Convolutional layers working w/ matrices
| | |
| | | CC=gcc |
| | | COMMON=-Wall `pkg-config --cflags opencv` |
| | | CFLAGS= $(COMMON) -Ofast -ffast-math -flto |
| | | CFLAGS= $(COMMON) -O3 -ffast-math -flto |
| | | UNAME = $(shell uname) |
| | | ifeq ($(UNAME), Darwin) |
| | | COMMON += -isystem /usr/local/Cellar/opencv/2.4.6.1/include/opencv -isystem /usr/local/Cellar/opencv/2.4.6.1/include |
| | |
| | | height=28 |
| | | channels=1 |
| | | filters=20 |
| | | size=5 |
| | | size=11 |
| | | stride=1 |
| | | activation=linear |
| | | |
| | |
| | | return RELU; |
| | | } |
| | | |
| | | double activate(double x, ACTIVATION a){ |
| | | float activate(float x, ACTIVATION a){ |
| | | switch(a){ |
| | | case LINEAR: |
| | | return x; |
| | |
| | | } |
| | | return 0; |
| | | } |
| | | double gradient(double x, ACTIVATION a){ |
| | | float gradient(float x, ACTIVATION a){ |
| | | switch(a){ |
| | | case LINEAR: |
| | | return 1; |
| | |
| | | |
| | | ACTIVATION get_activation(char *s); |
| | | |
| | | double activate(double x, ACTIVATION a); |
| | | double gradient(double x, ACTIVATION a); |
| | | float activate(float x, ACTIVATION a); |
| | | float gradient(float x, ACTIVATION a); |
| | | |
| | | #endif |
| | | |
| | |
| | | layer->inputs = inputs; |
| | | layer->outputs = outputs; |
| | | |
| | | layer->output = calloc(outputs, sizeof(double*)); |
| | | layer->delta = calloc(outputs, sizeof(double*)); |
| | | layer->output = calloc(outputs, sizeof(float*)); |
| | | layer->delta = calloc(outputs, sizeof(float*)); |
| | | |
| | | layer->weight_updates = calloc(inputs*outputs, sizeof(double)); |
| | | layer->weight_momentum = calloc(inputs*outputs, sizeof(double)); |
| | | layer->weights = calloc(inputs*outputs, sizeof(double)); |
| | | double scale = 2./inputs; |
| | | layer->weight_updates = calloc(inputs*outputs, sizeof(float)); |
| | | layer->weight_momentum = calloc(inputs*outputs, sizeof(float)); |
| | | layer->weights = calloc(inputs*outputs, sizeof(float)); |
| | | float scale = 2./inputs; |
| | | for(i = 0; i < inputs*outputs; ++i) |
| | | layer->weights[i] = rand_normal()*scale; |
| | | |
| | | layer->bias_updates = calloc(outputs, sizeof(double)); |
| | | layer->bias_momentum = calloc(outputs, sizeof(double)); |
| | | layer->biases = calloc(outputs, sizeof(double)); |
| | | layer->bias_updates = calloc(outputs, sizeof(float)); |
| | | layer->bias_momentum = calloc(outputs, sizeof(float)); |
| | | layer->biases = calloc(outputs, sizeof(float)); |
| | | for(i = 0; i < outputs; ++i) |
| | | //layer->biases[i] = rand_normal()*scale + scale; |
| | | layer->biases[i] = 0; |
| | |
| | | return layer; |
| | | } |
| | | |
| | | void update_connected_layer(connected_layer layer, double step, double momentum, double decay) |
| | | void update_connected_layer(connected_layer layer, float step, float momentum, float decay) |
| | | { |
| | | int i; |
| | | for(i = 0; i < layer.outputs; ++i){ |
| | |
| | | layer.weight_momentum[i] = step*(layer.weight_updates[i] - decay*layer.weights[i]) + momentum*layer.weight_momentum[i]; |
| | | layer.weights[i] += layer.weight_momentum[i]; |
| | | } |
| | | memset(layer.bias_updates, 0, layer.outputs*sizeof(double)); |
| | | memset(layer.weight_updates, 0, layer.outputs*layer.inputs*sizeof(double)); |
| | | memset(layer.bias_updates, 0, layer.outputs*sizeof(float)); |
| | | memset(layer.weight_updates, 0, layer.outputs*layer.inputs*sizeof(float)); |
| | | } |
| | | |
| | | void forward_connected_layer(connected_layer layer, double *input) |
| | | void forward_connected_layer(connected_layer layer, float *input) |
| | | { |
| | | int i; |
| | | memcpy(layer.output, layer.biases, layer.outputs*sizeof(double)); |
| | | memcpy(layer.output, layer.biases, layer.outputs*sizeof(float)); |
| | | int m = 1; |
| | | int k = layer.inputs; |
| | | int n = layer.outputs; |
| | | double *a = input; |
| | | double *b = layer.weights; |
| | | double *c = layer.output; |
| | | float *a = input; |
| | | float *b = layer.weights; |
| | | float *c = layer.output; |
| | | gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); |
| | | for(i = 0; i < layer.outputs; ++i){ |
| | | layer.output[i] = activate(layer.output[i], layer.activation); |
| | | } |
| | | } |
| | | |
| | | void learn_connected_layer(connected_layer layer, double *input) |
| | | void learn_connected_layer(connected_layer layer, float *input) |
| | | { |
| | | int i; |
| | | for(i = 0; i < layer.outputs; ++i){ |
| | |
| | | int m = layer.inputs; |
| | | int k = 1; |
| | | int n = layer.outputs; |
| | | double *a = input; |
| | | double *b = layer.delta; |
| | | double *c = layer.weight_updates; |
| | | float *a = input; |
| | | float *b = layer.delta; |
| | | float *c = layer.weight_updates; |
| | | gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); |
| | | } |
| | | |
| | | void backward_connected_layer(connected_layer layer, double *input, double *delta) |
| | | void backward_connected_layer(connected_layer layer, float *input, float *delta) |
| | | { |
| | | memset(delta, 0, layer.inputs*sizeof(double)); |
| | | memset(delta, 0, layer.inputs*sizeof(float)); |
| | | |
| | | int m = layer.inputs; |
| | | int k = layer.outputs; |
| | | int n = 1; |
| | | |
| | | double *a = layer.weights; |
| | | double *b = layer.delta; |
| | | double *c = delta; |
| | | float *a = layer.weights; |
| | | float *b = layer.delta; |
| | | float *c = delta; |
| | | |
| | | gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); |
| | | } |
| | | /* |
| | | void forward_connected_layer(connected_layer layer, double *input) |
| | | void forward_connected_layer(connected_layer layer, float *input) |
| | | { |
| | | int i, j; |
| | | for(i = 0; i < layer.outputs; ++i){ |
| | |
| | | layer.output[i] = activate(layer.output[i], layer.activation); |
| | | } |
| | | } |
| | | void learn_connected_layer(connected_layer layer, double *input) |
| | | void learn_connected_layer(connected_layer layer, float *input) |
| | | { |
| | | int i, j; |
| | | for(i = 0; i < layer.outputs; ++i){ |
| | |
| | | } |
| | | } |
| | | } |
| | | void backward_connected_layer(connected_layer layer, double *input, double *delta) |
| | | void backward_connected_layer(connected_layer layer, float *input, float *delta) |
| | | { |
| | | int i, j; |
| | | |
| | |
| | | typedef struct{ |
| | | int inputs; |
| | | int outputs; |
| | | double *weights; |
| | | double *biases; |
| | | float *weights; |
| | | float *biases; |
| | | |
| | | double *weight_updates; |
| | | double *bias_updates; |
| | | float *weight_updates; |
| | | float *bias_updates; |
| | | |
| | | double *weight_momentum; |
| | | double *bias_momentum; |
| | | float *weight_momentum; |
| | | float *bias_momentum; |
| | | |
| | | double *output; |
| | | double *delta; |
| | | float *output; |
| | | float *delta; |
| | | |
| | | ACTIVATION activation; |
| | | |
| | |
| | | |
| | | connected_layer *make_connected_layer(int inputs, int outputs, ACTIVATION activation); |
| | | |
| | | void forward_connected_layer(connected_layer layer, double *input); |
| | | void backward_connected_layer(connected_layer layer, double *input, double *delta); |
| | | void learn_connected_layer(connected_layer layer, double *input); |
| | | void update_connected_layer(connected_layer layer, double step, double momentum, double decay); |
| | | void forward_connected_layer(connected_layer layer, float *input); |
| | | void backward_connected_layer(connected_layer layer, float *input, float *delta); |
| | | void learn_connected_layer(connected_layer layer, float *input); |
| | | void update_connected_layer(connected_layer layer, float step, float momentum, float decay); |
| | | |
| | | |
| | | #endif |
| | |
| | | h = layer.out_h; |
| | | w = layer.out_w; |
| | | c = layer.n; |
| | | return double_to_image(h,w,c,layer.output); |
