if (nms) do_nms(boxes, probs, num_boxes*num_boxes, classes, iou_thresh); |
| | | print_yoloplus_detections(fps, id, boxes, probs, num_boxes, classes, w, h); |
| | | convert_swag_detections(predictions, classes, l.n, square, side, w, h, thresh, probs, boxes); |
| | | if (nms) do_nms(boxes, probs, side*side*l.n, classes, iou_thresh); |
| | | print_swag_detections(fps, id, boxes, probs, side*side*l.n, classes, w, h); |
| | | free(id); |
| | | free_image(val[t]); |
| | | free_image(val_resized[t]); |
| | |
| | | fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start)); |
| | | } |
| | | |
| | | void test_yoloplus(char *cfgfile, char *weightfile, char *filename, float thresh) |
| | | void test_swag(char *cfgfile, char *weightfile, char *filename, float thresh) |
| | | { |
| | | |
| | | network net = parse_network_cfg(cfgfile); |
| | |
| | | time=clock(); |
| | | float *predictions = network_predict(net, X); |
| | | printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time)); |
| | | draw_yoloplus(im, predictions, 7, layer.objectness, "predictions", thresh); |
| | | draw_swag(im, predictions, 7, layer.objectness, "predictions", thresh); |
| | | free_image(im); |
| | | free_image(sized); |
| | | #ifdef OPENCV |
| | |
| | | } |
| | | } |
| | | |
| | | void run_yoloplus(int argc, char **argv) |
| | | void run_swag(int argc, char **argv) |
| | | { |
| | | float thresh = find_float_arg(argc, argv, "-thresh", .2); |
| | | if(argc < 4){ |
| | |
| | | char *cfg = argv[3]; |
| | | char *weights = (argc > 4) ? argv[4] : 0; |
| | | char *filename = (argc > 5) ? argv[5]: 0; |
| | | if(0==strcmp(argv[2], "test")) test_yoloplus(cfg, weights, filename, thresh); |
| | | else if(0==strcmp(argv[2], "train")) train_yoloplus(cfg, weights); |
| | | else if(0==strcmp(argv[2], "valid")) validate_yoloplus(cfg, weights); |
| | | if(0==strcmp(argv[2], "test")) test_swag(cfg, weights, filename, thresh); |
| | | else if(0==strcmp(argv[2], "train")) train_swag(cfg, weights); |
| | | else if(0==strcmp(argv[2], "valid")) validate_swag(cfg, weights); |
| | | } |