Joseph Redmon
2015-03-12 dcb000b553d051429a49c8729dc5b1af632e8532
refactoring and added DARK ZONE
34 files modified
1 files added
2 files deleted
1508 ■■■■■ changed files
src/captcha.c 2 ●●● patch | view | raw | blame | history
src/connected_layer.c 80 ●●●● patch | view | raw | blame | history
src/connected_layer.h 20 ●●●●● patch | view | raw | blame | history
src/convolutional_kernels.cu 33 ●●●●● patch | view | raw | blame | history
src/convolutional_layer.c 34 ●●●●● patch | view | raw | blame | history
src/convolutional_layer.h 19 ●●●●● patch | view | raw | blame | history
src/cost_layer.c 36 ●●●●● patch | view | raw | blame | history
src/cost_layer.h 9 ●●●●● patch | view | raw | blame | history
src/crop_layer.c 6 ●●●● patch | view | raw | blame | history
src/crop_layer.h 5 ●●●●● patch | view | raw | blame | history
src/crop_layer_kernels.cu 6 ●●●● patch | view | raw | blame | history
src/data.c 86 ●●●● patch | view | raw | blame | history
src/data.h 4 ●●●● patch | view | raw | blame | history
src/deconvolutional_kernels.cu 26 ●●●● patch | view | raw | blame | history
src/deconvolutional_layer.c 32 ●●●●● patch | view | raw | blame | history
src/deconvolutional_layer.h 19 ●●●●● patch | view | raw | blame | history
src/detection.c 37 ●●●●● patch | view | raw | blame | history
src/detection_layer.c 91 ●●●● patch | view | raw | blame | history
src/detection_layer.h 10 ●●●●● patch | view | raw | blame | history
src/dropout_layer.c 21 ●●●●● patch | view | raw | blame | history
src/dropout_layer.h 11 ●●●● patch | view | raw | blame | history
src/dropout_layer_kernels.cu 18 ●●●● patch | view | raw | blame | history
src/freeweight_layer.c 25 ●●●●● patch | view | raw | blame | history
src/freeweight_layer.h 14 ●●●●● patch | view | raw | blame | history
src/maxpool_layer.c 10 ●●●● patch | view | raw | blame | history
src/maxpool_layer.h 9 ●●●●● patch | view | raw | blame | history
src/maxpool_layer_kernels.cu 8 ●●●● patch | view | raw | blame | history
src/network.c 191 ●●●●● patch | view | raw | blame | history
src/network.h 12 ●●●●● patch | view | raw | blame | history
src/network_kernels.cu 133 ●●●●● patch | view | raw | blame | history
src/normalization_layer.c 13 ●●●● patch | view | raw | blame | history
src/normalization_layer.h 5 ●●●●● patch | view | raw | blame | history
src/params.h 12 ●●●●● patch | view | raw | blame | history
src/parser.c 436 ●●●●● patch | view | raw | blame | history
src/softmax_layer.c 10 ●●●● patch | view | raw | blame | history
src/softmax_layer.h 11 ●●●● patch | view | raw | blame | history
src/softmax_layer_kernels.cu 14 ●●●● patch | view | raw | blame | history
src/captcha.c
@@ -16,7 +16,7 @@
    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
    int imgs = 1024;
    int i = net.seen/imgs;
    list *plist = get_paths("/data/captcha/train.list");
    list *plist = get_paths("/data/captcha/train.base");
    char **paths = (char **)list_to_array(plist);
    printf("%d\n", plist->size);
    clock_t time;
src/connected_layer.c
@@ -9,15 +9,11 @@
#include <stdlib.h>
#include <string.h>
connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation, float learning_rate, float momentum, float decay)
connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation)
{
    int i;
    connected_layer *layer = calloc(1, sizeof(connected_layer));
    layer->learning_rate = learning_rate;
    layer->momentum = momentum;
    layer->decay = decay;
    layer->inputs = inputs;
    layer->outputs = outputs;
    layer->batch=batch;
@@ -59,41 +55,17 @@
    return layer;
}
void secret_update_connected_layer(connected_layer *layer)
void update_connected_layer(connected_layer layer, float learning_rate, float momentum, float decay)
{
    int n = layer->outputs*layer->inputs;
    float dot = dot_cpu(n, layer->weight_updates, 1, layer->weight_prev, 1);
    float mag = sqrt(dot_cpu(n, layer->weight_updates, 1, layer->weight_updates, 1))
                * sqrt(dot_cpu(n, layer->weight_prev, 1, layer->weight_prev, 1));
    float cos = dot/mag;
    if(cos > .3) layer->learning_rate *= 1.1;
    else if (cos < -.3) layer-> learning_rate /= 1.1;
    axpy_cpu(layer.outputs, learning_rate, layer.bias_updates, 1, layer.biases, 1);
    scal_cpu(layer.outputs, momentum, layer.bias_updates, 1);
    scal_cpu(n, layer->momentum, layer->weight_prev, 1);
    axpy_cpu(n, 1, layer->weight_updates, 1, layer->weight_prev, 1);
    scal_cpu(n, 0, layer->weight_updates, 1);
    scal_cpu(layer->outputs, layer->momentum, layer->bias_prev, 1);
    axpy_cpu(layer->outputs, 1, layer->bias_updates, 1, layer->bias_prev, 1);
    scal_cpu(layer->outputs, 0, layer->bias_updates, 1);
    axpy_cpu(layer->outputs, layer->learning_rate, layer->bias_prev, 1, layer->biases, 1);
    axpy_cpu(layer->inputs*layer->outputs, -layer->decay, layer->weights, 1, layer->weight_prev, 1);
    axpy_cpu(layer->inputs*layer->outputs, layer->learning_rate, layer->weight_prev, 1, layer->weights, 1);
    axpy_cpu(layer.inputs*layer.outputs, -decay, layer.weights, 1, layer.weight_updates, 1);
    axpy_cpu(layer.inputs*layer.outputs, learning_rate, layer.weight_updates, 1, layer.weights, 1);
    scal_cpu(layer.inputs*layer.outputs, momentum, layer.weight_updates, 1);
}
void update_connected_layer(connected_layer layer)
{
    axpy_cpu(layer.outputs, layer.learning_rate, layer.bias_updates, 1, layer.biases, 1);
    scal_cpu(layer.outputs, layer.momentum, layer.bias_updates, 1);
    axpy_cpu(layer.inputs*layer.outputs, -layer.decay, layer.weights, 1, layer.weight_updates, 1);
    axpy_cpu(layer.inputs*layer.outputs, layer.learning_rate, layer.weight_updates, 1, layer.weights, 1);
    scal_cpu(layer.inputs*layer.outputs, layer.momentum, layer.weight_updates, 1);
}
void forward_connected_layer(connected_layer layer, float *input)
void forward_connected_layer(connected_layer layer, network_state state)
{
    int i;
    for(i = 0; i < layer.batch; ++i){
@@ -102,14 +74,14 @@
    int m = layer.batch;
    int k = layer.inputs;
    int n = layer.outputs;
    float *a = input;
    float *a = state.input;
    float *b = layer.weights;
    float *c = layer.output;
    gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
    activate_array(layer.output, layer.outputs*layer.batch, layer.activation);
}
void backward_connected_layer(connected_layer layer, float *input, float *delta)
void backward_connected_layer(connected_layer layer, network_state state)
{
    int i;
    float alpha = 1./layer.batch;
@@ -120,7 +92,7 @@
    int m = layer.inputs;
    int k = layer.batch;
    int n = layer.outputs;
    float *a = input;
    float *a = state.input;
    float *b = layer.delta;
    float *c = layer.weight_updates;
    gemm(1,0,m,n,k,alpha,a,m,b,n,1,c,n);
@@ -131,7 +103,7 @@
    a = layer.delta;
    b = layer.weights;
    c = delta;
    c = state.delta;
    if(c) gemm(0,1,m,n,k,1,a,k,b,k,0,c,n);
}
@@ -154,23 +126,17 @@
    cuda_push_array(layer.bias_updates_gpu, layer.bias_updates, layer.outputs);
}
void update_connected_layer_gpu(connected_layer layer)
void update_connected_layer_gpu(connected_layer layer, float learning_rate, float momentum, float decay)
{
/*
    cuda_pull_array(layer.weights_gpu, layer.weights, layer.inputs*layer.outputs);
    cuda_pull_array(layer.weight_updates_gpu, layer.weight_updates, layer.inputs*layer.outputs);
    printf("Weights: %f updates: %f\n", mag_array(layer.weights, layer.inputs*layer.outputs), layer.learning_rate*mag_array(layer.weight_updates, layer.inputs*layer.outputs));
*/
    axpy_ongpu(layer.outputs, learning_rate, layer.bias_updates_gpu, 1, layer.biases_gpu, 1);
    scal_ongpu(layer.outputs, momentum, layer.bias_updates_gpu, 1);
    axpy_ongpu(layer.outputs, layer.learning_rate, layer.bias_updates_gpu, 1, layer.biases_gpu, 1);
    scal_ongpu(layer.outputs, layer.momentum, layer.bias_updates_gpu, 1);
    axpy_ongpu(layer.inputs*layer.outputs, -layer.decay, layer.weights_gpu, 1, layer.weight_updates_gpu, 1);
    axpy_ongpu(layer.inputs*layer.outputs, layer.learning_rate, layer.weight_updates_gpu, 1, layer.weights_gpu, 1);
    scal_ongpu(layer.inputs*layer.outputs, layer.momentum, layer.weight_updates_gpu, 1);
    axpy_ongpu(layer.inputs*layer.outputs, -decay, layer.weights_gpu, 1, layer.weight_updates_gpu, 1);
    axpy_ongpu(layer.inputs*layer.outputs, learning_rate, layer.weight_updates_gpu, 1, layer.weights_gpu, 1);
    scal_ongpu(layer.inputs*layer.outputs, momentum, layer.weight_updates_gpu, 1);
}
void forward_connected_layer_gpu(connected_layer layer, float * input)
void forward_connected_layer_gpu(connected_layer layer, network_state state)
{
    int i;
    for(i = 0; i < layer.batch; ++i){
@@ -179,14 +145,14 @@
    int m = layer.batch;
    int k = layer.inputs;
    int n = layer.outputs;
    float * a = input;
    float * a = state.input;
    float * b = layer.weights_gpu;
    float * c = layer.output_gpu;
    gemm_ongpu(0,0,m,n,k,1,a,k,b,n,1,c,n);
    activate_array_ongpu(layer.output_gpu, layer.outputs*layer.batch, layer.activation);
}
void backward_connected_layer_gpu(connected_layer layer, float * input, float * delta)
void backward_connected_layer_gpu(connected_layer layer, network_state state)
{
    float alpha = 1./layer.batch;
    int i;
@@ -197,7 +163,7 @@
    int m = layer.inputs;
    int k = layer.batch;
    int n = layer.outputs;
    float * a = input;
    float * a = state.input;
    float * b = layer.delta_gpu;
    float * c = layer.weight_updates_gpu;
    gemm_ongpu(1,0,m,n,k,alpha,a,m,b,n,1,c,n);
@@ -208,7 +174,7 @@
    a = layer.delta_gpu;
    b = layer.weights_gpu;
    c = delta;
    c = state.delta;
    if(c) gemm_ongpu(0,1,m,n,k,1,a,k,b,k,0,c,n);
}
src/connected_layer.h
@@ -2,12 +2,9 @@
#define CONNECTED_LAYER_H
#include "activations.h"
#include "params.h"
typedef struct{
    float learning_rate;
    float momentum;
    float decay;
    int batch;
    int inputs;
    int outputs;
@@ -37,17 +34,16 @@
} connected_layer;
void secret_update_connected_layer(connected_layer *layer);
connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation, float learning_rate, float momentum, float decay);
connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation);
void forward_connected_layer(connected_layer layer, float *input);
void backward_connected_layer(connected_layer layer, float *input, float *delta);
void update_connected_layer(connected_layer layer);
void forward_connected_layer(connected_layer layer, network_state state);
void backward_connected_layer(connected_layer layer, network_state state);
void update_connected_layer(connected_layer layer, float learning_rate, float momentum, float decay);
#ifdef GPU
void forward_connected_layer_gpu(connected_layer layer, float * input);
void backward_connected_layer_gpu(connected_layer layer, float * input, float * delta);
void update_connected_layer_gpu(connected_layer layer);
void forward_connected_layer_gpu(connected_layer layer, network_state state);
void backward_connected_layer_gpu(connected_layer layer, network_state state);
void update_connected_layer_gpu(connected_layer layer, float learning_rate, float momentum, float decay);
void push_connected_layer(connected_layer layer);
void pull_connected_layer(connected_layer layer);
#endif
src/convolutional_kernels.cu
@@ -54,7 +54,7 @@
    check_error(cudaPeekAtLastError());
}
extern "C" void forward_convolutional_layer_gpu(convolutional_layer layer, float *in)
extern "C" void forward_convolutional_layer_gpu(convolutional_layer layer, network_state state)
{
    int i;
    int m = layer.n;
@@ -65,7 +65,7 @@
    bias_output_gpu(layer.output_gpu, layer.biases_gpu, layer.batch, layer.n, n);
    for(i = 0; i < layer.batch; ++i){
        im2col_ongpu(in + i*layer.c*layer.h*layer.w, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, layer.col_image_gpu);
        im2col_ongpu(state.input + i*layer.c*layer.h*layer.w, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, layer.col_image_gpu);
        float * a = layer.filters_gpu;
        float * b = layer.col_image_gpu;
        float * c = layer.output_gpu;
@@ -74,7 +74,7 @@
    activate_array_ongpu(layer.output_gpu, m*n*layer.batch, layer.activation);
}
extern "C" void backward_convolutional_layer_gpu(convolutional_layer layer, float *in, float *delta_gpu)
extern "C" void backward_convolutional_layer_gpu(convolutional_layer layer, network_state state)
{
    float alpha = 1./layer.batch;
    int i;
@@ -86,17 +86,17 @@
    gradient_array_ongpu(layer.output_gpu, m*k*layer.batch, layer.activation, layer.delta_gpu);
    backward_bias_gpu(layer.bias_updates_gpu, layer.delta_gpu, layer.batch, layer.n, k);
    if(delta_gpu) scal_ongpu(layer.batch*layer.h*layer.w*layer.c, 0, delta_gpu, 1);
    if(state.delta) scal_ongpu(layer.batch*layer.h*layer.w*layer.c, 0, state.delta, 1);
    for(i = 0; i < layer.batch; ++i){
        float * a = layer.delta_gpu;
        float * b = layer.col_image_gpu;
        float * c = layer.filter_updates_gpu;
        im2col_ongpu(in + i*layer.c*layer.h*layer.w, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, layer.col_image_gpu);
        im2col_ongpu(state.input + i*layer.c*layer.h*layer.w, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, layer.col_image_gpu);
        gemm_ongpu(0,1,m,n,k,alpha,a + i*m*k,k,b,k,1,c,n);
        if(delta_gpu){
        if(state.delta){
            float * a = layer.filters_gpu;
            float * b = layer.delta_gpu;
@@ -104,7 +104,7 @@
            gemm_ongpu(1,0,n,k,m,1,a,n,b + i*k*m,k,0,c,k);
            col2im_ongpu(layer.col_image_gpu, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, delta_gpu + i*layer.c*layer.h*layer.w);
            col2im_ongpu(layer.col_image_gpu, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, state.delta + i*layer.c*layer.h*layer.w);
        }
    }
}
@@ -125,22 +125,15 @@
    cuda_push_array(layer.bias_updates_gpu, layer.bias_updates, layer.n);
}
extern "C" void update_convolutional_layer_gpu(convolutional_layer layer)
extern "C" void update_convolutional_layer_gpu(convolutional_layer layer, float learning_rate, float momentum, float decay)
{
    int size = layer.size*layer.size*layer.c*layer.n;
/*
    cuda_pull_array(layer.filter_updates_gpu, layer.filter_updates, size);
    cuda_pull_array(layer.filters_gpu, layer.filters, size);
    printf("Filter: %f updates: %f\n", mag_array(layer.filters, size), layer.learning_rate*mag_array(layer.filter_updates, size));
    */
    axpy_ongpu(layer.n, learning_rate, layer.bias_updates_gpu, 1, layer.biases_gpu, 1);
    scal_ongpu(layer.n, momentum, layer.bias_updates_gpu, 1);
    axpy_ongpu(layer.n, layer.learning_rate, layer.bias_updates_gpu, 1, layer.biases_gpu, 1);
    scal_ongpu(layer.n,layer.momentum, layer.bias_updates_gpu, 1);