| | | return float_to_image(h,w,c,layer.output); |
| | | } |
| | | |
| | | image get_convolutional_delta(convolutional_layer layer) |
| | |
| | | h = layer.out_h; |
| | | w = layer.out_w; |
| | | c = layer.n; |
| | | return double_to_image(h,w,c,layer.delta); |
| | | return float_to_image(h,w,c,layer.delta); |
| | | } |
| | | |
| | | convolutional_layer *make_convolutional_layer(int h, int w, int c, int n, int size, int stride, ACTIVATION activation) |
| | |
| | | layer->stride = stride; |
| | | layer->size = size; |
| | | |
| | | layer->filters = calloc(c*n*size*size, sizeof(double)); |
| | | layer->filter_updates = calloc(c*n*size*size, sizeof(double)); |
| | | layer->filter_momentum = calloc(c*n*size*size, sizeof(double)); |
| | | layer->filters = calloc(c*n*size*size, sizeof(float)); |
| | | layer->filter_updates = calloc(c*n*size*size, sizeof(float)); |
| | | layer->filter_momentum = calloc(c*n*size*size, sizeof(float)); |
| | | |
| | | layer->biases = calloc(n, sizeof(double)); |
| | | layer->bias_updates = calloc(n, sizeof(double)); |
| | | layer->bias_momentum = calloc(n, sizeof(double)); |
| | | double scale = 2./(size*size); |
| | | layer->biases = calloc(n, sizeof(float)); |
| | | layer->bias_updates = calloc(n, sizeof(float)); |
| | | layer->bias_momentum = calloc(n, sizeof(float)); |
| | | float scale = 2./(size*size); |
| | | for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = rand_normal()*scale; |
| | | for(i = 0; i < n; ++i){ |
| | | //layer->biases[i] = rand_normal()*scale + scale; |
| | |
| | | out_h = (h-size)/stride + 1; |
| | | out_w = (w-size)/stride + 1; |
| | | |
| | | layer->col_image = calloc(out_h*out_w*size*size*c, sizeof(double)); |
| | | layer->output = calloc(out_h * out_w * n, sizeof(double)); |
| | | layer->delta = calloc(out_h * out_w * n, sizeof(double)); |
| | | layer->col_image = calloc(out_h*out_w*size*size*c, sizeof(float)); |
| | | layer->output = calloc(out_h * out_w * n, sizeof(float)); |
| | | layer->delta = calloc(out_h * out_w * n, sizeof(float)); |
| | | layer->activation = activation; |
| | | layer->out_h = out_h; |
| | | layer->out_w = out_w; |
| | |
| | | return layer; |
| | | } |
| | | |
| | | void forward_convolutional_layer(const convolutional_layer layer, double *in) |
| | | void forward_convolutional_layer(const convolutional_layer layer, float *in) |
| | | { |
| | | int m = layer.n; |
| | | int k = layer.size*layer.size*layer.c; |
| | | int n = ((layer.h-layer.size)/layer.stride + 1)* |
| | | ((layer.w-layer.size)/layer.stride + 1); |
| | | |
| | | memset(layer.output, 0, m*n*sizeof(double)); |
| | | memset(layer.output, 0, m*n*sizeof(float)); |
| | | |
| | | double *a = layer.filters; |
| | | double *b = layer.col_image; |
| | | double *c = layer.output; |
| | | float *a = layer.filters; |
| | | float *b = layer.col_image; |
| | | float *c = layer.output; |
| | | |
| | | im2col_cpu(in, layer.c, layer.h, layer.w, layer.size, layer.stride, b); |
| | | gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); |
| | |
| | | int i,j; |
| | | int size = layer.out_h*layer.out_w; |
| | | for(i = 0; i < layer.n; ++i){ |
| | | double sum = 0; |
| | | float sum = 0; |
| | | for(j = 0; j < size; ++j){ |
| | | sum += layer.delta[j+i*size]; |
| | | } |
| | |
| | | int k = ((layer.h-layer.size)/layer.stride + 1)* |
| | | ((layer.w-layer.size)/layer.stride + 1); |
| | | |
| | | double *a = layer.delta; |
| | | double *b = layer.col_image; |
| | | double *c = layer.filter_updates; |
| | | float *a = layer.delta; |
| | | float *b = layer.col_image; |
| | | float *c = layer.filter_updates; |
| | | |
| | | gemm(0,1,m,n,k,1,a,k,b,k,1,c,n); |
| | | } |
| | | |
| | | void update_convolutional_layer(convolutional_layer layer, double step, double momentum, double decay) |
| | | void backward_convolutional_layer(convolutional_layer layer, float *delta) |
| | | { |
| | | int m = layer.size*layer.size*layer.c; |
| | | int k = layer.n; |
| | | int n = ((layer.h-layer.size)/layer.stride + 1)* |
| | | ((layer.w-layer.size)/layer.stride + 1); |
| | | |
| | | float *a = layer.filters; |
| | | float *b = layer.delta; |
| | | float *c = layer.col_image; |
| | | |
| | | |
| | | memset(c, 0, m*n*sizeof(float)); |
| | | gemm(1,0,m,n,k,1,a,m,b,n,1,c,n); |
| | | |
| | | memset(delta, 0, layer.h*layer.w*layer.c*sizeof(float)); |
| | | col2im_cpu(c, layer.c, layer.h, layer.w, layer.size, layer.stride, delta); |
| | | } |
| | | |
| | | void update_convolutional_layer(convolutional_layer layer, float step, float momentum, float decay) |
| | | { |
| | | int i; |
| | | int size = layer.size*layer.size*layer.c*layer.n; |
| | |
| | | } |
| | | /* |
| | | |
| | | void backward_convolutional_layer2(convolutional_layer layer, double *input, double *delta) |
| | | void backward_convolutional_layer2(convolutional_layer layer, float *input, float *delta) |
| | | { |
| | | image in_delta = double_to_image(layer.h, layer.w, layer.c, delta); |
| | | image in_delta = float_to_image(layer.h, layer.w, layer.c, delta); |
| | | image out_delta = get_convolutional_delta(layer); |
| | | int i,j; |
| | | for(i = 0; i < layer.n; ++i){ |
| | |
| | | } |
| | | |
| | | |
| | | void learn_convolutional_layer(convolutional_layer layer, double *input) |
| | | void learn_convolutional_layer(convolutional_layer layer, float *input) |
| | | { |
| | | int i; |
| | | image in_image = double_to_image(layer.h, layer.w, layer.c, input); |
| | | image in_image = float_to_image(layer.h, layer.w, layer.c, input); |
| | | image out_delta = get_convolutional_delta(layer); |
| | | gradient_delta_convolutional_layer(layer); |
| | | for(i = 0; i < layer.n; ++i){ |
| | |
| | | } |
| | | } |
| | | |
| | | void update_convolutional_layer(convolutional_layer layer, double step, double momentum, double decay) |
| | | void update_convolutional_layer(convolutional_layer layer, float step, float momentum, float decay) |
| | | { |
| | | int i,j; |
| | | for(i = 0; i < layer.n; ++i){ |
| | |
| | | void test_convolutional_layer() |
| | | { |
| | | convolutional_layer l = *make_convolutional_layer(4,4,1,1,3,1,LINEAR); |
| | | double input[] = {1,2,3,4, |
| | | float input[] = {1,2,3,4, |
| | | 5,6,7,8, |
| | | 9,10,11,12, |
| | | 13,14,15,16}; |
| | | double filter[] = {.5, 0, .3, |
| | | float filter[] = {.5, 0, .3, |
| | | 0 , 1, 0, |
| | | .2 , 0, 1}; |
| | | double delta[] = {1, 2, |
| | | float delta[] = {1, 2, |
| | | 3, 4}; |
| | | float in_delta[] = {.5,1,.3,.6, |
| | | 5,6,7,8, |
| | | 9,10,11,12, |
| | | 13,14,15,16}; |
| | | l.filters = filter; |
| | | forward_convolutional_layer(l, input); |
| | | l.delta = delta; |
| | | learn_convolutional_layer(l); |
| | | image filter_updates = double_to_image(3,3,1,l.filter_updates); |
| | | image filter_updates = float_to_image(3,3,1,l.filter_updates); |
| | | print_image(filter_updates); |
| | | printf("Delta:\n"); |
| | | backward_convolutional_layer(l, in_delta); |
| | | pm(4,4,in_delta); |
| | | } |
| | | |
| | | image get_convolutional_filter(convolutional_layer layer, int i) |
| | |
| | | int h = layer.size; |
| | | int w = layer.size; |
| | | int c = layer.c; |
| | | return double_to_image(h,w,c,layer.filters+i*h*w*c); |
| | | return float_to_image(h,w,c,layer.filters+i*h*w*c); |
| | | } |
| | | |
| | | void visualize_convolutional_layer(convolutional_layer layer, char *window) |
| | |
| | | int n; |
| | | int size; |
| | | int stride; |
| | | double *filters; |
| | | double *filter_updates; |
| | | double *filter_momentum; |
| | | float *filters; |
| | | float *filter_updates; |
| | | float *filter_momentum; |
| | | |
| | | double *biases; |
| | | double *bias_updates; |
| | | double *bias_momentum; |
| | | float *biases; |
| | | float *bias_updates; |
| | | float *bias_momentum; |
| | | |
| | | double *col_image; |
| | | double *delta; |
| | | double *output; |
| | | float *col_image; |
| | | float *delta; |
| | | float *output; |
| | | |
| | | ACTIVATION activation; |
| | | } convolutional_layer; |
| | | |
| | | convolutional_layer *make_convolutional_layer(int h, int w, int c, int n, int size, int stride, ACTIVATION activation); |
| | | void forward_convolutional_layer(const convolutional_layer layer, double *in); |
| | | void forward_convolutional_layer(const convolutional_layer layer, float *in); |
| | | void learn_convolutional_layer(convolutional_layer layer); |
| | | void update_convolutional_layer(convolutional_layer layer, double step, double momentum, double decay); |
| | | void update_convolutional_layer(convolutional_layer layer, float step, float momentum, float decay); |
| | | void visualize_convolutional_layer(convolutional_layer layer, char *window); |
| | | |
| | | //void backward_convolutional_layer(convolutional_layer layer, double *input, double *delta); |
| | | void backward_convolutional_layer(convolutional_layer layer, float *delta); |
| | | |
| | | //void backpropagate_convolutional_layer_convolve(image input, convolutional_layer layer); |
| | | //void visualize_convolutional_filters(convolutional_layer layer, char *window); |
| | |
| | | return lines; |
| | | } |
| | | |
| | | void fill_truth(char *path, char **labels, int k, double *truth) |
| | | void fill_truth(char *path, char **labels, int k, float *truth) |
| | | { |
| | | int i; |
| | | memset(truth, 0, k*sizeof(double)); |
| | | memset(truth, 0, k*sizeof(float)); |
| | | for(i = 0; i < k; ++i){ |
| | | if(strstr(path, labels[i])){ |
| | | truth[i] = 1; |
| | |
| | | data d; |
| | | d.shallow = 0; |
| | | d.X.rows = n; |
| | | d.X.vals = calloc(d.X.rows, sizeof(double*)); |
| | | d.X.vals = calloc(d.X.rows, sizeof(float*)); |
| | | d.y = make_matrix(n, k); |
| | | |
| | | for(i = 0; i < n; ++i){ |
| | |
| | | data d; |
| | | d.shallow = 0; |
| | | matrix X = csv_to_matrix(filename); |
| | | double *truth_1d = pop_column(&X, target); |
| | | double **truth = one_hot_encode(truth_1d, X.rows, k); |
| | | float *truth_1d = pop_column(&X, target); |
| | | float **truth = one_hot_encode(truth_1d, X.rows, k); |
| | | matrix y; |
| | | y.rows = X.rows; |
| | | y.cols = k; |
| | |
| | | int i; |
| | | for(i = d.X.rows-1; i > 0; --i){ |
| | | int index = rand()%i; |
| | | double *swap = d.X.vals[index]; |
| | | float *swap = d.X.vals[index]; |
| | | d.X.vals[index] = d.X.vals[i]; |
| | | d.X.vals[i] = swap; |
| | | |
| | |
| | | train.X.cols = test.X.cols = d.X.cols; |
| | | train.y.cols = test.y.cols = d.y.cols; |
| | | |
| | | train.X.vals = calloc(train.X.rows, sizeof(double*)); |
| | | test.X.vals = calloc(test.X.rows, sizeof(double*)); |
| | | train.y.vals = calloc(train.y.rows, sizeof(double*)); |
| | | test.y.vals = calloc(test.y.rows, sizeof(double*)); |
| | | train.X.vals = calloc(train.X.rows, sizeof(float*)); |
| | | test.X.vals = calloc(test.X.rows, sizeof(float*)); |
| | | train.y.vals = calloc(train.y.rows, sizeof(float*)); |
| | | test.y.vals = calloc(test.y.rows, sizeof(float*)); |
| | | |
| | | for(i = 0; i < start; ++i){ |
| | | train.X.vals[i] = d.X.vals[i]; |
| | |
| | | for(k = 0; k < source.c; ++k){ |
| | | for(i = 0; i < source.h; ++i){ |
| | | for(j = 0; j < source.w; ++j){ |
| | | double val = get_pixel(source, i,j,k); |
| | | float val = get_pixel(source, i,j,k); |
| | | set_pixel(dest, h+i, w+j, k, val); |
| | | } |
| | | } |
| | |
| | | |
| | | void normalize_image(image p) |
| | | { |
| | | double *min = calloc(p.c, sizeof(double)); |
| | | double *max = calloc(p.c, sizeof(double)); |
| | | float *min = calloc(p.c, sizeof(float)); |
| | | float *max = calloc(p.c, sizeof(float)); |
| | | int i,j; |
| | | for(i = 0; i < p.c; ++i) min[i] = max[i] = p.data[i*p.h*p.w]; |
| | | |
| | | for(j = 0; j < p.c; ++j){ |
| | | for(i = 0; i < p.h*p.w; ++i){ |
| | | double v = p.data[i+j*p.h*p.w]; |
| | | float v = p.data[i+j*p.h*p.w]; |
| | | if(v < min[j]) min[j] = v; |
| | | if(v > max[j]) max[j] = v; |
| | | } |
| | |
| | | free(max); |
| | | } |
| | | |
| | | double avg_image_layer(image m, int l) |
| | | float avg_image_layer(image m, int l) |
| | | { |
| | | int i; |
| | | double sum = 0; |
| | | float sum = 0; |
| | | for(i = 0; i < m.h*m.w; ++i){ |
| | | sum += m.data[l*m.h*m.w + i]; |
| | | } |
| | | return sum/(m.h*m.w); |
| | | } |
| | | |
| | | void threshold_image(image p, double t) |
| | | void threshold_image(image p, float t) |
| | | { |
| | | int i; |
| | | for(i = 0; i < p.w*p.h*p.c; ++i){ |
| | |
| | | image copy_image(image p) |
| | | { |
| | | image copy = p; |
| | | copy.data = calloc(p.h*p.w*p.c, sizeof(double)); |
| | | memcpy(copy.data, p.data, p.h*p.w*p.c*sizeof(double)); |
| | | copy.data = calloc(p.h*p.w*p.c, sizeof(float)); |
| | | memcpy(copy.data, p.data, p.h*p.w*p.c*sizeof(float)); |
| | | return copy; |
| | | } |
| | | |
| | |
| | | image make_image(int h, int w, int c) |
| | | { |
| | | image out = make_empty_image(h,w,c); |
| | | out.data = calloc(h*w*c, sizeof(double)); |
| | | out.data = calloc(h*w*c, sizeof(float)); |
| | | return out; |
| | | } |
| | | |
| | | image double_to_image(int h, int w, int c, double *data) |
| | | image float_to_image(int h, int w, int c, float *data) |
| | | { |
| | | image out = make_empty_image(h,w,c); |
| | | out.data = data; |
| | |
| | | |
| | | void zero_image(image m) |
| | | { |
| | | memset(m.data, 0, m.h*m.w*m.c*sizeof(double)); |
| | | memset(m.data, 0, m.h*m.w*m.c*sizeof(float)); |
| | | } |
| | | |
| | | void zero_channel(image m, int c) |
| | | { |
| | | memset(&(m.data[c*m.h*m.w]), 0, m.h*m.w*sizeof(double)); |
| | | memset(&(m.data[c*m.h*m.w]), 0, m.h*m.w*sizeof(float)); |
| | | } |
| | | |
| | | void rotate_image(image m) |
| | |
| | | int i,j; |
| | | for(j = 0; j < m.c; ++j){ |
| | | for(i = 0; i < m.h*m.w/2; ++i){ |
| | | double swap = m.data[j*m.h*m.w + i]; |
| | | float swap = m.data[j*m.h*m.w + i]; |
| | | m.data[j*m.h*m.w + i] = m.data[j*m.h*m.w + (m.h*m.w-1 - i)]; |
| | | m.data[j*m.h*m.w + (m.h*m.w-1 - i)] = swap; |
| | | } |
| | |
| | | return out; |
| | | } |
| | | |
| | | void add_scalar_image(image m, double s) |
| | | void add_scalar_image(image m, float s) |
| | | { |
| | | int i; |
| | | for(i = 0; i < m.h*m.w*m.c; ++i) m.data[i] += s; |
| | | } |
| | | |
| | | void scale_image(image m, double s) |
| | | void scale_image(image m, float s) |
| | | { |
| | | int i; |
| | | for(i = 0; i < m.h*m.w*m.c; ++i) m.data[i] *= s; |
| | | } |
| | | |
| | | image make_random_kernel(int size, int c, double scale) |
| | | image make_random_kernel(int size, int c, float scale) |
| | | { |
| | | int pad; |
| | | if((pad=(size%2==0))) ++size; |
| | |
| | | return out; |
| | | } |
| | | |
| | | double get_pixel(image m, int x, int y, int c) |
| | | float get_pixel(image m, int x, int y, int c) |
| | | { |
| | | assert(x < m.h && y < m.w && c < m.c); |
| | | return m.data[c*m.h*m.w + x*m.w + y]; |
| | | } |
| | | double get_pixel_extend(image m, int x, int y, int c) |
| | | float get_pixel_extend(image m, int x, int y, int c) |
| | | { |
| | | if(x < 0 || x >= m.h || y < 0 || y >= m.w || c < 0 || c >= m.c) return 0; |
| | | return get_pixel(m, x, y, c); |
| | | } |
| | | void set_pixel(image m, int x, int y, int c, double val) |
| | | void set_pixel(image m, int x, int y, int c, float val) |
| | | { |
| | | assert(x < m.h && y < m.w && c < m.c); |
| | | m.data[c*m.h*m.w + x*m.w + y] = val; |
| | | } |
| | | void set_pixel_extend(image m, int x, int y, int c, double val) |
| | | void set_pixel_extend(image m, int x, int y, int c, float val) |
| | | { |
| | | if(x < 0 || x >= m.h || y < 0 || y >= m.w || c < 0 || c >= m.c) return; |
| | | set_pixel(m, x, y, c, val); |
| | | } |
| | | |
| | | void add_pixel(image m, int x, int y, int c, double val) |
| | | void add_pixel(image m, int x, int y, int c, float val) |
| | | { |
| | | assert(x < m.h && y < m.w && c < m.c); |