    axpy_ongpu(size, -layer.decay, layer.filters_gpu, 1, layer.filter_updates_gpu, 1);
    axpy_ongpu(size, layer.learning_rate, layer.filter_updates_gpu, 1, layer.filters_gpu, 1);
    scal_ongpu(size, layer.momentum, layer.filter_updates_gpu, 1);
    //pull_convolutional_layer(layer);
    axpy_ongpu(size, -decay, layer.filters_gpu, 1, layer.filter_updates_gpu, 1);
    axpy_ongpu(size, learning_rate, layer.filter_updates_gpu, 1, layer.filters_gpu, 1);
    scal_ongpu(size, momentum, layer.filter_updates_gpu, 1);
}
src/convolutional_layer.c
@@ -41,15 +41,11 @@
    return float_to_image(h,w,c,layer.delta);
}
convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation, float learning_rate, float momentum, float decay)
convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation)
{
    int i;
    convolutional_layer *layer = calloc(1, sizeof(convolutional_layer));
    layer->learning_rate = learning_rate;
    layer->momentum = momentum;
    layer->decay = decay;
    layer->h = h;
    layer->w = w;
    layer->c = c;
@@ -143,7 +139,7 @@
}
void forward_convolutional_layer(const convolutional_layer layer, float *in)
void forward_convolutional_layer(const convolutional_layer layer, network_state state)
{
    int out_h = convolutional_out_height(layer);
    int out_w = convolutional_out_width(layer);
@@ -160,16 +156,16 @@
    float *c = layer.output;
    for(i = 0; i < layer.batch; ++i){
        im2col_cpu(in, layer.c, layer.h, layer.w,
        im2col_cpu(state.input, layer.c, layer.h, layer.w,
            layer.size, layer.stride, layer.pad, b);
        gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
        c += n*m;
        in += layer.c*layer.h*layer.w;
        state.input += layer.c*layer.h*layer.w;
    }
    activate_array(layer.output, m*n*layer.batch, layer.activation);
}
void backward_convolutional_layer(convolutional_layer layer, float *in, float *delta)
void backward_convolutional_layer(convolutional_layer layer, network_state state)
{
    float alpha = 1./layer.batch;
    int i;
@@ -181,40 +177,40 @@
    gradient_array(layer.output, m*k*layer.batch, layer.activation, layer.delta);
    backward_bias(layer.bias_updates, layer.delta, layer.batch, layer.n, k);
    if(delta) memset(delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
    if(state.delta) memset(state.delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
    for(i = 0; i < layer.batch; ++i){
        float *a = layer.delta + i*m*k;
        float *b = layer.col_image;
        float *c = layer.filter_updates;
        float *im = in+i*layer.c*layer.h*layer.w;
        float *im = state.input+i*layer.c*layer.h*layer.w;
        im2col_cpu(im, layer.c, layer.h, layer.w, 
                layer.size, layer.stride, layer.pad, b);
        gemm(0,1,m,n,k,alpha,a,k,b,k,1,c,n);
        if(delta){
        if(state.delta){
            a = layer.filters;
            b = layer.delta + i*m*k;
            c = layer.col_image;
            gemm(1,0,n,k,m,1,a,n,b,k,0,c,k);
            col2im_cpu(layer.col_image, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, delta+i*layer.c*layer.h*layer.w);
            col2im_cpu(layer.col_image, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, state.delta+i*layer.c*layer.h*layer.w);
        }
    }
}
void update_convolutional_layer(convolutional_layer layer)
void update_convolutional_layer(convolutional_layer layer, float learning_rate, float momentum, float decay)
{
    int size = layer.size*layer.size*layer.c*layer.n;
    axpy_cpu(layer.n, layer.learning_rate, layer.bias_updates, 1, layer.biases, 1);
    scal_cpu(layer.n, layer.momentum, layer.bias_updates, 1);
    axpy_cpu(layer.n, learning_rate, layer.bias_updates, 1, layer.biases, 1);
    scal_cpu(layer.n, momentum, layer.bias_updates, 1);
    axpy_cpu(size, -layer.decay, layer.filters, 1, layer.filter_updates, 1);
    axpy_cpu(size, layer.learning_rate, layer.filter_updates, 1, layer.filters, 1);
    scal_cpu(size, layer.momentum, layer.filter_updates, 1);
    axpy_cpu(size, -decay, layer.filters, 1, layer.filter_updates, 1);
    axpy_cpu(size, learning_rate, layer.filter_updates, 1, layer.filters, 1);
    scal_cpu(size, momentum, layer.filter_updates, 1);
}
src/convolutional_layer.h
@@ -2,14 +2,11 @@
#define CONVOLUTIONAL_LAYER_H
#include "cuda.h"
#include "params.h"
#include "image.h"
#include "activations.h"
typedef struct {
    float learning_rate;
    float momentum;
    float decay;
    int batch;
    int h,w,c;
    int n;
@@ -42,9 +39,9 @@
} convolutional_layer;
#ifdef GPU
void forward_convolutional_layer_gpu(convolutional_layer layer, float * in);
void backward_convolutional_layer_gpu(convolutional_layer layer, float * in, float * delta_gpu);
void update_convolutional_layer_gpu(convolutional_layer layer);
void forward_convolutional_layer_gpu(convolutional_layer layer, network_state state);
void backward_convolutional_layer_gpu(convolutional_layer layer, network_state state);
void update_convolutional_layer_gpu(convolutional_layer layer, float learning_rate, float momentum, float decay);
void push_convolutional_layer(convolutional_layer layer);
void pull_convolutional_layer(convolutional_layer layer);
@@ -53,13 +50,13 @@
void backward_bias_gpu(float *bias_updates, float *delta, int batch, int n, int size);
#endif
convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation, float learning_rate, float momentum, float decay);
convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation);
void resize_convolutional_layer(convolutional_layer *layer, int h, int w);
void forward_convolutional_layer(const convolutional_layer layer, float *in);
void update_convolutional_layer(convolutional_layer layer);
void forward_convolutional_layer(const convolutional_layer layer, network_state state);
void update_convolutional_layer(convolutional_layer layer, float learning_rate, float momentum, float decay);
image *visualize_convolutional_layer(convolutional_layer layer, char *window, image *prev_filters);
void backward_convolutional_layer(convolutional_layer layer, float *in, float *delta);
void backward_convolutional_layer(convolutional_layer layer, network_state state);
void bias_output(float *output, float *biases, int batch, int n, int size);
void backward_bias(float *bias_updates, float *delta, int batch, int n, int size);
src/cost_layer.c
@@ -47,48 +47,36 @@
    cuda_push_array(layer.delta_gpu, layer.delta, layer.batch*layer.inputs);
}
void forward_cost_layer(cost_layer layer, float *input, float *truth)
void forward_cost_layer(cost_layer layer, network_state state)
{
    if (!truth) return;
    copy_cpu(layer.batch*layer.inputs, truth, 1, layer.delta, 1);
    axpy_cpu(layer.batch*layer.inputs, -1, input, 1, layer.delta, 1);
    if (!state.truth) return;
    copy_cpu(layer.batch*layer.inputs, state.truth, 1, layer.delta, 1);
    axpy_cpu(layer.batch*layer.inputs, -1, state.input, 1, layer.delta, 1);
    *(layer.output) = dot_cpu(layer.batch*layer.inputs, layer.delta, 1, layer.delta, 1);
    //printf("cost: %f\n", *layer.output);
}
void backward_cost_layer(const cost_layer layer, float *input, float *delta)
void backward_cost_layer(const cost_layer layer, network_state state)
{
    copy_cpu(layer.batch*layer.inputs, layer.delta, 1, delta, 1);
    copy_cpu(layer.batch*layer.inputs, layer.delta, 1, state.delta, 1);
}
#ifdef GPU
void forward_cost_layer_gpu(cost_layer layer, float * input, float * truth)
void forward_cost_layer_gpu(cost_layer layer, network_state state)
{
    if (!truth) return;
    if (!state.truth) return;
    
    /*
    float *in = calloc(layer.inputs*layer.batch, sizeof(float));
    float *t = calloc(layer.inputs*layer.batch, sizeof(float));
    cuda_pull_array(input, in, layer.batch*layer.inputs);
    cuda_pull_array(truth, t, layer.batch*layer.inputs);
    forward_cost_layer(layer, in, t);
    cuda_push_array(layer.delta_gpu, layer.delta, layer.batch*layer.inputs);
    free(in);
    free(t);
    */
    copy_ongpu(layer.batch*layer.inputs, truth, 1, layer.delta_gpu, 1);
    axpy_ongpu(layer.batch*layer.inputs, -1, input, 1, layer.delta_gpu, 1);
    copy_ongpu(layer.batch*layer.inputs, state.truth, 1, layer.delta_gpu, 1);
    axpy_ongpu(layer.batch*layer.inputs, -1, state.input, 1, layer.delta_gpu, 1);
    cuda_pull_array(layer.delta_gpu, layer.delta, layer.batch*layer.inputs);
    *(layer.output) = dot_cpu(layer.batch*layer.inputs, layer.delta, 1, layer.delta, 1);
    //printf("cost: %f\n", *layer.output);
}
void backward_cost_layer_gpu(const cost_layer layer, float * input, float * delta)
void backward_cost_layer_gpu(const cost_layer layer, network_state state)
{
    copy_ongpu(layer.batch*layer.inputs, layer.delta_gpu, 1, delta, 1);
    copy_ongpu(layer.batch*layer.inputs, layer.delta_gpu, 1, state.delta, 1);
}
#endif
src/cost_layer.h
@@ -1,5 +1,6 @@
#ifndef COST_LAYER_H
#define COST_LAYER_H
#include "params.h"
typedef enum{
    SSE
@@ -21,12 +22,12 @@
COST_TYPE get_cost_type(char *s);
char *get_cost_string(COST_TYPE a);
cost_layer *make_cost_layer(int batch, int inputs, COST_TYPE type);
void forward_cost_layer(const cost_layer layer, float *input, float *truth);
void backward_cost_layer(const cost_layer layer, float *input, float *delta);
void forward_cost_layer(const cost_layer layer, network_state state);
void backward_cost_layer(const cost_layer layer, network_state state);
#ifdef GPU
void forward_cost_layer_gpu(cost_layer layer, float * input, float * truth);
void backward_cost_layer_gpu(const cost_layer layer, float * input, float * delta);
void forward_cost_layer_gpu(cost_layer layer, network_state state);
void backward_cost_layer_gpu(const cost_layer layer, network_state state);
#endif
#endif
src/crop_layer.c
@@ -28,7 +28,7 @@
    return layer;
}
void forward_crop_layer(const crop_layer layer, int train, float *input)
void forward_crop_layer(const crop_layer layer, network_state state)
{
    int i,j,c,b,row,col;
    int index;
@@ -36,7 +36,7 @@
    int flip = (layer.flip && rand()%2);
    int dh = rand()%(layer.h - layer.crop_height + 1);
    int dw = rand()%(layer.w - layer.crop_width + 1);
    if(!train){
    if(!state.train){
        flip = 0;
        dh = (layer.h - layer.crop_height)/2;
        dw = (layer.w - layer.crop_width)/2;
@@ -52,7 +52,7 @@
                    }
                    row = i + dh;
                    index = col+layer.w*(row+layer.h*(c + layer.c*b)); 
                    layer.output[count++] = input[index];
                    layer.output[count++] = state.input[index];
                }
            }
        }
src/crop_layer.h
@@ -2,6 +2,7 @@
#define CROP_LAYER_H
#include "image.h"
#include "params.h"
typedef struct {
    int batch;
@@ -17,10 +18,10 @@
image get_crop_image(crop_layer layer);
crop_layer *make_crop_layer(int batch, int h, int w, int c, int crop_height, int crop_width, int flip);
void forward_crop_layer(const crop_layer layer, int train, float *input);
void forward_crop_layer(const crop_layer layer, network_state state);
#ifdef GPU
void forward_crop_layer_gpu(crop_layer layer, int train, float *input);
void forward_crop_layer_gpu(crop_layer layer, network_state state);
#endif
#endif
src/crop_layer_kernels.cu
@@ -24,12 +24,12 @@
    output[count] = input[index];
}
extern "C" void forward_crop_layer_gpu(crop_layer layer, int train, float *input)
extern "C" void forward_crop_layer_gpu(crop_layer layer, network_state state)
{
    int flip = (layer.flip && rand()%2);
    int dh = rand()%(layer.h - layer.crop_height + 1);
    int dw = rand()%(layer.w - layer.crop_width + 1);
    if(!train){
    if(!state.train){
        flip = 0;
        dh = (layer.h - layer.crop_height)/2;
        dw = (layer.w - layer.crop_width)/2;
@@ -39,7 +39,7 @@
    dim3 dimBlock(BLOCK, 1, 1);
    dim3 dimGrid((size-1)/BLOCK + 1, 1, 1);
    forward_crop_layer_kernel<<<cuda_gridsize(size), BLOCK>>>(input, size, layer.c, layer.h, layer.w,
    forward_crop_layer_kernel<<<cuda_gridsize(size), BLOCK>>>(state.input, size, layer.c, layer.h, layer.w,
                        layer.crop_height, layer.crop_width, dh, dw, flip, layer.output_gpu);
    check_error(cudaPeekAtLastError());
}
src/data.c
@@ -18,6 +18,7 @@
    int nw;
    int jitter;
    int classes;
    int background;
    data *d;
};
@@ -62,17 +63,62 @@
    return X;
}
void fill_truth_detection(char *path, float *truth, int classes, int height, int width, int num_height, int num_width, int dy, int dx, int jitter, int flip)
typedef struct box{
    int id;
    float x,y,w,h;
} box;
box *read_boxes(char *filename, int *n)
{
    box *boxes = calloc(1, sizeof(box));
    FILE *file = fopen(filename, "r");
    if(!file) file_error(filename);
    float x, y, h, w;
    int id;
    int count = 0;
    while(fscanf(file, "%d %f %f %f %f", &id, &x, &y, &w, &h) == 5){
        boxes = realloc(boxes, (count+1)*sizeof(box));
        boxes[count].id = id;
        boxes[count].x = x;
        boxes[count].y = y;
        boxes[count].h = h;
        boxes[count].w = w;
        ++count;
    }
    fclose(file);
    *n = count;
    return boxes;
}
void randomize_boxes(box *b, int n)
{
    int i;
    for(i = 0; i < n; ++i){
        box swap = b[i];
        int index = rand()%n;
        b[i] = b[index];
        b[index] = swap;
    }
}
void fill_truth_detection(char *path, float *truth, int classes, int height, int width, int num_height, int num_width, int dy, int dx, int jitter, int flip, int background)
{
    int box_height = height/num_height;
    int box_width = width/num_width;
    char *labelpath = find_replace(path, "VOC2012/JPEGImages", "labels");
    labelpath = find_replace(labelpath, ".jpg", ".txt");
    FILE *file = fopen(labelpath, "r");
    if(!file) file_error(labelpath);
    int count = 0;
    box *boxes = read_boxes(labelpath, &count);
    randomize_boxes(boxes, count);
    float x, y, h, w;
    int id;
    while(fscanf(file, "%d %f %f %f %f", &id, &x, &y, &w, &h) == 5){
    int i, j;
    for(i = 0; i < count; ++i){
        x = boxes[i].x;
        y = boxes[i].y;
        w = boxes[i].w;
        h = boxes[i].h;
        id = boxes[i].id;
        if(flip) x = 1-x;
        x *= width + jitter;
        y *= height + jitter;
@@ -88,23 +134,24 @@
        
        float dw = (x - i*box_width)/box_width;
        float dh = (y - j*box_height)/box_height;
        //printf("%d %d %d %f %f\n", id, i, j, dh, dw);
        int index = (i+j*num_width)*(4+classes);
        if(truth[index+classes]) continue;
        int index = (i+j*num_width)*(4+classes+background);
        if(truth[index+classes+background]) continue;
        truth[index+id] = 1;
        index += classes;
        index += classes+background;
        truth[index++] = dh;
        truth[index++] = dw;
        truth[index++] = h*(height+jitter)/height;