| | | m.data[c*m.h*m.w + x*m.w + y] += val; |
| | | } |
| | | |
| | | void add_pixel_extend(image m, int x, int y, int c, double val) |
| | | void add_pixel_extend(image m, int x, int y, int c, float val) |
| | | { |
| | | if(x < 0 || x >= m.h || y < 0 || y >= m.w || c < 0 || c >= m.c) return; |
| | | add_pixel(m, x, y, c, val); |
| | |
| | | } |
| | | for(x = xstart; x < xend; x += stride){ |
| | | for(y = ystart; y < yend; y += stride){ |
| | | double sum = 0; |
| | | float sum = 0; |
| | | for(i = 0; i < kernel.h; ++i){ |
| | | for(j = 0; j < kernel.w; ++j){ |
| | | sum += get_pixel(kernel, i, j, kc)*get_pixel_extend(m, x+i-kernel.h/2, y+j-kernel.w/2, mc); |
| | |
| | | } |
| | | } |
| | | |
| | | double single_convolve(image m, image kernel, int x, int y) |
| | | float single_convolve(image m, image kernel, int x, int y) |
| | | { |
| | | double sum = 0; |
| | | float sum = 0; |
| | | int i, j, k; |
| | | for(i = 0; i < kernel.h; ++i){ |
| | | for(j = 0; j < kernel.w; ++j){ |
| | |
| | | int j; |
| | | for(i = 0; i < m.h; i += stride){ |
| | | for(j = 0; j < m.w; j += stride){ |
| | | double val = single_convolve(m, kernel, i, j); |
| | | float val = single_convolve(m, kernel, i, j); |
| | | set_pixel(out, i/stride, j/stride, channel, val); |
| | | } |
| | | } |
| | |
| | | for(k = 0; k < m.c; ++k){ |
| | | for(i = 0; i < m.h; ++i){ |
| | | for(j = 0; j< m.w; ++j){ |
| | | double val = get_pixel(m, i, j, k); |
| | | float val = get_pixel(m, i, j, k); |
| | | set_pixel(out, i*stride, j*stride, k, val); |
| | | } |
| | | } |
| | | } |
| | | } |
| | | |
| | | void single_update(image m, image update, int x, int y, double error) |
| | | void single_update(image m, image update, int x, int y, float error) |
| | | { |
| | | int i, j, k; |
| | | for(i = 0; i < update.h; ++i){ |
| | | for(j = 0; j < update.w; ++j){ |
| | | for(k = 0; k < update.c; ++k){ |
| | | double val = get_pixel_extend(m, x+i-update.h/2, y+j-update.w/2, k); |
| | | float val = get_pixel_extend(m, x+i-update.h/2, y+j-update.w/2, k); |
| | | add_pixel(update, i, j, k, val*error); |
| | | } |
| | | } |
| | |
| | | } |
| | | for(i = istart; i < iend; i += stride){ |
| | | for(j = jstart; j < jend; j += stride){ |
| | | double error = get_pixel(out, (i-istart)/stride, (j-jstart)/stride, channel); |
| | | float error = get_pixel(out, (i-istart)/stride, (j-jstart)/stride, channel); |
| | | single_update(m, update, i, j, error); |
| | | } |
| | | } |
| | |
| | | */ |
| | | } |
| | | |
| | | void single_back_convolve(image m, image kernel, int x, int y, double val) |
| | | void single_back_convolve(image m, image kernel, int x, int y, float val) |
| | | { |
| | | int i, j, k; |
| | | for(i = 0; i < kernel.h; ++i){ |
| | | for(j = 0; j < kernel.w; ++j){ |
| | | for(k = 0; k < kernel.c; ++k){ |
| | | double pval = get_pixel(kernel, i, j, k) * val; |
| | | float pval = get_pixel(kernel, i, j, k) * val; |
| | | add_pixel_extend(m, x+i-kernel.h/2, y+j-kernel.w/2, k, pval); |
| | | } |
| | | } |
| | |
| | | } |
| | | for(i = istart; i < iend; i += stride){ |
| | | for(j = jstart; j < jend; j += stride){ |
| | | double val = get_pixel(out, (i-istart)/stride, (j-jstart)/stride, channel); |
| | | float val = get_pixel(out, (i-istart)/stride, (j-jstart)/stride, channel); |
| | | single_back_convolve(m, kernel, i, j, val); |
| | | } |
| | | } |
| | |
| | | int h; |
| | | int w; |
| | | int c; |
| | | double *data; |
| | | float *data; |
| | | } image; |
| | | |
| | | void scale_image(image m, double s); |
| | | void add_scalar_image(image m, double s); |
| | | void scale_image(image m, float s); |
| | | void add_scalar_image(image m, float s); |
| | | void normalize_image(image p); |
| | | void z_normalize_image(image p); |
| | | void threshold_image(image p, double t); |
| | | void threshold_image(image p, float t); |
| | | void zero_image(image m); |
| | | void rotate_image(image m); |
| | | void subtract_image(image a, image b); |
| | | double avg_image_layer(image m, int l); |
| | | float avg_image_layer(image m, int l); |
| | | void embed_image(image source, image dest, int h, int w); |
| | | image collapse_image_layers(image source, int border); |
| | | |
| | |
| | | image make_image(int h, int w, int c); |
| | | image make_empty_image(int h, int w, int c); |
| | | image make_random_image(int h, int w, int c); |
| | | image make_random_kernel(int size, int c, double scale); |
| | | image double_to_image(int h, int w, int c, double *data); |
| | | image make_random_kernel(int size, int c, float scale); |
| | | image float_to_image(int h, int w, int c, float *data); |
| | | image copy_image(image p); |
| | | image load_image(char *filename); |
| | | |
| | | double get_pixel(image m, int x, int y, int c); |
| | | double get_pixel_extend(image m, int x, int y, int c); |
| | | void set_pixel(image m, int x, int y, int c, double val); |
| | | float get_pixel(image m, int x, int y, int c); |
| | | float get_pixel_extend(image m, int x, int y, int c); |
| | | void set_pixel(image m, int x, int y, int c, float val); |
| | | |
| | | |
| | | image get_image_layer(image m, int l); |
| | |
| | | free(m.vals); |
| | | } |
| | | |
| | | double matrix_accuracy(matrix truth, matrix guess) |
| | | float matrix_accuracy(matrix truth, matrix guess) |
| | | { |
| | | int k = truth.cols; |
| | | int i; |
| | |
| | | int class = max_index(guess.vals[i], k); |
| | | if(truth.vals[i][class]) ++count; |
| | | } |
| | | return (double)count/truth.rows; |
| | | return (float)count/truth.rows; |
| | | } |
| | | |
| | | void matrix_add_matrix(matrix from, matrix to) |
| | |
| | | matrix m; |
| | | m.rows = rows; |
| | | m.cols = cols; |
| | | m.vals = calloc(m.rows, sizeof(double *)); |
| | | m.vals = calloc(m.rows, sizeof(float *)); |
| | | for(i = 0; i < m.rows; ++i){ |
| | | m.vals[i] = calloc(m.cols, sizeof(double)); |
| | | m.vals[i] = calloc(m.cols, sizeof(float)); |
| | | } |
| | | return m; |
| | | } |
| | |
| | | matrix h; |
| | | h.rows = n; |
| | | h.cols = m->cols; |
| | | h.vals = calloc(h.rows, sizeof(double *)); |
| | | h.vals = calloc(h.rows, sizeof(float *)); |
| | | for(i = 0; i < n; ++i){ |
| | | int index = rand()%m->rows; |
| | | h.vals[i] = m->vals[index]; |
| | |
| | | return h; |
| | | } |
| | | |
| | | double *pop_column(matrix *m, int c) |
| | | float *pop_column(matrix *m, int c) |
| | | { |
| | | double *col = calloc(m->rows, sizeof(double)); |
| | | float *col = calloc(m->rows, sizeof(float)); |
| | | int i, j; |
| | | for(i = 0; i < m->rows; ++i){ |
| | | col[i] = m->vals[i][c]; |
| | |
| | | |
| | | int n = 0; |
| | | int size = 1024; |
| | | m.vals = calloc(size, sizeof(double*)); |
| | | m.vals = calloc(size, sizeof(float*)); |
| | | while((line = fgetl(fp))){ |
| | | if(m.cols == -1) m.cols = count_fields(line); |
| | | if(n == size){ |
| | | size *= 2; |
| | | m.vals = realloc(m.vals, size*sizeof(double*)); |
| | | m.vals = realloc(m.vals, size*sizeof(float*)); |
| | | } |
| | | m.vals[n] = parse_fields(line, m.cols); |
| | | free(line); |
| | | ++n; |
| | | } |
| | | m.vals = realloc(m.vals, n*sizeof(double*)); |
| | | m.vals = realloc(m.vals, n*sizeof(float*)); |
| | | m.rows = n; |
| | | return m; |
| | | } |
| | |
| | | #define MATRIX_H |
| | | typedef struct matrix{ |
| | | int rows, cols; |
| | | double **vals; |
| | | float **vals; |
| | | } matrix; |
| | | |
| | | matrix make_matrix(int rows, int cols); |
| | |
| | | |
| | | matrix csv_to_matrix(char *filename); |
| | | matrix hold_out_matrix(matrix *m, int n); |
| | | double matrix_accuracy(matrix truth, matrix guess); |
| | | float matrix_accuracy(matrix truth, matrix guess); |
| | | void matrix_add_matrix(matrix from, matrix to); |
| | | |
| | | double *pop_column(matrix *m, int c); |
| | | float *pop_column(matrix *m, int c); |
| | | |
| | | #endif |
| | |