        truth[index++] = w*(width+jitter)/width;
    }
    int i, j;
    for(i = 0; i < num_height*num_width*(4+classes); i += 4+classes){
        int background = 1;
        for(j = i; j < i+classes; ++j) if (truth[j]) background = 0;
        truth[i+classes-1] = background;
    free(boxes);
    if(background){
        for(i = 0; i < num_height*num_width*(4+classes+background); i += 4+classes+background){
            int object = 0;
            for(j = i; j < i+classes; ++j) if (truth[j]) object = 1;
            truth[i+classes] = !object;
    }
    fclose(file);
    }
}
#define NUMCHARS 37
@@ -218,20 +265,20 @@
    }
}
data load_data_detection_jitter_random(int n, char **paths, int m, int classes, int h, int w, int nh, int nw, int jitter)
data load_data_detection_jitter_random(int n, char **paths, int m, int classes, int h, int w, int nh, int nw, int jitter, int background)
{
    char **random_paths = get_random_paths(paths, n, m);
    int i;
    data d;
    d.shallow = 0;
    d.X = load_image_paths(random_paths, n, h, w);
    int k = nh*nw*(4+classes);
    int k = nh*nw*(4+classes+background);
    d.y = make_matrix(n, k);
    for(i = 0; i < n; ++i){
        int dx = rand()%jitter;
        int dy = rand()%jitter;
        int flip = rand()%2;
        fill_truth_detection(random_paths[i], d.y.vals[i], classes, h-jitter, w-jitter, nh, nw, dy, dx, jitter, flip);
        fill_truth_detection(random_paths[i], d.y.vals[i], classes, h-jitter, w-jitter, nh, nw, dy, dx, jitter, flip, background);
        image a = float_to_image(h, w, 3, d.X.vals[i]);
        if(flip) flip_image(a);
        jitter_image(a,h-jitter,w-jitter,dy,dx);
@@ -245,14 +292,14 @@
{
    printf("Loading data: %d\n", rand());
    struct load_args a = *(struct load_args*)ptr;
    *a.d = load_data_detection_jitter_random(a.n, a.paths, a.m, a.classes, a.h, a.w, a.nh, a.nw, a.jitter);
    *a.d = load_data_detection_jitter_random(a.n, a.paths, a.m, a.classes, a.h, a.w, a.nh, a.nw, a.jitter, a.background);
    translate_data_rows(*a.d, -128);
    scale_data_rows(*a.d, 1./128);
    free(ptr);
    return 0;
}
pthread_t load_data_detection_thread(int n, char **paths, int m, int classes, int h, int w, int nh, int nw, int jitter, data *d)
pthread_t load_data_detection_thread(int n, char **paths, int m, int classes, int h, int w, int nh, int nw, int jitter, int background, data *d)
{
    pthread_t thread;
    struct load_args *args = calloc(1, sizeof(struct load_args));
@@ -265,6 +312,7 @@
    args->nw = nw;
    args->classes = classes;
    args->jitter = jitter;
    args->background = background;
    args->d = d;
    if(pthread_create(&thread, 0, load_detection_thread, args)) {
        error("Thread creation failed");
src/data.h
@@ -20,8 +20,8 @@
data load_data(char **paths, int n, int m, char **labels, int k, int h, int w);
pthread_t load_data_thread(char **paths, int n, int m, char **labels, int k, int h, int w, data *d);
pthread_t load_data_detection_thread(int n, char **paths, int m, int classes, int h, int w, int nh, int nw, int jitter, data *d);
data load_data_detection_jitter_random(int n, char **paths, int m, int classes, int h, int w, int nh, int nw, int jitter);
pthread_t load_data_detection_thread(int n, char **paths, int m, int classes, int h, int w, int nh, int nw, int jitter, int background, data *d);
data load_data_detection_jitter_random(int n, char **paths, int m, int classes, int h, int w, int nh, int nw, int jitter, int background);
data load_data_image_pathfile(char *filename, char **labels, int k, int h, int w);
data load_cifar10_data(char *filename);
src/deconvolutional_kernels.cu
@@ -9,7 +9,7 @@
#include "cuda.h"
}
extern "C" void forward_deconvolutional_layer_gpu(deconvolutional_layer layer, float *in)
extern "C" void forward_deconvolutional_layer_gpu(deconvolutional_layer layer, network_state state)
{
    int i;
    int out_h = deconvolutional_out_height(layer);
@@ -24,7 +24,7 @@
    for(i = 0; i < layer.batch; ++i){
        float *a = layer.filters_gpu;
        float *b = in + i*layer.c*layer.h*layer.w;
        float *b = state.input + i*layer.c*layer.h*layer.w;
        float *c = layer.col_image_gpu;
        gemm_ongpu(1,0,m,n,k,1,a,m,b,n,0,c,n);
@@ -34,7 +34,7 @@
    activate_array(layer.output_gpu, layer.batch*layer.n*size, layer.activation);
}
extern "C" void backward_deconvolutional_layer_gpu(deconvolutional_layer layer, float *in, float *delta_gpu)
extern "C" void backward_deconvolutional_layer_gpu(deconvolutional_layer layer, network_state state)
{
    float alpha = 1./layer.batch;
    int out_h = deconvolutional_out_height(layer);
@@ -45,14 +45,14 @@
    gradient_array(layer.output_gpu, size*layer.n*layer.batch, layer.activation, layer.delta_gpu);
    backward_bias(layer.bias_updates_gpu, layer.delta, layer.batch, layer.n, size);
    if(delta_gpu) memset(delta_gpu, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
    if(state.delta) memset(state.delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
    for(i = 0; i < layer.batch; ++i){
        int m = layer.c;
        int n = layer.size*layer.size*layer.n;
        int k = layer.h*layer.w;
        float *a = in + i*m*n;
        float *a = state.input + i*m*n;
        float *b = layer.col_image_gpu;
        float *c = layer.filter_updates_gpu;
@@ -60,14 +60,14 @@
                layer.size, layer.stride, 0, b);
        gemm_ongpu(0,1,m,n,k,alpha,a,k,b,k,1,c,n);
        if(delta_gpu){
        if(state.delta){
            int m = layer.c;
            int n = layer.h*layer.w;
            int k = layer.size*layer.size*layer.n;
            float *a = layer.filters_gpu;
            float *b = layer.col_image_gpu;
            float *c = delta_gpu + i*n*m;
            float *c = state.delta + i*n*m;
            gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
        }
@@ -90,15 +90,15 @@
    cuda_push_array(layer.bias_updates_gpu, layer.bias_updates, layer.n);
}
extern "C" void update_deconvolutional_layer_gpu(deconvolutional_layer layer)
extern "C" void update_deconvolutional_layer_gpu(deconvolutional_layer layer, float learning_rate, float momentum, float decay)
{
    int size = layer.size*layer.size*layer.c*layer.n;
    axpy_ongpu(layer.n, layer.learning_rate, layer.bias_updates_gpu, 1, layer.biases_gpu, 1);
    scal_ongpu(layer.n,layer.momentum, layer.bias_updates_gpu, 1);
    axpy_ongpu(layer.n, learning_rate, layer.bias_updates_gpu, 1, layer.biases_gpu, 1);
    scal_ongpu(layer.n, momentum, layer.bias_updates_gpu, 1);
    axpy_ongpu(size, -layer.decay, layer.filters_gpu, 1, layer.filter_updates_gpu, 1);
    axpy_ongpu(size, layer.learning_rate, layer.filter_updates_gpu, 1, layer.filters_gpu, 1);
    scal_ongpu(size, layer.momentum, layer.filter_updates_gpu, 1);
    axpy_ongpu(size, -decay, layer.filters_gpu, 1, layer.filter_updates_gpu, 1);
    axpy_ongpu(size, learning_rate, layer.filter_updates_gpu, 1, layer.filters_gpu, 1);
    scal_ongpu(size, momentum, layer.filter_updates_gpu, 1);
}
src/deconvolutional_layer.c
@@ -43,15 +43,11 @@
    return float_to_image(h,w,c,layer.delta);
}
deconvolutional_layer *make_deconvolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, ACTIVATION activation, float learning_rate, float momentum, float decay)
deconvolutional_layer *make_deconvolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, ACTIVATION activation)
{
    int i;
    deconvolutional_layer *layer = calloc(1, sizeof(deconvolutional_layer));
    layer->learning_rate = learning_rate;
    layer->momentum = momentum;
    layer->decay = decay;
    layer->h = h;
    layer->w = w;
    layer->c = c;
@@ -120,7 +116,7 @@
    #endif
}
void forward_deconvolutional_layer(const deconvolutional_layer layer, float *in)
void forward_deconvolutional_layer(const deconvolutional_layer layer, network_state state)
{
    int i;
    int out_h = deconvolutional_out_height(layer);
@@ -135,7 +131,7 @@
    for(i = 0; i < layer.batch; ++i){
        float *a = layer.filters;
        float *b = in + i*layer.c*layer.h*layer.w;
        float *b = state.input + i*layer.c*layer.h*layer.w;
        float *c = layer.col_image;
        gemm(1,0,m,n,k,1,a,m,b,n,0,c,n);
@@ -145,7 +141,7 @@
    activate_array(layer.output, layer.batch*layer.n*size, layer.activation);
}
void backward_deconvolutional_layer(deconvolutional_layer layer, float *in, float *delta)
void backward_deconvolutional_layer(deconvolutional_layer layer, network_state state)
{
    float alpha = 1./layer.batch;
    int out_h = deconvolutional_out_height(layer);
@@ -156,14 +152,14 @@
    gradient_array(layer.output, size*layer.n*layer.batch, layer.activation, layer.delta);
    backward_bias(layer.bias_updates, layer.delta, layer.batch, layer.n, size);
    if(delta) memset(delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
    if(state.delta) memset(state.delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
    for(i = 0; i < layer.batch; ++i){
        int m = layer.c;
        int n = layer.size*layer.size*layer.n;
        int k = layer.h*layer.w;
        float *a = in + i*m*n;
        float *a = state.input + i*m*n;
        float *b = layer.col_image;
        float *c = layer.filter_updates;
@@ -171,29 +167,29 @@
                layer.size, layer.stride, 0, b);
        gemm(0,1,m,n,k,alpha,a,k,b,k,1,c,n);
        if(delta){
        if(state.delta){
            int m = layer.c;
            int n = layer.h*layer.w;
            int k = layer.size*layer.size*layer.n;
            float *a = layer.filters;
            float *b = layer.col_image;
            float *c = delta + i*n*m;
            float *c = state.delta + i*n*m;
            gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
        }
    }
}
void update_deconvolutional_layer(deconvolutional_layer layer)
void update_deconvolutional_layer(deconvolutional_layer layer, float learning_rate, float momentum, float decay)
{
    int size = layer.size*layer.size*layer.c*layer.n;
    axpy_cpu(layer.n, layer.learning_rate, layer.bias_updates, 1, layer.biases, 1);
    scal_cpu(layer.n, layer.momentum, layer.bias_updates, 1);
    axpy_cpu(layer.n, learning_rate, layer.bias_updates, 1, layer.biases, 1);
    scal_cpu(layer.n, momentum, layer.bias_updates, 1);
    axpy_cpu(size, -layer.decay, layer.filters, 1, layer.filter_updates, 1);
    axpy_cpu(size, layer.learning_rate, layer.filter_updates, 1, layer.filters, 1);
    scal_cpu(size, layer.momentum, layer.filter_updates, 1);
    axpy_cpu(size, -decay, layer.filters, 1, layer.filter_updates, 1);
    axpy_cpu(size, learning_rate, layer.filter_updates, 1, layer.filters, 1);
    scal_cpu(size, momentum, layer.filter_updates, 1);
}
src/deconvolutional_layer.h
@@ -2,14 +2,11 @@
#define DECONVOLUTIONAL_LAYER_H
#include "cuda.h"
#include "params.h"
#include "image.h"
#include "activations.h"
typedef struct {
    float learning_rate;
    float momentum;
    float decay;
    int batch;
    int h,w,c;
    int n;
@@ -41,18 +38,18 @@
} deconvolutional_layer;
#ifdef GPU
void forward_deconvolutional_layer_gpu(deconvolutional_layer layer, float * in);
void backward_deconvolutional_layer_gpu(deconvolutional_layer layer, float * in, float * delta_gpu);
void update_deconvolutional_layer_gpu(deconvolutional_layer layer);
void forward_deconvolutional_layer_gpu(deconvolutional_layer layer, network_state state);
void backward_deconvolutional_layer_gpu(deconvolutional_layer layer, network_state state);
void update_deconvolutional_layer_gpu(deconvolutional_layer layer, float learning_rate, float momentum, float decay);
void push_deconvolutional_layer(deconvolutional_layer layer);
void pull_deconvolutional_layer(deconvolutional_layer layer);
#endif
deconvolutional_layer *make_deconvolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, ACTIVATION activation, float learning_rate, float momentum, float decay);
deconvolutional_layer *make_deconvolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, ACTIVATION activation);
void resize_deconvolutional_layer(deconvolutional_layer *layer, int h, int w);
void forward_deconvolutional_layer(const deconvolutional_layer layer, float *in);
void update_deconvolutional_layer(deconvolutional_layer layer);
void backward_deconvolutional_layer(deconvolutional_layer layer, float *in, float *delta);
void forward_deconvolutional_layer(const deconvolutional_layer layer, network_state state);
void update_deconvolutional_layer(deconvolutional_layer layer, float learning_rate, float momentum, float decay);
void backward_deconvolutional_layer(deconvolutional_layer layer, network_state state);
image get_deconvolutional_image(deconvolutional_layer layer);
image get_deconvolutional_delta(deconvolutional_layer layer);
src/detection.c
@@ -61,15 +61,16 @@
    data train, buffer;
    int im_dim = 512;
    int jitter = 64;
    int classes = 21;
    pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, im_dim, im_dim, 7, 7, jitter, &buffer);
    int classes = 20;
    int background = 1;
    pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, im_dim, im_dim, 7, 7, jitter, background, &buffer);
    clock_t time;
    while(1){
        i += 1;
        time=clock();
        pthread_join(load_thread, 0);
        train = buffer;
        load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, im_dim, im_dim, 7, 7, jitter, &buffer);
        load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, im_dim, im_dim, 7, 7, jitter, background, &buffer);
        /*
           image im = float_to_image(im_dim - jitter, im_dim-jitter, 3, train.X.vals[0]);
@@ -103,10 +104,12 @@
    srand(time(0));
    list *plist = get_paths("/home/pjreddie/data/voc/val.txt");
    //list *plist = get_paths("/home/pjreddie/data/voc/train.txt");
    char **paths = (char **)list_to_array(plist);
    int num_output = 1225;
    int im_size = 448;
    int classes = 21;
    int classes = 20;
    int background = 0;
    int num_output = 7*7*(4+classes+background);
    int m = plist->size;
    int i = 0;
@@ -130,26 +133,18 @@
        matrix pred = network_predict_data(net, val);
        int j, k, class;
        for(j = 0; j < pred.rows; ++j){
            for(k = 0; k < pred.cols; k += classes+4){
                /*
                   int z;
                   for(z = 0; z < 25; ++z) printf("%f, ", pred.vals[j][k+z]);
                   printf("\n");
                 */
                //if (pred.vals[j][k] > .001){
                for(class = 0; class < classes-1; ++class){
                    int index = (k)/(classes+4);
            for(k = 0; k < pred.cols; k += classes+4+background){
                for(class = 0; class < classes; ++class){
                    int index = (k)/(classes+4+background);
                    int r = index/7;
                    int c = index%7;