| | | int h = (layer.h-1)/layer.stride + 1; |
| | | int w = (layer.w-1)/layer.stride + 1; |
| | | int c = layer.c; |
| | | return double_to_image(h,w,c,layer.output); |
| | | return float_to_image(h,w,c,layer.output); |
| | | } |
| | | |
| | | image get_maxpool_delta(maxpool_layer layer) |
| | |
| | | int h = (layer.h-1)/layer.stride + 1; |
| | | int w = (layer.w-1)/layer.stride + 1; |
| | | int c = layer.c; |
| | | return double_to_image(h,w,c,layer.delta); |
| | | return float_to_image(h,w,c,layer.delta); |
| | | } |
| | | |
| | | maxpool_layer *make_maxpool_layer(int h, int w, int c, int stride) |
| | |
| | | layer->w = w; |
| | | layer->c = c; |
| | | layer->stride = stride; |
| | | layer->output = calloc(((h-1)/stride+1) * ((w-1)/stride+1) * c, sizeof(double)); |
| | | layer->delta = calloc(((h-1)/stride+1) * ((w-1)/stride+1) * c, sizeof(double)); |
| | | layer->output = calloc(((h-1)/stride+1) * ((w-1)/stride+1) * c, sizeof(float)); |
| | | layer->delta = calloc(((h-1)/stride+1) * ((w-1)/stride+1) * c, sizeof(float)); |
| | | return layer; |
| | | } |
| | | |
| | | void forward_maxpool_layer(const maxpool_layer layer, double *in) |
| | | void forward_maxpool_layer(const maxpool_layer layer, float *in) |
| | | { |
| | | image input = double_to_image(layer.h, layer.w, layer.c, in); |
| | | image input = float_to_image(layer.h, layer.w, layer.c, in); |
| | | image output = get_maxpool_image(layer); |
| | | int i,j,k; |
| | | for(i = 0; i < output.h*output.w*output.c; ++i) output.data[i] = -DBL_MAX; |
| | | for(k = 0; k < input.c; ++k){ |
| | | for(i = 0; i < input.h; ++i){ |
| | | for(j = 0; j < input.w; ++j){ |
| | | double val = get_pixel(input, i, j, k); |
| | | double cur = get_pixel(output, i/layer.stride, j/layer.stride, k); |
| | | float val = get_pixel(input, i, j, k); |
| | | float cur = get_pixel(output, i/layer.stride, j/layer.stride, k); |
| | | if(val > cur) set_pixel(output, i/layer.stride, j/layer.stride, k, val); |
| | | } |
| | | } |
| | | } |
| | | } |
| | | |
| | | void backward_maxpool_layer(const maxpool_layer layer, double *in, double *delta) |
| | | void backward_maxpool_layer(const maxpool_layer layer, float *in, float *delta) |
| | | { |
| | | image input = double_to_image(layer.h, layer.w, layer.c, in); |
| | | image input_delta = double_to_image(layer.h, layer.w, layer.c, delta); |
| | | image input = float_to_image(layer.h, layer.w, layer.c, in); |
| | | image input_delta = float_to_image(layer.h, layer.w, layer.c, delta); |
| | | image output_delta = get_maxpool_delta(layer); |
| | | image output = get_maxpool_image(layer); |
| | | int i,j,k; |
| | | for(k = 0; k < input.c; ++k){ |
| | | for(i = 0; i < input.h; ++i){ |
| | | for(j = 0; j < input.w; ++j){ |
| | | double val = get_pixel(input, i, j, k); |
| | | double cur = get_pixel(output, i/layer.stride, j/layer.stride, k); |
| | | double d = get_pixel(output_delta, i/layer.stride, j/layer.stride, k); |
| | | float val = get_pixel(input, i, j, k); |
| | | float cur = get_pixel(output, i/layer.stride, j/layer.stride, k); |
| | | float d = get_pixel(output_delta, i/layer.stride, j/layer.stride, k); |
| | | if(val == cur) { |
| | | set_pixel(input_delta, i, j, k, d); |
| | | } |
| | |
| | | typedef struct { |
| | | int h,w,c; |
| | | int stride; |
| | | double *delta; |
| | | double *output; |
| | | float *delta; |
| | | float *output; |
| | | } maxpool_layer; |
| | | |
| | | image get_maxpool_image(maxpool_layer layer); |
| | | maxpool_layer *make_maxpool_layer(int h, int w, int c, int stride); |
| | | void forward_maxpool_layer(const maxpool_layer layer, double *in); |
| | | void backward_maxpool_layer(const maxpool_layer layer, double *in, double *delta); |
| | | void forward_maxpool_layer(const maxpool_layer layer, float *in); |
| | | void backward_maxpool_layer(const maxpool_layer layer, float *in, float *delta); |
| | | |
| | | #endif |
| | | |
| | |
| | | |
| | | #include <stdlib.h> |
| | | #include <stdio.h> |
| | | #include <math.h> |
| | | #include <time.h> |
| | | |
| | | void pm(int M, int N, double *A) |
| | | void pm(int M, int N, float *A) |
| | | { |
| | | int i,j; |
| | | for(i =0 ; i < M; ++i){ |
| | |
| | | printf("\n"); |
| | | } |
| | | |
| | | void gemm(int TA, int TB, int M, int N, int K, double ALPHA, |
| | | double *A, int lda, |
| | | double *B, int ldb, |
| | | double BETA, |
| | | double *C, int ldc) |
| | | void gemm(int TA, int TB, int M, int N, int K, float ALPHA, |
| | | float *A, int lda, |
| | | float *B, int ldb, |
| | | float BETA, |
| | | float *C, int ldc) |
| | | { |
| | | // Assume TA = 0, beta = 1 LULZ |
| | | // Assume beta = 1 LULZ |
| | | int i,j,k; |
| | | if(TB && !TA){ |
| | | for(i = 0; i < M; ++i){ |
| | | for(j = 0; j < N; ++j){ |
| | | register double sum = 0; |
| | | register float sum = 0; |
| | | for(k = 0; k < K; ++k){ |
| | | sum += ALPHA*A[i*lda+k]*B[k+j*ldb]; |
| | | } |
| | | C[i*ldc+j] += sum; |
| | | } |
| | | } |
| | | }else if(TA && !TB){ |
| | | for(i = 0; i < M; ++i){ |
| | | for(k = 0; k < K; ++k){ |
| | | register float A_PART = ALPHA*A[k*lda+i]; |
| | | for(j = 0; j < N; ++j){ |
| | | C[i*ldc+j] += A_PART*B[k*ldb+j]; |
| | | } |
| | | } |
| | | } |
| | | }else{ |
| | | for(i = 0; i < M; ++i){ |
| | | for(k = 0; k < K; ++k){ |
| | | register double A_PART = ALPHA*A[i*lda+k]; |
| | | register float A_PART = ALPHA*A[i*lda+k]; |
| | | for(j = 0; j < N; ++j){ |
| | | C[i*ldc+j] += A_PART*B[k*ldb+j]; |
| | | } |
| | |
| | | } |
| | | } |
| | | |
| | | void im2row(double *image, int h, int w, int c, int size, int stride, double *matrix) |
| | | void im2row(float *image, int h, int w, int c, int size, int stride, float *matrix) |
| | | { |
| | | int i; |
| | | int mc = c; |
| | |
| | | matrix[i] = image[pc*h*w+ph*w+pw]; |
| | | } |
| | | } |
| | | void im2col(double *image, int h, int w, int c, int size, int stride, double *matrix) |
| | | void im2col(float *image, int h, int w, int c, int size, int stride, float *matrix) |
| | | { |
| | | int b,p; |
| | | int blocks = ((h-size)/stride+1)*((w-size)/stride+1); |
| | |
| | | } |
| | | |
| | | //From Berkeley Vision's Caffe! |
| | | void im2col_cpu(double* data_im, const int channels, |
| | | void im2col_cpu(float* data_im, const int channels, |
| | | const int height, const int width, const int ksize, const int stride, |
| | | double* data_col) |
| | | float* data_col) |
| | | { |
| | | int c,h,w; |
| | | int height_col = (height - ksize) / stride + 1; |
| | |
| | | } |
| | | } |
| | | |
| | | void col2im_cpu(float* data_col, const int channels, |
| | | const int height, const int width, const int ksize, const int stride, |
| | | float* data_im) |
| | | { |
| | | int c,h,w; |
| | | int height_col = (height - ksize) / stride + 1; |
| | | int width_col = (width - ksize) / stride + 1; |
| | | int channels_col = channels * ksize * ksize; |
| | | for ( c = 0; c < channels_col; ++c) { |
| | | int w_offset = c % ksize; |
| | | int h_offset = (c / ksize) % ksize; |
| | | int c_im = c / ksize / ksize; |
| | | for ( h = 0; h < height_col; ++h) { |
| | | for ( w = 0; w < width_col; ++w) { |
| | | data_im[(c_im * height + h * stride + h_offset) * width |
| | | + w * stride + w_offset]+= data_col[(c * height_col + h) * width_col + w]; |
| | | } |
| | | } |
| | | } |
| | | } |
| | | |
| | | float *random_matrix(int rows, int cols) |
| | | { |
| | | int i; |
| | | float *m = calloc(rows*cols, sizeof(float)); |
| | | for(i = 0; i < rows*cols; ++i){ |
| | | m[i] = (float)rand()/RAND_MAX; |
| | | } |
| | | return m; |
| | | } |
| | | |
| | | void time_random_matrix(int TA, int TB, int m, int k, int n) |
| | | { |
| | | float *a = random_matrix(m,k); |
| | | float *b = random_matrix(k,n); |
| | | float *c = random_matrix(m,n); |
| | | int i; |
| | | clock_t start = clock(), end; |
| | | for(i = 0; i<1000; ++i){ |
| | | gemm(TA,TB,m,n,k,1,a,k,b,n,1,c,n); |
| | | } |
| | | end = clock(); |
| | | printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %lf ms\n",m,k,k,n, TA, TB, (double)(end-start)/CLOCKS_PER_SEC); |
| | | } |
| | | |
| | | void test_blas() |
| | | { |
| | | time_random_matrix(0,0,100,100,100); |
| | | time_random_matrix(1,0,100,100,100); |
| | | time_random_matrix(0,1,100,100,100); |
| | | |
| | | time_random_matrix(0,1,1000,100,100); |
| | | time_random_matrix(1,0,1000,100,100); |
| | | |
| | | } |
| | | |
| | |
| | | void pm(int M, int N, double *A); |
| | | void gemm(int TA, int TB, int M, int N, int K, double ALPHA, |
| | | double *A, int lda, |
| | | double *B, int ldb, |
| | | double BETA, |
| | | double *C, int ldc); |
| | | void im2row(double *image, int h, int w, int c, int size, int stride, double *matrix); |
| | | void im2col(double *image, int h, int w, int c, int size, int stride, double *matrix); |
| | | void im2col_cpu(double* data_im, const int channels, |
| | | void pm(int M, int N, float *A); |
| | | void gemm(int TA, int TB, int M, int N, int K, float ALPHA, |
| | | float *A, int lda, |
| | | float *B, int ldb, |
| | | float BETA, |
| | | float *C, int ldc); |
| | | void im2row(float *image, int h, int w, int c, int size, int stride, float *matrix); |
| | | void im2col(float *image, int h, int w, int c, int size, int stride, float *matrix); |
| | | void im2col_cpu(float* data_im, const int channels, |
| | | const int height, const int width, const int ksize, const int stride, |
| | | double* data_col); |
| | | float* data_col); |
| | | void col2im_cpu(float* data_col, const int channels, |
| | | const int height, const int width, const int ksize, const int stride, |
| | | float* data_im); |
| | | void test_blas(); |
| | |
| | | return net; |
| | | } |
| | | |
| | | void forward_network(network net, double *input) |
| | | void forward_network(network net, float *input) |
| | | { |
| | | int i; |
| | | for(i = 0; i < net.n; ++i){ |
| | |
| | | } |
| | | } |
| | | |
| | | void update_network(network net, double step, double momentum, double decay) |
| | | void update_network(network net, float step, float momentum, float decay) |
| | | { |
| | | int i; |
| | | for(i = 0; i < net.n; ++i){ |
| | |
| | | } |
| | | } |
| | | |
| | | double *get_network_output_layer(network net, int i) |
| | | float *get_network_output_layer(network net, int i) |
| | | { |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | |
| | | } |
| | | return 0; |
| | | } |
| | | double *get_network_output(network net) |
| | | float *get_network_output(network net) |
| | | { |
| | | return get_network_output_layer(net, net.n-1); |
| | | } |
| | | |
| | | double *get_network_delta_layer(network net, int i) |
| | | float *get_network_delta_layer(network net, int i) |
| | | { |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | |
| | | return 0; |
| | | } |
| | | |
| | | double *get_network_delta(network net) |
| | | float *get_network_delta(network net) |
| | | { |
| | | return get_network_delta_layer(net, net.n-1); |
| | | } |
| | | |
| | | double calculate_error_network(network net, double *truth) |
| | | float calculate_error_network(network net, float *truth) |
| | | { |
| | | double sum = 0; |
| | | double *delta = get_network_delta(net); |
| | | double *out = get_network_output(net); |
| | | float sum = 0; |
| | | float *delta = get_network_delta(net); |
| | | float *out = get_network_output(net); |
| | | int i, k = get_network_output_size(net); |
| | | for(i = 0; i < k; ++i){ |
| | | delta[i] = truth[i] - out[i]; |
| | |
| | | |
| | | int get_predicted_class_network(network net) |
| | | { |
| | | double *out = get_network_output(net); |
| | | float *out = get_network_output(net); |
| | | int k = get_network_output_size(net); |
| | | return max_index(out, k); |
| | | } |
| | | |
| | | double backward_network(network net, double *input, double *truth) |
| | | float backward_network(network net, float *input, float *truth) |
| | | { |
| | | double error = calculate_error_network(net, truth); |
| | | float error = calculate_error_network(net, truth); |
| | | int i; |
| | | double *prev_input; |
| | | double *prev_delta; |
| | | float *prev_input; |
| | | float *prev_delta; |
| | | for(i = net.n-1; i >= 0; --i){ |
| | | if(i == 0){ |
| | | prev_input = input; |
| | |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | learn_convolutional_layer(layer); |
| | | //learn_convolutional_layer(layer); |
| | | //if(i != 0) backward_convolutional_layer(layer, prev_input, prev_delta); |
| | | if(i != 0) backward_convolutional_layer(layer, prev_delta); |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | |
| | | return error; |
| | | } |
| | | |
| | | double train_network_datum(network net, double *x, double *y, double step, double momentum, double decay) |
| | | float train_network_datum(network net, float *x, float *y, float step, float momentum, float decay) |
| | | { |
| | | forward_network(net, x); |
| | | int class = get_predicted_class_network(net); |
| | | double error = backward_network(net, x, y); |
| | | float error = backward_network(net, x, y); |
| | | update_network(net, step, momentum, decay); |
| | | //return (y[class]?1:0); |
| | | return error; |
| | | } |
| | | |
| | | double train_network_sgd(network net, data d, int n, double step, double momentum,double decay) |
| | | float train_network_sgd(network net, data d, int n, float step, float momentum,float decay) |
| | | { |
| | | int i; |
| | | double error = 0; |
| | | float error = 0; |
| | | for(i = 0; i < n; ++i){ |
| | | int index = rand()%d.X.rows; |
| | | error += train_network_datum(net, d.X.vals[index], d.y.vals[index], step, momentum, decay); |
| | | //if((i+1)%10 == 0){ |
| | | // printf("%d: %f\n", (i+1), (double)correct/(i+1)); |
| | | // printf("%d: %f\n", (i+1), (float)correct/(i+1)); |
| | | //} |
| | | } |
| | | return error/n; |
| | | } |
| | | double train_network_batch(network net, data d, int n, double step, double momentum,double decay) |
| | | float train_network_batch(network net, data d, int n, float step, float momentum,float decay) |
| | | { |
| | | int i; |
| | | int correct = 0; |
| | | for(i = 0; i < n; ++i){ |
| | | int index = rand()%d.X.rows; |
| | | double *x = d.X.vals[index]; |
| | | double *y = d.y.vals[index]; |
| | | float *x = d.X.vals[index]; |
| | | float *y = d.y.vals[index]; |
| | | forward_network(net, x); |
| | | int class = get_predicted_class_network(net); |
| | | backward_network(net, x, y); |
| | | correct += (y[class]?1:0); |
| | | } |
| | | update_network(net, step, momentum, decay); |
| | | return (double)correct/n; |
| | | return (float)correct/n; |
| | | |
| | | } |
| | | |
| | | |
| | | void train_network(network net, data d, double step, double momentum, double decay) |
| | | void train_network(network net, data d, float step, float momentum, float decay) |
| | | { |
| | | int i; |
| | | int correct = 0; |
| | |
| | | } |
| | | visualize_network(net); |
| | | cvWaitKey(100); |
| | | printf("Accuracy: %f\n", (double)correct/d.X.rows); |
| | | printf("Accuracy: %f\n", (float)correct/d.X.rows); |
| | | } |
| | | |
| | | int get_network_output_size_layer(network net, int i) |
| | |
| | | } |
| | | } |
| | | |
| | | double *network_predict(network net, double *input) |
| | | float *network_predict(network net, float *input) |
| | | { |
| | | forward_network(net, input); |
| | | double *out = get_network_output(net); |
| | | float *out = get_network_output(net); |
| | | return out; |
| | | } |
| | | |
| | |
| | | int k = get_network_output_size(net); |
| | | matrix pred = make_matrix(test.X.rows, k); |
| | | for(i = 0; i < test.X.rows; ++i){ |
| | | double *out = network_predict(net, test.X.vals[i]); |
| | | float *out = network_predict(net, test.X.vals[i]); |
| | | for(j = 0; j < k; ++j){ |
| | | pred.vals[i][j] = out[j]; |
| | | } |
| | |
| | | { |