                    float y = (r + pred.vals[j][k+0+classes])/7.;
                    float x = (c + pred.vals[j][k+1+classes])/7.;
                    float h = pred.vals[j][k+2+classes];
                    float w = pred.vals[j][k+3+classes];
                    int ci = k+classes+background;
                    float y = (r + pred.vals[j][ci + 0])/7.;
                    float x = (c + pred.vals[j][ci + 1])/7.;
                    float h = pred.vals[j][ci + 2];
                    float w = pred.vals[j][ci + 3];
                    printf("%d %d %f %f %f %f %f\n", (i-1)*m/splits + j, class, pred.vals[j][k+class], y, x, h, w);
                }
                //}
            }
        }
src/detection_layer.c
@@ -39,28 +39,52 @@
    return layer;
}
void forward_detection_layer(const detection_layer layer, float *in, float *truth)
void forward_detection_layer(const detection_layer layer, network_state state)
{
    int in_i = 0;
    int out_i = 0;
    int locations = get_detection_layer_locations(layer);
    int i,j;
    for(i = 0; i < layer.batch*locations; ++i){
        int mask = (!truth || !truth[out_i + layer.classes - 1]);
        int mask = (!state.truth || state.truth[out_i + layer.classes + 2]);
        float scale = 1;
        if(layer.rescore) scale = in[in_i++];
        if(layer.rescore) scale = state.input[in_i++];
        for(j = 0; j < layer.classes; ++j){
            layer.output[out_i++] = scale*in[in_i++];
            layer.output[out_i++] = scale*state.input[in_i++];
        }
        if(!layer.rescore){
        softmax_array(layer.output + out_i - layer.classes, layer.classes, layer.output + out_i - layer.classes);
        activate_array(in+in_i, layer.coords, LOGISTIC);
            activate_array(state.input+in_i, layer.coords, LOGISTIC);
        }
        for(j = 0; j < layer.coords; ++j){
            layer.output[out_i++] = mask*in[in_i++];
            layer.output[out_i++] = mask*state.input[in_i++];
        }
    }
}
void backward_detection_layer(const detection_layer layer, float *in, float *delta)
void dark_zone(detection_layer layer, int index, network_state state)
{
    int size = layer.classes+layer.rescore+layer.coords;
    int location = (index%(7*7*size)) / size ;
    int r = location / 7;
    int c = location % 7;
    int class = index%size;
    if(layer.rescore) --class;
    int dr, dc;
    for(dr = -1; dr <= 1; ++dr){
        for(dc = -1; dc <= 1; ++dc){
            if(!(dr || dc)) continue;
            if((r + dr) > 6 || (r + dr) < 0) continue;
            if((c + dc) > 6 || (c + dc) < 0) continue;
            int di = (dr*7 + dc) * size;
            if(state.truth[index+di]) continue;
            layer.delta[index + di] = 0;
        }
    }
}
void backward_detection_layer(const detection_layer layer, network_state state)
{
    int locations = get_detection_layer_locations(layer);
    int i,j;
@@ -69,49 +93,68 @@
    for(i = 0; i < layer.batch*locations; ++i){
        float scale = 1;
        float latent_delta = 0;
        if(layer.rescore) scale = in[in_i++];
        if(layer.rescore) scale = state.input[in_i++];
        if(!layer.rescore){
            for(j = 0; j < layer.classes-1; ++j){
                if(state.truth[out_i + j]) dark_zone(layer, out_i+j, state);
            }
        }
        for(j = 0; j < layer.classes; ++j){
            latent_delta += in[in_i]*layer.delta[out_i];
            delta[in_i++] = scale*layer.delta[out_i++];
            latent_delta += state.input[in_i]*layer.delta[out_i];
            state.delta[in_i++] = scale*layer.delta[out_i++];
        }
        
        gradient_array(layer.output + out_i, layer.coords, LOGISTIC, layer.delta + out_i);
        if (!layer.rescore) gradient_array(layer.output + out_i, layer.coords, LOGISTIC, layer.delta + out_i);
        for(j = 0; j < layer.coords; ++j){
            delta[in_i++] = layer.delta[out_i++];
            state.delta[in_i++] = layer.delta[out_i++];
        }
        if(layer.rescore) delta[in_i-layer.coords-layer.classes-layer.rescore] = latent_delta;
        if(layer.rescore) state.delta[in_i-layer.coords-layer.classes-layer.rescore] = latent_delta;
    }
}
#ifdef GPU
void forward_detection_layer_gpu(const detection_layer layer, float *in, float *truth)
void forward_detection_layer_gpu(const detection_layer layer, network_state state)
{
    int outputs = get_detection_layer_output_size(layer);
    float *in_cpu = calloc(layer.batch*layer.inputs, sizeof(float));
    float *truth_cpu = 0;
    if(truth){
    if(state.truth){
        truth_cpu = calloc(layer.batch*outputs, sizeof(float));
        cuda_pull_array(truth, truth_cpu, layer.batch*outputs);
        cuda_pull_array(state.truth, truth_cpu, layer.batch*outputs);
    }
    cuda_pull_array(in, in_cpu, layer.batch*layer.inputs);
    forward_detection_layer(layer, in_cpu, truth_cpu);
    cuda_pull_array(state.input, in_cpu, layer.batch*layer.inputs);
    network_state cpu_state;
    cpu_state.train = state.train;
    cpu_state.truth = truth_cpu;
    cpu_state.input = in_cpu;
    forward_detection_layer(layer, cpu_state);
    cuda_push_array(layer.output_gpu, layer.output, layer.batch*outputs);
    free(in_cpu);
    if(truth_cpu) free(truth_cpu);
    free(cpu_state.input);
    if(cpu_state.truth) free(cpu_state.truth);
}
void backward_detection_layer_gpu(detection_layer layer, float *in, float *delta)
void backward_detection_layer_gpu(detection_layer layer, network_state state)
{
    int outputs = get_detection_layer_output_size(layer);
    float *in_cpu =    calloc(layer.batch*layer.inputs, sizeof(float));
    float *delta_cpu = calloc(layer.batch*layer.inputs, sizeof(float));
    float *truth_cpu = 0;
    if(state.truth){
        truth_cpu = calloc(layer.batch*outputs, sizeof(float));
        cuda_pull_array(state.truth, truth_cpu, layer.batch*outputs);
    }
    network_state cpu_state;
    cpu_state.train = state.train;
    cpu_state.input = in_cpu;
    cpu_state.truth = truth_cpu;
    cpu_state.delta = delta_cpu;
    cuda_pull_array(in, in_cpu, layer.batch*layer.inputs);
    cuda_pull_array(state.input, in_cpu, layer.batch*layer.inputs);
    cuda_pull_array(layer.delta_gpu, layer.delta, layer.batch*outputs);
    backward_detection_layer(layer, in_cpu, delta_cpu);
    cuda_push_array(delta, delta_cpu, layer.batch*layer.inputs);
    backward_detection_layer(layer, cpu_state);
    cuda_push_array(state.delta, delta_cpu, layer.batch*layer.inputs);
    free(in_cpu);
    free(delta_cpu);
src/detection_layer.h
@@ -1,6 +1,8 @@
#ifndef DETECTION_LAYER_H
#define DETECTION_LAYER_H
#include "params.h"
typedef struct {
    int batch;
    int inputs;
@@ -16,13 +18,13 @@
} detection_layer;
detection_layer *make_detection_layer(int batch, int inputs, int classes, int coords, int rescore);
void forward_detection_layer(const detection_layer layer, float *in, float *truth);
void backward_detection_layer(const detection_layer layer, float *in, float *delta);
void forward_detection_layer(const detection_layer layer, network_state state);
void backward_detection_layer(const detection_layer layer, network_state state);
int get_detection_layer_output_size(detection_layer layer);
#ifdef GPU
void forward_detection_layer_gpu(const detection_layer layer, float *in, float *truth);
void backward_detection_layer_gpu(detection_layer layer, float *in, float *delta);
void forward_detection_layer_gpu(const detection_layer layer, network_state state);
void backward_detection_layer_gpu(detection_layer layer, network_state state);
#endif
#endif
src/dropout_layer.c
@@ -1,4 +1,5 @@
#include "dropout_layer.h"
#include "params.h"
#include "utils.h"
#include "cuda.h"
#include <stdlib.h>
@@ -11,11 +12,9 @@
    layer->probability = probability;
    layer->inputs = inputs;
    layer->batch = batch;
    layer->output = calloc(inputs*batch, sizeof(float));
    layer->rand = calloc(inputs*batch, sizeof(float));
    layer->scale = 1./(1.-probability);
    #ifdef GPU
    layer->output_gpu = cuda_make_array(layer->output, inputs*batch);
    layer->rand_gpu = cuda_make_array(layer->rand, inputs*batch);
    #endif
    return layer;
@@ -23,36 +22,34 @@
void resize_dropout_layer(dropout_layer *layer, int inputs)
{
    layer->output = realloc(layer->output, layer->inputs*layer->batch*sizeof(float));
    layer->rand = realloc(layer->rand, layer->inputs*layer->batch*sizeof(float));
    #ifdef GPU
    cuda_free(layer->output_gpu);
    cuda_free(layer->rand_gpu);
    layer->output_gpu = cuda_make_array(layer->output, inputs*layer->batch);
    layer->rand_gpu = cuda_make_array(layer->rand, inputs*layer->batch);
    #endif
}
void forward_dropout_layer(dropout_layer layer, float *input)
void forward_dropout_layer(dropout_layer layer, network_state state)
{
    int i;
    if (!state.train) return;
    for(i = 0; i < layer.batch * layer.inputs; ++i){
        float r = rand_uniform();
        layer.rand[i] = r;
        if(r < layer.probability) layer.output[i] = 0;
        else layer.output[i] = input[i]*layer.scale;
        if(r < layer.probability) state.input[i] = 0;
        else state.input[i] *= layer.scale;
    }
}
void backward_dropout_layer(dropout_layer layer, float *delta)
void backward_dropout_layer(dropout_layer layer, network_state state)
{
    int i;
    if(!delta) return;
    if(!state.delta) return;
    for(i = 0; i < layer.batch * layer.inputs; ++i){
        float r = layer.rand[i];
        if(r < layer.probability) delta[i] = 0;
        else delta[i] *= layer.scale;
        if(r < layer.probability) state.delta[i] = 0;
        else state.delta[i] *= layer.scale;
    }
}
src/dropout_layer.h
@@ -1,5 +1,6 @@
#ifndef DROPOUT_LAYER_H
#define DROPOUT_LAYER_H
#include "params.h"
typedef struct{
    int batch;
@@ -7,22 +8,20 @@
    float probability;
    float scale;
    float *rand;
    float *output;
    #ifdef GPU
    float * rand_gpu;
    float * output_gpu;
    #endif
} dropout_layer;
dropout_layer *make_dropout_layer(int batch, int inputs, float probability);
void forward_dropout_layer(dropout_layer layer, float *input);
void backward_dropout_layer(dropout_layer layer, float *delta);
void forward_dropout_layer(dropout_layer layer, network_state state);
void backward_dropout_layer(dropout_layer layer, network_state state);
void resize_dropout_layer(dropout_layer *layer, int inputs);
#ifdef GPU
void forward_dropout_layer_gpu(dropout_layer layer, float * input);
void backward_dropout_layer_gpu(dropout_layer layer, float * delta);
void forward_dropout_layer_gpu(dropout_layer layer, network_state state);
void backward_dropout_layer_gpu(dropout_layer layer, network_state state);
#endif
#endif
src/dropout_layer_kernels.cu
@@ -2,32 +2,32 @@
#include "dropout_layer.h"
#include "cuda.h"
#include "utils.h"
#include "params.h"
}
__global__ void yoloswag420blazeit360noscope(float *input, int size, float *rand, float prob, float scale, float *output)
__global__ void yoloswag420blazeit360noscope(float *input, int size, float *rand, float prob, float scale)
{
    int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
    if(id < size) output[id] = (rand[id] < prob) ? 0 : input[id]*scale;
    if(id < size) input[id] = (rand[id] < prob) ? 0 : input[id]*scale;
}
extern "C" void forward_dropout_layer_gpu(dropout_layer layer, float * input)
extern "C" void forward_dropout_layer_gpu(dropout_layer layer, network_state state)
{
    if (!state.train) return;
    int j;
    int size = layer.inputs*layer.batch;
    for(j = 0; j < size; ++j) layer.rand[j] = rand_uniform();
    cuda_push_array(layer.rand_gpu, layer.rand, layer.inputs*layer.batch);
    yoloswag420blazeit360noscope<<<cuda_gridsize(size), BLOCK>>>(input, size, layer.rand_gpu, layer.probability,
            layer.scale, layer.output_gpu);
    yoloswag420blazeit360noscope<<<cuda_gridsize(size), BLOCK>>>(state.input, size, layer.rand_gpu, layer.probability, layer.scale);
    check_error(cudaPeekAtLastError());
}
extern "C" void backward_dropout_layer_gpu(dropout_layer layer, float *delta)
extern "C" void backward_dropout_layer_gpu(dropout_layer layer, network_state state)
{
    if(!delta) return;
    if(!state.delta) return;
    int size = layer.inputs*layer.batch;
    yoloswag420blazeit360noscope<<<cuda_gridsize(size), BLOCK>>>(delta, size, layer.rand_gpu, layer.probability,
            layer.scale, delta);
    yoloswag420blazeit360noscope<<<cuda_gridsize(size), BLOCK>>>(state.delta, size, layer.rand_gpu, layer.probability, layer.scale);
    check_error(cudaPeekAtLastError());
}
src/freeweight_layer.c
File was deleted
src/freeweight_layer.h
File was deleted
src/maxpool_layer.c
@@ -58,7 +58,7 @@
    #endif
}
void forward_maxpool_layer(const maxpool_layer layer, float *input)
void forward_maxpool_layer(const maxpool_layer layer, network_state state)
{
    int b,i,j,k,l,m;
    int w_offset = (-layer.size-1)/2 + 1;
@@ -82,7 +82,7 @@
                            int index = cur_w + layer.w*(cur_h + layer.h*(k + b*layer.c));
                            int valid = (cur_h >= 0 && cur_h < layer.h &&
                                         cur_w >= 0 && cur_w < layer.w);
                            float val = (valid != 0) ? input[index] : -FLT_MAX;
                            float val = (valid != 0) ? state.input[index] : -FLT_MAX;
                            max_i = (val > max) ? index : max_i;
                            max   = (val > max) ? val   : max;
                        }
@@ -95,16 +95,16 @@
    }
}
void backward_maxpool_layer(const maxpool_layer layer, float *delta)
void backward_maxpool_layer(const maxpool_layer layer, network_state state)
{
    int i;
    int h = (layer.h-1)/layer.stride + 1;
    int w = (layer.w-1)/layer.stride + 1;
    int c = layer.c;
    memset(delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
    memset(state.delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
    for(i = 0; i < h*w*c*layer.batch; ++i){
        int index = layer.indexes[i];
        delta[index] += layer.delta[i];
        state.delta[index] += layer.delta[i];
    }
}
src/maxpool_layer.h
@@ -2,6 +2,7 @@
#define MAXPOOL_LAYER_H
#include "image.h"
#include "params.h"
#include "cuda.h"
typedef struct {
@@ -22,12 +23,12 @@
image get_maxpool_image(maxpool_layer layer);
maxpool_layer *make_maxpool_layer(int batch, int h, int w, int c, int size, int stride);
void resize_maxpool_layer(maxpool_layer *layer, int h, int w);
void forward_maxpool_layer(const maxpool_layer layer, float *input);
void backward_maxpool_layer(const maxpool_layer layer, float *delta);
void forward_maxpool_layer(const maxpool_layer layer, network_state state);
void backward_maxpool_layer(const maxpool_layer layer, network_state state);
#ifdef GPU
void forward_maxpool_layer_gpu(maxpool_layer layer, float * input);
void backward_maxpool_layer_gpu(maxpool_layer layer, float * delta);
void forward_maxpool_layer_gpu(maxpool_layer layer, network_state state);
void backward_maxpool_layer_gpu(maxpool_layer layer, network_state state);
#endif
#endif
src/maxpool_layer_kernels.cu
@@ -80,7 +80,7 @@
    prev_delta[index] = d;
}
extern "C" void forward_maxpool_layer_gpu(maxpool_layer layer, float *input)
extern "C" void forward_maxpool_layer_gpu(maxpool_layer layer, network_state state)
{
    int h = (layer.h-1)/layer.stride + 1;
    int w = (layer.w-1)/layer.stride + 1;
@@ -88,15 +88,15 @@
    size_t n = h*w*c*layer.batch;
    forward_maxpool_layer_kernel<<<cuda_gridsize(n), BLOCK>>>(n, layer.h, layer.w, layer.c, layer.stride, layer.size, input, layer.output_gpu, layer.indexes_gpu);
    forward_maxpool_layer_kernel<<<cuda_gridsize(n), BLOCK>>>(n, layer.h, layer.w, layer.c, layer.stride, layer.size, state.input, layer.output_gpu, layer.indexes_gpu);
    check_error(cudaPeekAtLastError());
}
extern "C" void backward_maxpool_layer_gpu(maxpool_layer layer, float * delta)
extern "C" void backward_maxpool_layer_gpu(maxpool_layer layer, network_state state)
{
    size_t n = layer.h*layer.w*layer.c*layer.batch;
    backward_maxpool_layer_kernel<<<cuda_gridsize(n), BLOCK>>>(n, layer.h, layer.w, layer.c, layer.stride, layer.size, layer.delta_gpu, delta, layer.indexes_gpu);
    backward_maxpool_layer_kernel<<<cuda_gridsize(n), BLOCK>>>(n, layer.h, layer.w, layer.c, layer.stride, layer.size, layer.delta_gpu, state.delta, layer.indexes_gpu);
    check_error(cudaPeekAtLastError());
}
src/network.c
@@ -4,6 +4,7 @@
#include "image.h"
#include "data.h"
#include "utils.h"
#include "params.h"
#include "crop_layer.h"
#include "connected_layer.h"
@@ -13,7 +14,6 @@
#include "maxpool_layer.h"
#include "cost_layer.h"
#include "normalization_layer.h"
#include "freeweight_layer.h"
#include "softmax_layer.h"
#include "dropout_layer.h"
@@ -36,8 +36,6 @@
            return "normalization";
        case DROPOUT:
            return "dropout";
        case FREEWEIGHT:
            return "freeweight";
        case CROP:
            return "crop";
        case COST:
@@ -48,16 +46,18 @@
    return "none";
}
network make_network(int n, int batch)
network make_network(int n)
{
    network net;
    net.n = n;
    net.batch = batch;
    net.layers = calloc(net.n, sizeof(void *));
    net.types = calloc(net.n, sizeof(LAYER_TYPE));
    net.outputs = 0;
    net.output = 0;
    net.seen = 0;
    net.batch = 0;
    net.inputs = 0;
    net.h = net.w = net.c = 0;
    #ifdef GPU
    net.input_gpu = calloc(1, sizeof(float *));
    net.truth_gpu = calloc(1, sizeof(float *));
@@ -65,68 +65,41 @@
    return net;
}
void forward_network(network net, float *input, float *truth, int train)
void forward_network(network net, network_state state)
{
    int i;
    for(i = 0; i < net.n; ++i){
        if(net.types[i] == CONVOLUTIONAL){
            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
            forward_convolutional_layer(layer, input);
            input = layer.output;
            forward_convolutional_layer(*(convolutional_layer *)net.layers[i], state);
        }
        else if(net.types[i] == DECONVOLUTIONAL){
            deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
            forward_deconvolutional_layer(layer, input);
            input = layer.output;
            forward_deconvolutional_layer(*(deconvolutional_layer *)net.layers[i], state);
        }
        else if(net.types[i] == DETECTION){
            detection_layer layer = *(detection_layer *)net.layers[i];
            forward_detection_layer(layer, input, truth);
            input = layer.output;
            forward_detection_layer(*(detection_layer *)net.layers[i], state);
        }
        else if(net.types[i] == CONNECTED){
            connected_layer layer = *(connected_layer *)net.layers[i];
            forward_connected_layer(layer, input);
            input = layer.output;
            forward_connected_layer(*(connected_layer *)net.layers[i], state);
        }
        else if(net.types[i] == CROP){
            crop_layer layer = *(crop_layer *)net.layers[i];
            forward_crop_layer(layer, train, input);
            input = layer.output;
            forward_crop_layer(*(crop_layer *)net.layers[i], state);
        }
        else if(net.types[i] == COST){
            cost_layer layer = *(cost_layer *)net.layers[i];
            forward_cost_layer(layer, input, truth);
            forward_cost_layer(*(cost_layer *)net.layers[i], state);
        }
        else if(net.types[i] == SOFTMAX){
            softmax_layer layer = *(softmax_layer *)net.layers[i];
            forward_softmax_layer(layer, input);
            input = layer.output;
            forward_softmax_layer(*(softmax_layer *)net.layers[i], state);
        }
        else if(net.types[i] == MAXPOOL){
            maxpool_layer layer = *(maxpool_layer *)net.layers[i];
            forward_maxpool_layer(layer, input);
            input = layer.output;
            forward_maxpool_layer(*(maxpool_layer *)net.layers[i], state);
        }
        else if(net.types[i] == NORMALIZATION){
            normalization_layer layer = *(normalization_layer *)net.layers[i];
            forward_normalization_layer(layer, input);
            input = layer.output;
            forward_normalization_layer(*(normalization_layer *)net.layers[i], state);
        }
        else if(net.types[i] == DROPOUT){
            if(!train) continue;
            dropout_layer layer = *(dropout_layer *)net.layers[i];
            forward_dropout_layer(layer, input);
            input = layer.output;
            forward_dropout_layer(*(dropout_layer *)net.layers[i], state);
        }
        else if(net.types[i] == FREEWEIGHT){
            if(!train) continue;
            //freeweight_layer layer = *(freeweight_layer *)net.layers[i];
            //forward_freeweight_layer(layer, input);
        }
        //char buff[256];
        //sprintf(buff, "layer %d", i);
        //cuda_compare(get_network_output_gpu_layer(net, i), input, get_network_output_size_layer(net, i)*net.batch, buff);
        state.input = get_network_output_layer(net, i);
    }
}
@@ -136,15 +109,15 @@
    for(i = 0; i < net.n; ++i){
        if(net.types[i] == CONVOLUTIONAL){
            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
            update_convolutional_layer(layer);
            update_convolutional_layer(layer, net.learning_rate, net.momentum, net.decay);
        }
        else if(net.types[i] == DECONVOLUTIONAL){
            deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
            update_deconvolutional_layer(layer);
            update_deconvolutional_layer(layer, net.learning_rate, net.momentum, net.decay);
        }
        else if(net.types[i] == CONNECTED){
            connected_layer layer = *(connected_layer *)net.layers[i];
            update_connected_layer(layer);
            update_connected_layer(layer, net.learning_rate, net.momentum, net.decay);
        }
    }
}
@@ -152,37 +125,27 @@
float *get_network_output_layer(network net, int i)
{
    if(net.types[i] == CONVOLUTIONAL){
        convolutional_layer layer = *(convolutional_layer *)net.layers[i];
        return layer.output;
        return ((convolutional_layer *)net.layers[i]) -> output;
    } else if(net.types[i] == DECONVOLUTIONAL){
        deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
        return layer.output;
        return ((deconvolutional_layer *)net.layers[i]) -> output;
    } else if(net.types[i] == MAXPOOL){
        maxpool_layer layer = *(maxpool_layer *)net.layers[i];
        return layer.output;
        return ((maxpool_layer *)net.layers[i]) -> output;
    } else if(net.types[i] == DETECTION){
        detection_layer layer = *(detection_layer *)net.layers[i];
        return layer.output;
        return ((detection_layer *)net.layers[i]) -> output;
    } else if(net.types[i] == SOFTMAX){
        softmax_layer layer = *(softmax_layer *)net.layers[i];
        return layer.output;
        return ((softmax_layer *)net.layers[i]) -> output;
    } else if(net.types[i] == DROPOUT){
        dropout_layer layer = *(dropout_layer *)net.layers[i];
        return layer.output;
    } else if(net.types[i] == FREEWEIGHT){
        return get_network_output_layer(net, i-1);
    } else if(net.types[i] == CONNECTED){
        connected_layer layer = *(connected_layer *)net.layers[i];
        return layer.output;
        return ((connected_layer *)net.layers[i]) -> output;
    } else if(net.types[i] == CROP){
        crop_layer layer = *(crop_layer *)net.layers[i];
        return layer.output;
        return ((crop_layer *)net.layers[i]) -> output;
    } else if(net.types[i] == NORMALIZATION){
        normalization_layer layer = *(normalization_layer *)net.layers[i];
        return layer.output;
        return ((normalization_layer *)net.layers[i]) -> output;
    }
    return 0;
}
float *get_network_output(network net)
{
    int i;
@@ -210,8 +173,6 @@
    } else if(net.types[i] == DROPOUT){
        if(i == 0) return 0;
        return get_network_delta_layer(net, i-1);
    } else if(net.types[i] == FREEWEIGHT){
        return get_network_delta_layer(net, i-1);
    } else if(net.types[i] == CONNECTED){
        connected_layer layer = *(connected_layer *)net.layers[i];
        return layer.delta;
@@ -257,54 +218,53 @@
    return max_index(out, k);
}
void backward_network(network net, float *input, float *truth)
void backward_network(network net, network_state state)
{
    int i;
    float *prev_input;
    float *prev_delta;
    float *original_input = state.input;
    for(i = net.n-1; i >= 0; --i){
        if(i == 0){
            prev_input = input;
            prev_delta = 0;
            state.input = original_input;
            state.delta = 0;
        }else{
            prev_input = get_network_output_layer(net, i-1);
            prev_delta = get_network_delta_layer(net, i-1);
            state.input = get_network_output_layer(net, i-1);
            state.delta = get_network_delta_layer(net, i-1);
        }
        if(net.types[i] == CONVOLUTIONAL){
            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
            backward_convolutional_layer(layer, prev_input, prev_delta);
            backward_convolutional_layer(layer, state);
        } else if(net.types[i] == DECONVOLUTIONAL){
            deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
            backward_deconvolutional_layer(layer, prev_input, prev_delta);
            backward_deconvolutional_layer(layer, state);
        }
        else if(net.types[i] == MAXPOOL){
            maxpool_layer layer = *(maxpool_layer *)net.layers[i];
            if(i != 0) backward_maxpool_layer(layer, prev_delta);
            if(i != 0) backward_maxpool_layer(layer, state);
        }
        else if(net.types[i] == DROPOUT){
            dropout_layer layer = *(dropout_layer *)net.layers[i];
            backward_dropout_layer(layer, prev_delta);
            backward_dropout_layer(layer, state);
        }
        else if(net.types[i] == DETECTION){
            detection_layer layer = *(detection_layer *)net.layers[i];
            backward_detection_layer(layer, prev_input, prev_delta);
            backward_detection_layer(layer, state);
        }
        else if(net.types[i] == NORMALIZATION){
            normalization_layer layer = *(normalization_layer *)net.layers[i];
            if(i != 0) backward_normalization_layer(layer, prev_input, prev_delta);
            if(i != 0) backward_normalization_layer(layer, state);
        }
        else if(net.types[i] == SOFTMAX){
            softmax_layer layer = *(softmax_layer *)net.layers[i];
            if(i != 0) backward_softmax_layer(layer, prev_delta);
            if(i != 0) backward_softmax_layer(layer, state);
        }
        else if(net.types[i] == CONNECTED){
            connected_layer layer = *(connected_layer *)net.layers[i];
            backward_connected_layer(layer, prev_input, prev_delta);
            backward_connected_layer(layer, state);
        }
        else if(net.types[i] == COST){
            cost_layer layer = *(cost_layer *)net.layers[i];
            backward_cost_layer(layer, prev_input, prev_delta);
            backward_cost_layer(layer, state);
        }
    }
}
@@ -314,8 +274,12 @@
    #ifdef GPU
    if(gpu_index >= 0) return train_network_datum_gpu(net, x, y);
    #endif
    forward_network(net, x, y, 1);
    backward_network(net, x, y);
    network_state state;
    state.input = x;
    state.truth = y;
    state.train = 1;
    forward_network(net, state);
    backward_network(net, state);
    float error = get_network_cost(net);
    update_network(net);
    return error;
@@ -361,15 +325,17 @@
float train_network_batch(network net, data d, int n)
{
    int i,j;
    network_state state;
    state.train = 1;
    float sum = 0;
    int batch = 2;
    for(i = 0; i < n; ++i){
        for(j = 0; j < batch; ++j){
            int index = rand()%d.X.rows;
            float *x = d.X.vals[index];
            float *y = d.y.vals[index];
            forward_network(net, x, y, 1);
            backward_network(net, x, y);
            state.input = d.X.vals[index];
            state.truth = d.y.vals[index];
            forward_network(net, state);
            backward_network(net, state);
            sum += get_network_cost(net);
        }
        update_network(net);
@@ -377,28 +343,6 @@
    return (float)sum/(n*batch);
}
void set_learning_network(network *net, float rate, float momentum, float decay)
{
    int i;
    net->learning_rate=rate;
    net->momentum = momentum;
    net->decay = decay;
    for(i = 0; i < net->n; ++i){
        if(net->types[i] == CONVOLUTIONAL){
            convolutional_layer *layer = (convolutional_layer *)net->layers[i];
            layer->learning_rate=rate;
            layer->momentum = momentum;
            layer->decay = decay;
        }
        else if(net->types[i] == CONNECTED){
            connected_layer *layer = (connected_layer *)net->layers[i];
            layer->learning_rate=rate;
            layer->momentum = momentum;
            layer->decay = decay;
        }
    }
}
void set_batch_network(network *net, int b)
{
    net->batch = b;
@@ -425,10 +369,6 @@
            detection_layer *layer = (detection_layer *) net->layers[i];
            layer->batch = b;
        }
        else if(net->types[i] == FREEWEIGHT){
            freeweight_layer *layer = (freeweight_layer *) net->layers[i];
            layer->batch = b;
        }
        else if(net->types[i] == SOFTMAX){
            softmax_layer *layer = (softmax_layer *)net->layers[i];