| | | int i,j; |
| | | for(i = 0; i < net.n; ++i){ |
| | | double *output = 0; |
| | | float *output = 0; |
| | | int n = 0; |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | |
| | | output = layer.output; |
| | | n = layer.inputs; |
| | | } |
| | | double mean = mean_array(output, n); |
| | | double vari = variance_array(output, n); |
| | | float mean = mean_array(output, n); |
| | | float vari = variance_array(output, n); |
| | | fprintf(stderr, "Layer %d - Mean: %f, Variance: %f\n",i,mean, vari); |
| | | if(n > 100) n = 100; |
| | | for(j = 0; j < n; ++j) fprintf(stderr, "%f, ", output[j]); |
| | |
| | | } |
| | | } |
| | | |
| | | double network_accuracy(network net, data d) |
| | | float network_accuracy(network net, data d) |
| | | { |
| | | matrix guess = network_predict_data(net, d); |
| | | double acc = matrix_accuracy(d.y, guess); |
| | | float acc = matrix_accuracy(d.y, guess); |
| | | free_matrix(guess); |
| | | return acc; |
| | | } |
| | |
| | | void **layers; |
| | | LAYER_TYPE *types; |
| | | int outputs; |
| | | double *output; |
| | | float *output; |
| | | } network; |
| | | |
| | | network make_network(int n); |
| | | void forward_network(network net, double *input); |
| | | double backward_network(network net, double *input, double *truth); |
| | | void update_network(network net, double step, double momentum, double decay); |
| | | double train_network_sgd(network net, data d, int n, double step, double momentum,double decay); |
| | | double train_network_batch(network net, data d, int n, double step, double momentum,double decay); |
| | | void train_network(network net, data d, double step, double momentum, double decay); |
| | | void forward_network(network net, float *input); |
| | | float backward_network(network net, float *input, float *truth); |
| | | void update_network(network net, float step, float momentum, float decay); |
| | | float train_network_sgd(network net, data d, int n, float step, float momentum,float decay); |
| | | float train_network_batch(network net, data d, int n, float step, float momentum,float decay); |
| | | void train_network(network net, data d, float step, float momentum, float decay); |
| | | matrix network_predict_data(network net, data test); |
| | | double network_accuracy(network net, data d); |
| | | double *get_network_output(network net); |
| | | double *get_network_output_layer(network net, int i); |
| | | double *get_network_delta_layer(network net, int i); |
| | | double *get_network_delta(network net); |
| | | float network_accuracy(network net, data d); |
| | | float *get_network_output(network net); |
| | | float *get_network_output_layer(network net, int i); |
| | | float *get_network_delta_layer(network net, int i); |
| | | float *get_network_delta(network net); |
| | | int get_network_output_size_layer(network net, int i); |
| | | int get_network_output_size(network net); |
| | | image get_network_image(network net); |
| | |
| | | return def; |
| | | } |
| | | |
| | | double option_find_double(list *l, char *key, double def) |
| | | float option_find_float(list *l, char *key, float def) |
| | | { |
| | | char *v = option_find(l, key); |
| | | if(v) return atof(v); |
| | |
| | | char *option_find(list *l, char *key); |
| | | char *option_find_str(list *l, char *key, char *def); |
| | | int option_find_int(list *l, char *key, int def); |
| | | double option_find_double(list *l, char *key, double def); |
| | | float option_find_float(list *l, char *key, float def); |
| | | void option_unused(list *l); |
| | | |
| | | #endif |
| | |
| | | fprintf(stderr, "Softmax Layer: %d inputs\n", inputs); |
| | | softmax_layer *layer = calloc(1, sizeof(softmax_layer)); |
| | | layer->inputs = inputs; |
| | | layer->output = calloc(inputs, sizeof(double)); |
| | | layer->delta = calloc(inputs, sizeof(double)); |
| | | layer->output = calloc(inputs, sizeof(float)); |
| | | layer->delta = calloc(inputs, sizeof(float)); |
| | | return layer; |
| | | } |
| | | |
| | | void forward_softmax_layer(const softmax_layer layer, double *input) |
| | | /* UNSTABLE! |
| | | void forward_softmax_layer(const softmax_layer layer, float *input) |
| | | { |
| | | int i; |
| | | double sum = 0; |
| | | float sum = 0; |
| | | for(i = 0; i < layer.inputs; ++i){ |
| | | sum += exp(input[i]); |
| | | } |
| | |
| | | layer.output[i] = exp(input[i])/sum; |
| | | } |
| | | } |
| | | */ |
| | | void forward_softmax_layer(const softmax_layer layer, float *input) |
| | | { |
| | | int i; |
| | | float sum = 0; |
| | | float largest = 0; |
| | | for(i = 0; i < layer.inputs; ++i){ |
| | | if(input[i] > largest) largest = input[i]; |
| | | } |
| | | for(i = 0; i < layer.inputs; ++i){ |
| | | sum += exp(input[i]-largest); |
| | | } |
| | | sum = largest+log(sum); |
| | | for(i = 0; i < layer.inputs; ++i){ |
| | | layer.output[i] = exp(input[i]-sum); |
| | | } |
| | | } |
| | | |
| | | void backward_softmax_layer(const softmax_layer layer, double *input, double *delta) |
| | | void backward_softmax_layer(const softmax_layer layer, float *input, float *delta) |
| | | { |
| | | int i; |
| | | for(i = 0; i < layer.inputs; ++i){ |
| | |
| | | |
| | | typedef struct { |
| | | int inputs; |
| | | double *delta; |
| | | double *output; |
| | | float *delta; |
| | | float *output; |
| | | } softmax_layer; |
| | | |
| | | softmax_layer *make_softmax_layer(int inputs); |
| | | void forward_softmax_layer(const softmax_layer layer, double *input); |
| | | void backward_softmax_layer(const softmax_layer layer, double *input, double *delta); |
| | | void forward_softmax_layer(const softmax_layer layer, float *input); |
| | | void backward_softmax_layer(const softmax_layer layer, float *input, float *delta); |
| | | |
| | | #endif |
| | |
| | | #include <stdlib.h> |
| | | #include <stdio.h> |
| | | |
| | | #define _GNU_SOURCE |
| | | #include <fenv.h> |
| | | |
| | | void test_convolve() |
| | | { |
| | | image dog = load_image("dog.jpg"); |
| | |
| | | convolve(dog, kernel, 1, 0, edge, 1); |
| | | } |
| | | end = clock(); |
| | | printf("Convolutions: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC); |
| | | printf("Convolutions: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC); |
| | | show_image_layers(edge, "Test Convolve"); |
| | | } |
| | | |
| | |
| | | int size = 11; |
| | | int stride = 4; |
| | | int n = 40; |
| | | double *filters = make_random_image(size, size, dog.c*n).data; |
| | | float *filters = make_random_image(size, size, dog.c*n).data; |
| | | |
| | | int mw = ((dog.h-size)/stride+1)*((dog.w-size)/stride+1); |
| | | int mh = (size*size*dog.c); |
| | | double *matrix = calloc(mh*mw, sizeof(double)); |
| | | float *matrix = calloc(mh*mw, sizeof(float)); |
| | | |
| | | image edge = make_image((dog.h-size)/stride+1, (dog.w-size)/stride+1, n); |
| | | |
| | |
| | | gemm(0,0,n,mw,mh,1,filters,mh,matrix,mw,1,edge.data,mw); |
| | | } |
| | | end = clock(); |
| | | printf("Convolutions: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC); |
| | | printf("Convolutions: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC); |
| | | show_image_layers(edge, "Test Convolve"); |
| | | cvWaitKey(0); |
| | | } |
| | |
| | | int n = 1; |
| | | int stride = 1; |
| | | int size = 3; |
| | | double eps = .00000001; |
| | | float eps = .00000001; |
| | | image test = make_random_image(5,5, 1); |
| | | convolutional_layer layer = *make_convolutional_layer(test.h,test.w,test.c, n, size, stride, RELU); |
| | | image out = get_convolutional_image(layer); |
| | | double **jacobian = calloc(test.h*test.w*test.c, sizeof(double)); |
| | | float **jacobian = calloc(test.h*test.w*test.c, sizeof(float)); |
| | | |
| | | forward_convolutional_layer(layer, test.data); |
| | | image base = copy_image(out); |
| | |
| | | jacobian[i] = partial.data; |
| | | test.data[i] -= eps; |
| | | } |