            layer->batch = b;
@@ -472,15 +412,11 @@
        crop_layer layer = *(crop_layer *) net.layers[i];
        return layer.c*layer.h*layer.w;
    }
    else if(net.types[i] == FREEWEIGHT){
        freeweight_layer layer = *(freeweight_layer *) net.layers[i];
        return layer.inputs;
    }
    else if(net.types[i] == SOFTMAX){
        softmax_layer layer = *(softmax_layer *)net.layers[i];
        return layer.inputs;
    }
    printf("Can't find input size\n");
    fprintf(stderr, "Can't find input size\n");
    return 0;
}
@@ -517,15 +453,11 @@
        dropout_layer layer = *(dropout_layer *) net.layers[i];
        return layer.inputs;
    }
    else if(net.types[i] == FREEWEIGHT){
        freeweight_layer layer = *(freeweight_layer *) net.layers[i];
        return layer.inputs;
    }
    else if(net.types[i] == SOFTMAX){
        softmax_layer layer = *(softmax_layer *)net.layers[i];
        return layer.inputs;
    }
    printf("Can't find output size\n");
    fprintf(stderr, "Can't find output size\n");
    return 0;
}
@@ -654,7 +586,12 @@
    if(gpu_index >= 0)  return network_predict_gpu(net, input);
    #endif
    forward_network(net, input, 0, 0);
    network_state state;
    state.input = input;
    state.truth = 0;
    state.train = 0;
    state.delta = 0;
    forward_network(net, state);
    float *out = get_network_output(net);
    return out;
}
src/network.h
@@ -3,6 +3,7 @@
#define NETWORK_H
#include "image.h"
#include "params.h"
#include "data.h"
typedef enum {
@@ -14,7 +15,6 @@
    DETECTION,
    NORMALIZATION,
    DROPOUT,
    FREEWEIGHT,
    CROP,
    COST
} LAYER_TYPE;
@@ -31,6 +31,9 @@
    int outputs;
    float *output;
    int inputs;
    int h, w, c;
    #ifdef GPU
    float **input_gpu;
    float **truth_gpu;
@@ -47,9 +50,9 @@
void compare_networks(network n1, network n2, data d);
char *get_layer_string(LAYER_TYPE a);
network make_network(int n, int batch);
void forward_network(network net, float *input, float *truth, int train);
void backward_network(network net, float *input, float *truth);
network make_network(int n);
void forward_network(network net, network_state state);
void backward_network(network net, network_state state);
void update_network(network net);
float train_network(network net, data d);
@@ -75,7 +78,6 @@
void visualize_network(network net);
int resize_network(network net, int h, int w, int c);
void set_batch_network(network *net, int b);
void set_learning_network(network *net, float rate, float momentum, float decay);
int get_network_input_size(network net);
float get_network_cost(network net);
src/network_kernels.cu
@@ -6,6 +6,7 @@
#include "image.h"
#include "data.h"
#include "utils.h"
#include "params.h"
#include "crop_layer.h"
#include "connected_layer.h"
@@ -15,7 +16,6 @@
#include "maxpool_layer.h"
#include "cost_layer.h"
#include "normalization_layer.h"
#include "freeweight_layer.h"
#include "softmax_layer.h"
#include "dropout_layer.h"
}
@@ -24,108 +24,78 @@
extern "C" float * get_network_delta_gpu_layer(network net, int i);
float *get_network_output_gpu(network net);
void forward_network_gpu(network net, float * input, float * truth, int train)
void forward_network_gpu(network net, network_state state)
{
    int i;
    for(i = 0; i < net.n; ++i){
        //clock_t time = clock();
        if(net.types[i] == CONVOLUTIONAL){
            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
            forward_convolutional_layer_gpu(layer, input);
            input = layer.output_gpu;
            forward_convolutional_layer_gpu(*(convolutional_layer *)net.layers[i], state);
        }
        else if(net.types[i] == DECONVOLUTIONAL){
            deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
            forward_deconvolutional_layer_gpu(layer, input);
            input = layer.output_gpu;
            forward_deconvolutional_layer_gpu(*(deconvolutional_layer *)net.layers[i], state);
        }
        else if(net.types[i] == COST){
            cost_layer layer = *(cost_layer *)net.layers[i];
            forward_cost_layer_gpu(layer, input, truth);
            forward_cost_layer_gpu(*(cost_layer *)net.layers[i], state);
        }
        else if(net.types[i] == CONNECTED){
            connected_layer layer = *(connected_layer *)net.layers[i];
            forward_connected_layer_gpu(layer, input);
            input = layer.output_gpu;
            forward_connected_layer_gpu(*(connected_layer *)net.layers[i], state);
        }
        else if(net.types[i] == DETECTION){
            detection_layer layer = *(detection_layer *)net.layers[i];
            forward_detection_layer_gpu(layer, input, truth);
            input = layer.output_gpu;
            forward_detection_layer_gpu(*(detection_layer *)net.layers[i], state);
        }
        else if(net.types[i] == MAXPOOL){
            maxpool_layer layer = *(maxpool_layer *)net.layers[i];
            forward_maxpool_layer_gpu(layer, input);
            input = layer.output_gpu;
            forward_maxpool_layer_gpu(*(maxpool_layer *)net.layers[i], state);
        }
        else if(net.types[i] == SOFTMAX){
            softmax_layer layer = *(softmax_layer *)net.layers[i];
            forward_softmax_layer_gpu(layer, input);
            input = layer.output_gpu;
            forward_softmax_layer_gpu(*(softmax_layer *)net.layers[i], state);
        }
        else if(net.types[i] == DROPOUT){
            if(!train) continue;
            dropout_layer layer = *(dropout_layer *)net.layers[i];
            forward_dropout_layer_gpu(layer, input);
            input = layer.output_gpu;
            forward_dropout_layer_gpu(*(dropout_layer *)net.layers[i], state);
        }
        else if(net.types[i] == CROP){
            crop_layer layer = *(crop_layer *)net.layers[i];
            forward_crop_layer_gpu(layer, train, input);
            input = layer.output_gpu;
            forward_crop_layer_gpu(*(crop_layer *)net.layers[i], state);
        }
        //cudaDeviceSynchronize();
        //printf("Forward %d %s %f\n", i, get_layer_string(net.types[i]), sec(clock() - time));
        state.input = get_network_output_gpu_layer(net, i);
    }
}
void backward_network_gpu(network net, float * input, float *truth)
void backward_network_gpu(network net, network_state state)
{
    int i;
    float * prev_input;
    float * prev_delta;
    float * original_input = state.input;
    for(i = net.n-1; i >= 0; --i){
        //clock_t time = clock();
        if(i == 0){
            prev_input = input;
            prev_delta = 0;
            state.input = original_input;
            state.delta = 0;
        }else{
            prev_input = get_network_output_gpu_layer(net, i-1);
            prev_delta = get_network_delta_gpu_layer(net, i-1);
            state.input = get_network_output_gpu_layer(net, i-1);
            state.delta = get_network_delta_gpu_layer(net, i-1);
        }
        if(net.types[i] == CONVOLUTIONAL){
            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
            backward_convolutional_layer_gpu(layer, prev_input, prev_delta);
            backward_convolutional_layer_gpu(*(convolutional_layer *)net.layers[i], state);
        }
        else if(net.types[i] == DECONVOLUTIONAL){
            deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
            backward_deconvolutional_layer_gpu(layer, prev_input, prev_delta);
            backward_deconvolutional_layer_gpu(*(deconvolutional_layer *)net.layers[i], state);
        }
        else if(net.types[i] == COST){
            cost_layer layer = *(cost_layer *)net.layers[i];
            backward_cost_layer_gpu(layer, prev_input, prev_delta);
            backward_cost_layer_gpu(*(cost_layer *)net.layers[i], state);
        }
        else if(net.types[i] == CONNECTED){
            connected_layer layer = *(connected_layer *)net.layers[i];
            backward_connected_layer_gpu(layer, prev_input, prev_delta);
            backward_connected_layer_gpu(*(connected_layer *)net.layers[i], state);
        }
        else if(net.types[i] == DETECTION){
            detection_layer layer = *(detection_layer *)net.layers[i];
            backward_detection_layer_gpu(layer, prev_input, prev_delta);
            backward_detection_layer_gpu(*(detection_layer *)net.layers[i], state);
        }
        else if(net.types[i] == MAXPOOL){
            maxpool_layer layer = *(maxpool_layer *)net.layers[i];
            backward_maxpool_layer_gpu(layer, prev_delta);
            backward_maxpool_layer_gpu(*(maxpool_layer *)net.layers[i], state);
        }
        else if(net.types[i] == DROPOUT){
            dropout_layer layer = *(dropout_layer *)net.layers[i];
            backward_dropout_layer_gpu(layer, prev_delta);
            backward_dropout_layer_gpu(*(dropout_layer *)net.layers[i], state);
        }
        else if(net.types[i] == SOFTMAX){
            softmax_layer layer = *(softmax_layer *)net.layers[i];
            backward_softmax_layer_gpu(layer, prev_delta);
            backward_softmax_layer_gpu(*(softmax_layer *)net.layers[i], state);
        }
        //printf("Backward %d %s %f\n", i, get_layer_string(net.types[i]), sec(clock() - time));
    }
}
@@ -135,15 +105,15 @@
    for(i = 0; i < net.n; ++i){
        if(net.types[i] == CONVOLUTIONAL){
            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
            update_convolutional_layer_gpu(layer);
            update_convolutional_layer_gpu(layer, net.learning_rate, net.momentum, net.decay);
        }
        else if(net.types[i] == DECONVOLUTIONAL){
            deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
            update_deconvolutional_layer_gpu(layer);
            update_deconvolutional_layer_gpu(layer, net.learning_rate, net.momentum, net.decay);
        }
        else if(net.types[i] == CONNECTED){
            connected_layer layer = *(connected_layer *)net.layers[i];
            update_connected_layer_gpu(layer);
            update_connected_layer_gpu(layer, net.learning_rate, net.momentum, net.decay);
        }
    }
}
@@ -151,35 +121,28 @@
float * get_network_output_gpu_layer(network net, int i)
{
    if(net.types[i] == CONVOLUTIONAL){
        convolutional_layer layer = *(convolutional_layer *)net.layers[i];
        return layer.output_gpu;
        return ((convolutional_layer *)net.layers[i]) -> output_gpu;
    }
    else if(net.types[i] == DECONVOLUTIONAL){
        deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
        return layer.output_gpu;
        return ((deconvolutional_layer *)net.layers[i]) -> output_gpu;
    }
    else if(net.types[i] == DETECTION){
        detection_layer layer = *(detection_layer *)net.layers[i];
        return layer.output_gpu;
        return ((detection_layer *)net.layers[i]) -> output_gpu;
    }
    else if(net.types[i] == CONNECTED){
        connected_layer layer = *(connected_layer *)net.layers[i];
        return layer.output_gpu;
        return ((connected_layer *)net.layers[i]) -> output_gpu;
    }
    else if(net.types[i] == MAXPOOL){
        maxpool_layer layer = *(maxpool_layer *)net.layers[i];
        return layer.output_gpu;
        return ((maxpool_layer *)net.layers[i]) -> output_gpu;
    }
    else if(net.types[i] == CROP){
        crop_layer layer = *(crop_layer *)net.layers[i];
        return layer.output_gpu;
        return ((crop_layer *)net.layers[i]) -> output_gpu;
    }
    else if(net.types[i] == SOFTMAX){
        softmax_layer layer = *(softmax_layer *)net.layers[i];
        return layer.output_gpu;
    } else if(net.types[i] == DROPOUT){
        dropout_layer layer = *(dropout_layer *)net.layers[i];
        return layer.output_gpu;
        return ((softmax_layer *)net.layers[i]) -> output_gpu;
    }
    else if(net.types[i] == DROPOUT){
        return get_network_output_gpu_layer(net, i-1);
    }
    return 0;
}
@@ -219,6 +182,7 @@
float train_network_datum_gpu(network net, float *x, float *y)
{
  //clock_t time = clock();
    network_state state;
    int x_size = get_network_input_size(net)*net.batch;
    int y_size = get_network_output_size(net)*net.batch;
    if(!*net.input_gpu){
@@ -228,12 +192,15 @@
        cuda_push_array(*net.input_gpu, x, x_size);
        cuda_push_array(*net.truth_gpu, y, y_size);
    }
    state.input = *net.input_gpu;
    state.truth = *net.truth_gpu;
    state.train = 1;
  //printf("trans %f\n", sec(clock() - time));
  //time = clock();
    forward_network_gpu(net, *net.input_gpu, *net.truth_gpu, 1);
    forward_network_gpu(net, state);
  //printf("forw %f\n", sec(clock() - time));
  //time = clock();
    backward_network_gpu(net, *net.input_gpu, *net.truth_gpu);
    backward_network_gpu(net, state);
  //printf("back %f\n", sec(clock() - time));
  //time = clock();
    update_network_gpu(net);
@@ -291,10 +258,14 @@
{
    int size = get_network_input_size(net) * net.batch;
    float * input_gpu = cuda_make_array(input, size);
    forward_network_gpu(net, input_gpu, 0, 0);
    network_state state;
    state.input = cuda_make_array(input, size);
    state.truth = 0;
    state.train = 0;
    state.delta = 0;
    forward_network_gpu(net, state);
    float *out = get_network_output_gpu(net);
    cuda_free(input_gpu);
    cuda_free(state.input);
    return out;
}
src/normalization_layer.c
@@ -59,28 +59,29 @@
    }
}
void forward_normalization_layer(const normalization_layer layer, float *in)
void forward_normalization_layer(const normalization_layer layer, network_state state)
{
    int i,j,k;
    memset(layer.sums, 0, layer.h*layer.w*sizeof(float));
    int imsize = layer.h*layer.w;
    for(j = 0; j < layer.size/2; ++j){
        if(j < layer.c) add_square_array(in+j*imsize, layer.sums, imsize);
        if(j < layer.c) add_square_array(state.input+j*imsize, layer.sums, imsize);
    }
    for(k = 0; k < layer.c; ++k){
        int next = k+layer.size/2;
        int prev = k-layer.size/2-1;
        if(next < layer.c) add_square_array(in+next*imsize, layer.sums, imsize);
        if(prev > 0)       sub_square_array(in+prev*imsize, layer.sums, imsize);
        if(next < layer.c) add_square_array(state.input+next*imsize, layer.sums, imsize);
        if(prev > 0)       sub_square_array(state.input+prev*imsize, layer.sums, imsize);
        for(i = 0; i < imsize; ++i){
            layer.output[k*imsize + i] = in[k*imsize+i] / pow(layer.kappa + layer.alpha * layer.sums[i], layer.beta);
            layer.output[k*imsize + i] = state.input[k*imsize+i] / pow(layer.kappa + layer.alpha * layer.sums[i], layer.beta);
        }
    }
}
void backward_normalization_layer(const normalization_layer layer, float *in, float *delta)
void backward_normalization_layer(const normalization_layer layer, network_state state)
{
    //TODO!
    // OR NOT TODO!!
}
void visualize_normalization_layer(normalization_layer layer, char *window)
src/normalization_layer.h
@@ -2,6 +2,7 @@
#define NORMALIZATION_LAYER_H
#include "image.h"
#include "params.h"
typedef struct {
    int batch;
@@ -18,8 +19,8 @@
image get_normalization_image(normalization_layer layer);
normalization_layer *make_normalization_layer(int batch, int h, int w, int c, int size, float alpha, float beta, float kappa);
void resize_normalization_layer(normalization_layer *layer, int h, int w);
void forward_normalization_layer(const normalization_layer layer, float *in);
void backward_normalization_layer(const normalization_layer layer, float *in, float *delta);
void forward_normalization_layer(const normalization_layer layer, network_state state);
void backward_normalization_layer(const normalization_layer layer, network_state state);
void visualize_normalization_layer(normalization_layer layer, char *window);
#endif
src/params.h
New file
@@ -0,0 +1,12 @@
#ifndef PARAMS_H
#define PARAMS_H
typedef struct {
    float *truth;
    float *input;
    float *delta;
    int train;
} network_state;
#endif
src/parser.c
@@ -14,7 +14,6 @@
#include "softmax_layer.h"
#include "dropout_layer.h"
#include "detection_layer.h"
#include "freeweight_layer.h"
#include "list.h"
#include "option_list.h"
#include "utils.h"
@@ -24,12 +23,12 @@
    list *options;
}section;
int is_network(section *s);
int is_convolutional(section *s);
int is_deconvolutional(section *s);
int is_connected(section *s);
int is_maxpool(section *s);
int is_dropout(section *s);
int is_freeweight(section *s);
int is_softmax(section *s);
int is_crop(section *s);
int is_cost(section *s);
@@ -69,38 +68,31 @@
    }
}
deconvolutional_layer *parse_deconvolutional(list *options, network *net, int count)
typedef struct size_params{
    int batch;
    int inputs;
    int h;
    int w;
    int c;
} size_params;
deconvolutional_layer *parse_deconvolutional(list *options, size_params params)
{
    int h,w,c;
    float learning_rate, momentum, decay;
    int n = option_find_int(options, "filters",1);
    int size = option_find_int(options, "size",1);
    int stride = option_find_int(options, "stride",1);
    char *activation_s = option_find_str(options, "activation", "logistic");
    ACTIVATION activation = get_activation(activation_s);
    if(count == 0){
        learning_rate = option_find_float(options, "learning_rate", .001);
        momentum = option_find_float(options, "momentum", .9);
        decay = option_find_float(options, "decay", .0001);
        h = option_find_int(options, "height",1);
        w = option_find_int(options, "width",1);
        c = option_find_int(options, "channels",1);
        net->batch = option_find_int(options, "batch",1);
        net->learning_rate = learning_rate;
        net->momentum = momentum;
        net->decay = decay;
        net->seen = option_find_int(options, "seen",0);
    }else{
        learning_rate = option_find_float_quiet(options, "learning_rate", net->learning_rate);
        momentum = option_find_float_quiet(options, "momentum", net->momentum);
        decay = option_find_float_quiet(options, "decay", net->decay);
        image m =  get_network_image_layer(*net, count-1);
        h = m.h;
        w = m.w;
        c = m.c;
        if(h == 0) error("Layer before deconvolutional layer must output image.");
    }
    deconvolutional_layer *layer = make_deconvolutional_layer(net->batch,h,w,c,n,size,stride,activation,learning_rate,momentum,decay);
    int batch,h,w,c;
    h = params.h;
    w = params.w;
    c = params.c;
    batch=params.batch;
    if(!(h && w && c)) error("Layer before deconvolutional layer must output image.");
    deconvolutional_layer *layer = make_deconvolutional_layer(batch,h,w,c,n,size,stride,activation);
    char *weights = option_find_str(options, "weights", 0);
    char *biases = option_find_str(options, "biases", 0);
    parse_data(weights, layer->filters, c*n*size*size);
@@ -112,39 +104,24 @@
    return layer;
}
convolutional_layer *parse_convolutional(list *options, network *net, int count)
convolutional_layer *parse_convolutional(list *options, size_params params)
{
    int h,w,c;
    float learning_rate, momentum, decay;
    int n = option_find_int(options, "filters",1);
    int size = option_find_int(options, "size",1);
    int stride = option_find_int(options, "stride",1);
    int pad = option_find_int(options, "pad",0);
    char *activation_s = option_find_str(options, "activation", "logistic");
    ACTIVATION activation = get_activation(activation_s);
    if(count == 0){
        learning_rate = option_find_float(options, "learning_rate", .001);
        momentum = option_find_float(options, "momentum", .9);
        decay = option_find_float(options, "decay", .0001);
        h = option_find_int(options, "height",1);
        w = option_find_int(options, "width",1);
        c = option_find_int(options, "channels",1);
        net->batch = option_find_int(options, "batch",1);
        net->learning_rate = learning_rate;
        net->momentum = momentum;
        net->decay = decay;
        net->seen = option_find_int(options, "seen",0);
    }else{
        learning_rate = option_find_float_quiet(options, "learning_rate", net->learning_rate);
        momentum = option_find_float_quiet(options, "momentum", net->momentum);
        decay = option_find_float_quiet(options, "decay", net->decay);
        image m =  get_network_image_layer(*net, count-1);
        h = m.h;
        w = m.w;
        c = m.c;
        if(h == 0) error("Layer before convolutional layer must output image.");
    }
    convolutional_layer *layer = make_convolutional_layer(net->batch,h,w,c,n,size,stride,pad,activation,learning_rate,momentum,decay);
    int batch,h,w,c;
    h = params.h;
    w = params.w;
    c = params.c;
    batch=params.batch;
    if(!(h && w && c)) error("Layer before convolutional layer must output image.");
    convolutional_layer *layer = make_convolutional_layer(batch,h,w,c,n,size,stride,pad,activation);
    char *weights = option_find_str(options, "weights", 0);
    char *biases = option_find_str(options, "biases", 0);
    parse_data(weights, layer->filters, c*n*size*size);
@@ -156,33 +133,18 @@
    return layer;
}
connected_layer *parse_connected(list *options, network *net, int count)
connected_layer *parse_connected(list *options, size_params params)
{
    int input;
    float learning_rate, momentum, decay;
    int output = option_find_int(options, "output",1);
    char *activation_s = option_find_str(options, "activation", "logistic");
    ACTIVATION activation = get_activation(activation_s);
    if(count == 0){
        input = option_find_int(options, "input",1);
        net->batch = option_find_int(options, "batch",1);
        learning_rate = option_find_float(options, "learning_rate", .001);
        momentum = option_find_float(options, "momentum", .9);
        decay = option_find_float(options, "decay", .0001);
        net->learning_rate = learning_rate;
        net->momentum = momentum;
        net->decay = decay;
    }else{
        learning_rate = option_find_float_quiet(options, "learning_rate", net->learning_rate);
        momentum = option_find_float_quiet(options, "momentum", net->momentum);
        decay = option_find_float_quiet(options, "decay", net->decay);
        input =  get_network_output_size_layer(*net, count-1);
    }
    connected_layer *layer = make_connected_layer(net->batch, input, output, activation,learning_rate,momentum,decay);
    connected_layer *layer = make_connected_layer(params.batch, params.inputs, output, activation);
    char *weights = option_find_str(options, "weights", 0);
    char *biases = option_find_str(options, "biases", 0);
    parse_data(biases, layer->biases, output);
    parse_data(weights, layer->weights, input*output);
    parse_data(weights, layer->weights, params.inputs*output);
    #ifdef GPU
    if(weights || biases) push_connected_layer(*layer);
    #endif
@@ -190,235 +152,188 @@
    return layer;
}
softmax_layer *parse_softmax(list *options, network *net, int count)
softmax_layer *parse_softmax(list *options, size_params params)
{
    int input;
    int groups = option_find_int(options, "groups",1);
    if(count == 0){
        input = option_find_int(options, "input",1);
        net->batch = option_find_int(options, "batch",1);
        net->seen = option_find_int(options, "seen",0);
    }else{
        input =  get_network_output_size_layer(*net, count-1);
    }
    softmax_layer *layer = make_softmax_layer(net->batch, groups, input);
    softmax_layer *layer = make_softmax_layer(params.batch, params.inputs, groups);
    option_unused(options);
    return layer;
}
detection_layer *parse_detection(list *options, network *net, int count)
detection_layer *parse_detection(list *options, size_params params)
{
    int input;
    if(count == 0){
        input = option_find_int(options, "input",1);
        net->batch = option_find_int(options, "batch",1);
        net->seen = option_find_int(options, "seen",0);
    }else{
        input =  get_network_output_size_layer(*net, count-1);
    }
    int coords = option_find_int(options, "coords", 1);
    int classes = option_find_int(options, "classes", 1);
    int rescore = option_find_int(options, "rescore", 1);
    detection_layer *layer = make_detection_layer(net->batch, input, classes, coords, rescore);
    detection_layer *layer = make_detection_layer(params.batch, params.inputs, classes, coords, rescore);
    option_unused(options);
    return layer;
}
cost_layer *parse_cost(list *options, network *net, int count)
cost_layer *parse_cost(list *options, size_params params)
{
    int input;
    if(count == 0){
        input = option_find_int(options, "input",1);
        net->batch = option_find_int(options, "batch",1);
        net->seen = option_find_int(options, "seen",0);
    }else{
        input =  get_network_output_size_layer(*net, count-1);
    }
    char *type_s = option_find_str(options, "type", "sse");
    COST_TYPE type = get_cost_type(type_s);
    cost_layer *layer = make_cost_layer(net->batch, input, type);
    cost_layer *layer = make_cost_layer(params.batch, params.inputs, type);
    option_unused(options);
    return layer;
}
crop_layer *parse_crop(list *options, network *net, int count)
crop_layer *parse_crop(list *options, size_params params)
{
    float learning_rate, momentum, decay;
    int h,w,c;
    int crop_height = option_find_int(options, "crop_height",1);
    int crop_width = option_find_int(options, "crop_width",1);
    int flip = option_find_int(options, "flip",0);
    if(count == 0){
        h = option_find_int(options, "height",1);
        w = option_find_int(options, "width",1);
        c = option_find_int(options, "channels",1);
        net->batch = option_find_int(options, "batch",1);
        learning_rate = option_find_float(options, "learning_rate", .001);
        momentum = option_find_float(options, "momentum", .9);
        decay = option_find_float(options, "decay", .0001);
        net->learning_rate = learning_rate;
        net->momentum = momentum;
        net->decay = decay;
        net->seen = option_find_int(options, "seen",0);
    }else{
        image m =  get_network_image_layer(*net, count-1);
        h = m.h;
        w = m.w;
        c = m.c;
        if(h == 0) error("Layer before crop layer must output image.");
    }
    crop_layer *layer = make_crop_layer(net->batch,h,w,c,crop_height,crop_width,flip);
    int batch,h,w,c;
    h = params.h;
    w = params.w;
    c = params.c;
    batch=params.batch;
    if(!(h && w && c)) error("Layer before crop layer must output image.");
    crop_layer *layer = make_crop_layer(batch,h,w,c,crop_height,crop_width,flip);
    option_unused(options);
    return layer;
}
maxpool_layer *parse_maxpool(list *options, network *net, int count)
maxpool_layer *parse_maxpool(list *options, size_params params)
{
    int h,w,c;
    int stride = option_find_int(options, "stride",1);
    int size = option_find_int(options, "size",stride);
    if(count == 0){
        h = option_find_int(options, "height",1);
        w = option_find_int(options, "width",1);
        c = option_find_int(options, "channels",1);
        net->batch = option_find_int(options, "batch",1);
        net->seen = option_find_int(options, "seen",0);
    }else{
        image m =  get_network_image_layer(*net, count-1);
        h = m.h;
        w = m.w;
        c = m.c;
        if(h == 0) error("Layer before convolutional layer must output image.");
    }
    maxpool_layer *layer = make_maxpool_layer(net->batch,h,w,c,size,stride);
    int batch,h,w,c;
    h = params.h;
    w = params.w;
    c = params.c;
    batch=params.batch;
    if(!(h && w && c)) error("Layer before maxpool layer must output image.");
    maxpool_layer *layer = make_maxpool_layer(batch,h,w,c,size,stride);
    option_unused(options);
    return layer;
}
/*
freeweight_layer *parse_freeweight(list *options, network *net, int count)
dropout_layer *parse_dropout(list *options, size_params params)
{
    int input;
    if(count == 0){
        net->batch = option_find_int(options, "batch",1);
        input = option_find_int(options, "input",1);
    }else{
        input =  get_network_output_size_layer(*net, count-1);
    }
    freeweight_layer *layer = make_freeweight_layer(net->batch,input);
    option_unused(options);
    return layer;
}
*/
dropout_layer *parse_dropout(list *options, network *net, int count)
{
    int input;
    float probability = option_find_float(options, "probability", .5);
    if(count == 0){
        net->batch = option_find_int(options, "batch",1);
        input = option_find_int(options, "input",1);
        float learning_rate = option_find_float(options, "learning_rate", .001);
        float momentum = option_find_float(options, "momentum", .9);
        float decay = option_find_float(options, "decay", .0001);
        net->learning_rate = learning_rate;
        net->momentum = momentum;
        net->decay = decay;
        net->seen = option_find_int(options, "seen",0);
    }else{
        input =  get_network_output_size_layer(*net, count-1);
    }
    dropout_layer *layer = make_dropout_layer(net->batch,input,probability);
    dropout_layer *layer = make_dropout_layer(params.batch, params.inputs, probability);
    option_unused(options);
    return layer;
}
normalization_layer *parse_normalization(list *options, network *net, int count)
normalization_layer *parse_normalization(list *options, size_params params)
{
    int h,w,c;
    int size = option_find_int(options, "size",1);
    float alpha = option_find_float(options, "alpha", 0.);
    float beta = option_find_float(options, "beta", 1.);
    float kappa = option_find_float(options, "kappa", 1.);
    if(count == 0){
        h = option_find_int(options, "height",1);
        w = option_find_int(options, "width",1);
        c = option_find_int(options, "channels",1);
        net->batch = option_find_int(options, "batch",1);
        net->seen = option_find_int(options, "seen",0);
    }else{
        image m =  get_network_image_layer(*net, count-1);
        h = m.h;
        w = m.w;
        c = m.c;
        if(h == 0) error("Layer before convolutional layer must output image.");
    }
    normalization_layer *layer = make_normalization_layer(net->batch,h,w,c,size, alpha, beta, kappa);
    int batch,h,w,c;
    h = params.h;
    w = params.w;
    c = params.c;
    batch=params.batch;
    if(!(h && w && c)) error("Layer before normalization layer must output image.");
    normalization_layer *layer = make_normalization_layer(batch,h,w,c,size, alpha, beta, kappa);
    option_unused(options);
    return layer;
}
void parse_net_options(list *options, network *net)
{
    net->batch = option_find_int(options, "batch",1);
    net->learning_rate = option_find_float(options, "learning_rate", .001);
    net->momentum = option_find_float(options, "momentum", .9);
    net->decay = option_find_float(options, "decay", .0001);
    net->seen = option_find_int(options, "seen",0);
    net->h = option_find_int_quiet(options, "height",0);
    net->w = option_find_int_quiet(options, "width",0);
    net->c = option_find_int_quiet(options, "channels",0);
    net->inputs = option_find_int_quiet(options, "inputs", net->h * net->w * net->c);
    if(!net->inputs && !(net->h && net->w && net->c)) error("No input parameters supplied");
}
network parse_network_cfg(char *filename)
{
    list *sections = read_cfg(filename);
    network net = make_network(sections->size, 0);
    node *n = sections->front;
    int count = 0;
    while(n){
    if(!n) error("Config file has no sections");
    network net = make_network(sections->size - 1);
    size_params params;
        section *s = (section *)n->val;
        list *options = s->options;
    if(!is_network(s)) error("First section must be [net] or [network]");
    parse_net_options(options, &net);
    params.h = net.h;
    params.w = net.w;
    params.c = net.c;
    params.inputs = net.inputs;
    params.batch = net.batch;
    n = n->next;
    int count = 0;
    while(n){
        fprintf(stderr, "%d: ", count);
        s = (section *)n->val;
        options = s->options;
        if(is_convolutional(s)){
            convolutional_layer *layer = parse_convolutional(options, &net, count);
            convolutional_layer *layer = parse_convolutional(options, params);
            net.types[count] = CONVOLUTIONAL;
            net.layers[count] = layer;
        }else if(is_deconvolutional(s)){
            deconvolutional_layer *layer = parse_deconvolutional(options, &net, count);
            deconvolutional_layer *layer = parse_deconvolutional(options, params);
            net.types[count] = DECONVOLUTIONAL;
            net.layers[count] = layer;
        }else if(is_connected(s)){
            connected_layer *layer = parse_connected(options, &net, count);
            connected_layer *layer = parse_connected(options, params);
            net.types[count] = CONNECTED;
            net.layers[count] = layer;
        }else if(is_crop(s)){
            crop_layer *layer = parse_crop(options, &net, count);
            crop_layer *layer = parse_crop(options, params);
            net.types[count] = CROP;
            net.layers[count] = layer;
        }else if(is_cost(s)){
            cost_layer *layer = parse_cost(options, &net, count);
            cost_layer *layer = parse_cost(options, params);
            net.types[count] = COST;
            net.layers[count] = layer;
        }else if(is_detection(s)){
            detection_layer *layer = parse_detection(options, &net, count);
            detection_layer *layer = parse_detection(options, params);
            net.types[count] = DETECTION;
            net.layers[count] = layer;
        }else if(is_softmax(s)){
            softmax_layer *layer = parse_softmax(options, &net, count);
            softmax_layer *layer = parse_softmax(options, params);
            net.types[count] = SOFTMAX;
            net.layers[count] = layer;
        }else if(is_maxpool(s)){
            maxpool_layer *layer = parse_maxpool(options, &net, count);
            maxpool_layer *layer = parse_maxpool(options, params);
            net.types[count] = MAXPOOL;
            net.layers[count] = layer;
        }else if(is_normalization(s)){
            normalization_layer *layer = parse_normalization(options, &net, count);
            normalization_layer *layer = parse_normalization(options, params);
            net.types[count] = NORMALIZATION;
            net.layers[count] = layer;
        }else if(is_dropout(s)){
            dropout_layer *layer = parse_dropout(options, &net, count);
            dropout_layer *layer = parse_dropout(options, params);
            net.types[count] = DROPOUT;
            net.layers[count] = layer;
        }else if(is_freeweight(s)){
            //freeweight_layer *layer = parse_freeweight(options, &net, count);
            //net.types[count] = FREEWEIGHT;
            //net.layers[count] = layer;
            fprintf(stderr, "Type not recognized: %s\n", s->type);
        }else{
            fprintf(stderr, "Type not recognized: %s\n", s->type);
        }
        free_section(s);
        ++count;
        n = n->next;
        if(n){
            image im = get_network_image_layer(net, count);
            params.h = im.h;
            params.w = im.w;
            params.c = im.c;
            params.inputs = get_network_output_size_layer(net, count);
        }
        ++count;
    }   
    free_list(sections);
    net.outputs = get_network_output_size(net);
@@ -448,6 +363,11 @@
    return (strcmp(s->type, "[conv]")==0
            || strcmp(s->type, "[convolutional]")==0);
}
int is_network(section *s)
{
    return (strcmp(s->type, "[net]")==0
            || strcmp(s->type, "[network]")==0);
}
int is_connected(section *s)
{
    return (strcmp(s->type, "[conn]")==0
@@ -462,10 +382,6 @@
{
    return (strcmp(s->type, "[dropout]")==0);
}
int is_freeweight(section *s)
{
    return (strcmp(s->type, "[freeweight]")==0);
}
int is_softmax(section *s)
{
@@ -538,24 +454,6 @@
    #endif
    int i;
    fprintf(fp, "[convolutional]\n");
    if(count == 0) {
        fprintf(fp,   "batch=%d\n"
                "height=%d\n"
                "width=%d\n"
                "channels=%d\n"
                "learning_rate=%g\n"
                "momentum=%g\n"
                "decay=%g\n"
                "seen=%d\n",
                l->batch,l->h, l->w, l->c, l->learning_rate, l->momentum, l->decay, net.seen);
    } else {
        if(l->learning_rate != net.learning_rate)
            fprintf(fp, "learning_rate=%g\n", l->learning_rate);
        if(l->momentum != net.momentum)
            fprintf(fp, "momentum=%g\n", l->momentum);
        if(l->decay != net.decay)
            fprintf(fp, "decay=%g\n", l->decay);
    }
    fprintf(fp, "filters=%d\n"
            "size=%d\n"
            "stride=%d\n"
@@ -578,24 +476,6 @@
    #endif
    int i;
    fprintf(fp, "[deconvolutional]\n");
    if(count == 0) {
        fprintf(fp,   "batch=%d\n"
                "height=%d\n"
                "width=%d\n"
                "channels=%d\n"
                "learning_rate=%g\n"
                "momentum=%g\n"
                "decay=%g\n"
                "seen=%d\n",
                l->batch,l->h, l->w, l->c, l->learning_rate, l->momentum, l->decay, net.seen);
    } else {
        if(l->learning_rate != net.learning_rate)
            fprintf(fp, "learning_rate=%g\n", l->learning_rate);
        if(l->momentum != net.momentum)
            fprintf(fp, "momentum=%g\n", l->momentum);
        if(l->decay != net.decay)
            fprintf(fp, "decay=%g\n", l->decay);
    }
    fprintf(fp, "filters=%d\n"
            "size=%d\n"
            "stride=%d\n"
@@ -610,21 +490,9 @@
    fprintf(fp, "\n\n");
}
void print_freeweight_cfg(FILE *fp, freeweight_layer *l, network net, int count)
{
    fprintf(fp, "[freeweight]\n");
    if(count == 0){
        fprintf(fp, "batch=%d\ninput=%d\n",l->batch, l->inputs);
    }
    fprintf(fp, "\n");
}
void print_dropout_cfg(FILE *fp, dropout_layer *l, network net, int count)
{
    fprintf(fp, "[dropout]\n");
    if(count == 0){
        fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs);
    }
    fprintf(fp, "probability=%g\n\n", l->probability);
}
@@ -635,22 +503,6 @@
    #endif
    int i;
    fprintf(fp, "[connected]\n");
    if(count == 0){
        fprintf(fp, "batch=%d\n"
                "input=%d\n"
                "learning_rate=%g\n"
                "momentum=%g\n"
                "decay=%g\n"
                "seen=%d\n",
                l->batch, l->inputs, l->learning_rate, l->momentum, l->decay, net.seen);
    } else {
        if(l->learning_rate != net.learning_rate)
            fprintf(fp, "learning_rate=%g\n", l->learning_rate);
        if(l->momentum != net.momentum)
            fprintf(fp, "momentum=%g\n", l->momentum);
        if(l->decay != net.decay)
            fprintf(fp, "decay=%g\n", l->decay);
    }
    fprintf(fp, "output=%d\n"
            "activation=%s\n",
            l->outputs,
@@ -666,39 +518,18 @@
void print_crop_cfg(FILE *fp, crop_layer *l, network net, int count)
{
    fprintf(fp, "[crop]\n");
    if(count == 0) {
        fprintf(fp,   "batch=%d\n"
                "height=%d\n"
                "width=%d\n"
                "channels=%d\n"
                "learning_rate=%g\n"
                "momentum=%g\n"
                "decay=%g\n"
                "seen=%d\n",
                l->batch,l->h, l->w, l->c, net.learning_rate, net.momentum, net.decay, net.seen);
    }
    fprintf(fp, "crop_height=%d\ncrop_width=%d\nflip=%d\n\n", l->crop_height, l->crop_width, l->flip);
}
void print_maxpool_cfg(FILE *fp, maxpool_layer *l, network net, int count)
{
    fprintf(fp, "[maxpool]\n");
    if(count == 0) fprintf(fp,   "batch=%d\n"
            "height=%d\n"
            "width=%d\n"
            "channels=%d\n",
            l->batch,l->h, l->w, l->c);
    fprintf(fp, "size=%d\nstride=%d\n\n", l->size, l->stride);
}
void print_normalization_cfg(FILE *fp, normalization_layer *l, network net, int count)
{
    fprintf(fp, "[localresponsenormalization]\n");
    if(count == 0) fprintf(fp,   "batch=%d\n"
            "height=%d\n"
            "width=%d\n"
            "channels=%d\n",
            l->batch,l->h, l->w, l->c);
    fprintf(fp, "size=%d\n"
            "alpha=%g\n"
            "beta=%g\n"
@@ -708,7 +539,6 @@
void print_softmax_cfg(FILE *fp, softmax_layer *l, network net, int count)
{
    fprintf(fp, "[softmax]\n");
    if(count == 0) fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs);
    fprintf(fp, "\n");
}
@@ -722,7 +552,6 @@
void print_cost_cfg(FILE *fp, cost_layer *l, network net, int count)
{
    fprintf(fp, "[cost]\ntype=%s\n", get_cost_string(l->type));
    if(count == 0) fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs);
    fprintf(fp, "\n");
}
@@ -785,7 +614,6 @@
    fread(&net->momentum, sizeof(float), 1, fp);
    fread(&net->decay, sizeof(float), 1, fp);
    fread(&net->seen, sizeof(int), 1, fp);
    set_learning_network(net, net->learning_rate, net->momentum, net->decay);
    
    int i;
    for(i = 0; i < net->n && i < cutoff; ++i){
@@ -847,8 +675,6 @@
            print_crop_cfg(fp, (crop_layer *)net.layers[i], net, i);
        else if(net.types[i] == MAXPOOL)
            print_maxpool_cfg(fp, (maxpool_layer *)net.layers[i], net, i);
        else if(net.types[i] == FREEWEIGHT)
            print_freeweight_cfg(fp, (freeweight_layer *)net.layers[i], net, i);
        else if(net.types[i] == DROPOUT)
            print_dropout_cfg(fp, (dropout_layer *)net.layers[i], net, i);
        else if(net.types[i] == NORMALIZATION)
src/softmax_layer.c
@@ -7,7 +7,7 @@
#include <stdio.h>
#include <assert.h>
softmax_layer *make_softmax_layer(int batch, int groups, int inputs)
softmax_layer *make_softmax_layer(int batch, int inputs, int groups)
{
    assert(inputs%groups == 0);
    fprintf(stderr, "Softmax Layer: %d inputs\n", inputs);
@@ -42,21 +42,21 @@
    }
}
void forward_softmax_layer(const softmax_layer layer, float *input)
void forward_softmax_layer(const softmax_layer layer, network_state state)
{
    int b;
    int inputs = layer.inputs / layer.groups;
    int batch = layer.batch * layer.groups;
    for(b = 0; b < batch; ++b){
        softmax_array(input+b*inputs, inputs, layer.output+b*inputs);
        softmax_array(state.input+b*inputs, inputs, layer.output+b*inputs);
    }
}
void backward_softmax_layer(const softmax_layer layer, float *delta)
void backward_softmax_layer(const softmax_layer layer, network_state state)
{
    int i;
    for(i = 0; i < layer.inputs*layer.batch; ++i){
        delta[i] = layer.delta[i];
        state.delta[i] = layer.delta[i];
    }
}
src/softmax_layer.h
@@ -1,5 +1,6 @@
#ifndef SOFTMAX_LAYER_H
#define SOFTMAX_LAYER_H
#include "params.h"
typedef struct {
    int inputs;
@@ -14,14 +15,14 @@
} softmax_layer;
void softmax_array(float *input, int n, float *output);
softmax_layer *make_softmax_layer(int batch, int groups, int inputs);
void forward_softmax_layer(const softmax_layer layer, float *input);
void backward_softmax_layer(const softmax_layer layer, float *delta);
softmax_layer *make_softmax_layer(int batch, int inputs, int groups);
void forward_softmax_layer(const softmax_layer layer, network_state state);
void backward_softmax_layer(const softmax_layer layer, network_state state);
#ifdef GPU
void pull_softmax_layer_output(const softmax_layer layer);
void forward_softmax_layer_gpu(const softmax_layer layer, float *input);
void backward_softmax_layer_gpu(const softmax_layer layer, float *delta);
void forward_softmax_layer_gpu(const softmax_layer layer, network_state state);
void backward_softmax_layer_gpu(const softmax_layer layer, network_state state);
#endif
#endif
src/softmax_layer_kernels.cu
@@ -32,23 +32,17 @@
    cuda_pull_array(layer.output_gpu, layer.output, layer.inputs*layer.batch);
}
extern "C" void forward_softmax_layer_gpu(const softmax_layer layer, float *input)
extern "C" void forward_softmax_layer_gpu(const softmax_layer layer, network_state state)
{
    int inputs = layer.inputs / layer.groups;
    int batch = layer.batch * layer.groups;
    forward_softmax_layer_kernel<<<cuda_gridsize(batch), BLOCK>>>(inputs, batch, input, layer.output_gpu);
    forward_softmax_layer_kernel<<<cuda_gridsize(batch), BLOCK>>>(inputs, batch, state.input, layer.output_gpu);
    check_error(cudaPeekAtLastError());
    /*
    cl_read_array(layer.output_cl, layer.output, layer.inputs*layer.batch);
    int z;
    for(z = 0; z < layer.inputs*layer.batch; ++z) printf("%f,",layer.output[z]);
    */
}
extern "C" void backward_softmax_layer_gpu(const softmax_layer layer, float *delta)
extern "C" void backward_softmax_layer_gpu(const softmax_layer layer, network_state state)
{
    copy_ongpu(layer.batch*layer.inputs, layer.delta_gpu, 1, delta, 1);
    copy_ongpu(layer.batch*layer.inputs, layer.delta_gpu, 1, state.delta, 1);
}
/* This is if you want softmax w/o log-loss classification. You probably don't.