| | | double **jacobian2 = calloc(out.h*out.w*out.c, sizeof(double)); |
| | | float **jacobian2 = calloc(out.h*out.w*out.c, sizeof(float)); |
| | | image in_delta = make_image(test.h, test.w, test.c); |
| | | image out_delta = get_convolutional_delta(layer); |
| | | for(i = 0; i < out.h*out.w*out.c; ++i){ |
| | | out_delta.data[i] = 1; |
| | | //backward_convolutional_layer(layer, test.data, in_delta.data); |
| | | backward_convolutional_layer(layer, in_delta.data); |
| | | image partial = copy_image(in_delta); |
| | | jacobian2[i] = partial.data; |
| | | out_delta.data[i] = 0; |
| | | } |
| | | int j; |
| | | double *j1 = calloc(test.h*test.w*test.c*out.h*out.w*out.c, sizeof(double)); |
| | | double *j2 = calloc(test.h*test.w*test.c*out.h*out.w*out.c, sizeof(double)); |
| | | float *j1 = calloc(test.h*test.w*test.c*out.h*out.w*out.c, sizeof(float)); |
| | | float *j2 = calloc(test.h*test.w*test.c*out.h*out.w*out.c, sizeof(float)); |
| | | for(i = 0; i < test.h*test.w*test.c; ++i){ |
| | | for(j =0 ; j < out.h*out.w*out.c; ++j){ |
| | | j1[i*out.h*out.w*out.c + j] = jacobian[i][j]; |
| | |
| | | } |
| | | |
| | | |
| | | image mj1 = double_to_image(test.w*test.h*test.c, out.w*out.h*out.c, 1, j1); |
| | | image mj2 = double_to_image(test.w*test.h*test.c, out.w*out.h*out.c, 1, j2); |
| | | image mj1 = float_to_image(test.w*test.h*test.c, out.w*out.h*out.c, 1, j1); |
| | | image mj2 = float_to_image(test.w*test.h*test.c, out.w*out.h*out.c, 1, j2); |
| | | printf("%f %f\n", avg_image_layer(mj1,0), avg_image_layer(mj2,0)); |
| | | show_image(mj1, "forward jacobian"); |
| | | show_image(mj2, "backward jacobian"); |
| | | |
| | | } |
| | | |
| | | void test_load() |
| | |
| | | rotate_image(dog); |
| | | } |
| | | end = clock(); |
| | | printf("Rotations: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC); |
| | | printf("Rotations: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC); |
| | | show_image(dog, "Test Rotate"); |
| | | |
| | | image random = make_random_image(3,3,3); |
| | |
| | | void test_parser() |
| | | { |
| | | network net = parse_network_cfg("test_parser.cfg"); |
| | | double input[1]; |
| | | float input[1]; |
| | | int count = 0; |
| | | |
| | | double avgerr = 0; |
| | | float avgerr = 0; |
| | | while(++count < 100000000){ |
| | | double v = ((double)rand()/RAND_MAX); |
| | | double truth = v*v; |
| | | float v = ((float)rand()/RAND_MAX); |
| | | float truth = v*v; |
| | | input[0] = v; |
| | | forward_network(net, input); |
| | | double *out = get_network_output(net); |
| | | double *delta = get_network_delta(net); |
| | | double err = pow((out[0]-truth),2.); |
| | | float *out = get_network_output(net); |
| | | float *delta = get_network_delta(net); |
| | | float err = pow((out[0]-truth),2.); |
| | | avgerr = .99 * avgerr + .01 * err; |
| | | if(count % 1000000 == 0) printf("%f %f :%f AVG %f \n", truth, out[0], err, avgerr); |
| | | delta[0] = truth - out[0]; |
| | |
| | | srand(0); |
| | | int i = 0; |
| | | char *labels[] = {"cat","dog"}; |
| | | double lr = .00001; |
| | | double momentum = .9; |
| | | double decay = 0.01; |
| | | float lr = .00001; |
| | | float momentum = .9; |
| | | float decay = 0.01; |
| | | while(i++ < 1000 || 1){ |
| | | data train = load_data_image_pathfile_random("train_paths.txt", 1000, labels, 2); |
| | | train_network(net, train, lr, momentum, decay); |
| | |
| | | { |
| | | srand(444444); |
| | | srand(888888); |
| | | network net = parse_network_cfg("nist_basic.cfg"); |
| | | network net = parse_network_cfg("nist.cfg"); |
| | | data train = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10); |
| | | data test = load_categorical_data_csv("mnist/mnist_test.csv",0,10); |
| | | normalize_data_rows(train); |
| | | normalize_data_rows(test); |
| | | //randomize_data(train); |
| | | int count = 0; |
| | | double lr = .0005; |
| | | double momentum = .9; |
| | | double decay = 0.01; |
| | | float lr = .0005; |
| | | float momentum = .9; |
| | | float decay = 0.01; |
| | | clock_t start = clock(), end; |
| | | while(++count <= 100){ |
| | | visualize_network(net); |
| | | double loss = train_network_sgd(net, train, 10000, lr, momentum, decay); |
| | | //visualize_network(net); |
| | | float loss = train_network_sgd(net, train, 1000, lr, momentum, decay); |
| | | printf("%5d Training Loss: %lf, Params: %f %f %f, ",count*100, loss, lr, momentum, decay); |
| | | end = clock(); |
| | | printf("Time: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC); |
| | | printf("Time: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC); |
| | | start=end; |
| | | cvWaitKey(100); |
| | | //lr /= 2; |
| | | if(count%5 == 0){ |
| | | double train_acc = network_accuracy(net, train); |
| | | float train_acc = network_accuracy(net, train); |
| | | fprintf(stderr, "\nTRAIN: %f\n", train_acc); |
| | | double test_acc = network_accuracy(net, test); |
| | | float test_acc = network_accuracy(net, test); |
| | | fprintf(stderr, "TEST: %f\n\n", test_acc); |
| | | printf("%d, %f, %f\n", count, train_acc, test_acc); |
| | | lr *= .5; |
| | | } |
| | | } |
| | | } |
| | |
| | | int n = 30; |
| | | for(i = 0; i < n; ++i){ |
| | | int count = 0; |
| | | double lr = .0005; |
| | | double momentum = .9; |
| | | double decay = .01; |
| | | float lr = .0005; |
| | | float momentum = .9; |
| | | float decay = .01; |
| | | network net = parse_network_cfg("nist.cfg"); |
| | | while(++count <= 15){ |
| | | double acc = train_network_sgd(net, train, train.X.rows, lr, momentum, decay); |
| | | float acc = train_network_sgd(net, train, train.X.rows, lr, momentum, decay); |
| | | printf("Training Accuracy: %lf Learning Rate: %f Momentum: %f Decay: %f\n", acc, lr, momentum, decay ); |
| | | lr /= 2; |
| | | } |
| | | matrix partial = network_predict_data(net, test); |
| | | double acc = matrix_accuracy(test.y, partial); |
| | | float acc = matrix_accuracy(test.y, partial); |
| | | printf("Model Accuracy: %lf\n", acc); |
| | | matrix_add_matrix(partial, prediction); |
| | | acc = matrix_accuracy(test.y, prediction); |
| | | printf("Current Ensemble Accuracy: %lf\n", acc); |
| | | free_matrix(partial); |
| | | } |
| | | double acc = matrix_accuracy(test.y, prediction); |
| | | float acc = matrix_accuracy(test.y, prediction); |
| | | printf("Full Ensemble Accuracy: %lf\n", acc); |
| | | } |
| | | |
| | |
| | | network net = parse_network_cfg("connected.cfg"); |
| | | matrix m = csv_to_matrix("train.csv"); |
| | | //matrix ho = hold_out_matrix(&m, 2500); |
| | | double *truth = pop_column(&m, 0); |
| | | //double *ho_truth = pop_column(&ho, 0); |
| | | float *truth = pop_column(&m, 0); |
| | | //float *ho_truth = pop_column(&ho, 0); |
| | | int i; |
| | | clock_t start = clock(), end; |
| | | int count = 0; |
| | | while(++count <= 300){ |
| | | for(i = 0; i < m.rows; ++i){ |
| | | int index = rand()%m.rows; |
| | | //image p = double_to_image(1690,1,1,m.vals[index]); |
| | | //image p = float_to_image(1690,1,1,m.vals[index]); |
| | | //normalize_image(p); |
| | | forward_network(net, m.vals[index]); |
| | | double *out = get_network_output(net); |
| | | double *delta = get_network_delta(net); |
| | | float *out = get_network_output(net); |
| | | float *delta = get_network_delta(net); |
| | | //printf("%f\n", out[0]); |
| | | delta[0] = truth[index] - out[0]; |
| | | // printf("%f\n", delta[0]); |
| | |
| | | //backward_network(net, m.vals[index], ); |
| | | update_network(net, .00001, 0,0); |
| | | } |
| | | //double test_acc = error_network(net, m, truth); |
| | | //double valid_acc = error_network(net, ho, ho_truth); |
| | | //float test_acc = error_network(net, m, truth); |
| | | //float valid_acc = error_network(net, ho, ho_truth); |
| | | //printf("%f, %f\n", test_acc, valid_acc); |
| | | //fprintf(stderr, "%5d: %f Valid: %f\n",count, test_acc, valid_acc); |
| | | //if(valid_acc > .70) break; |
| | |
| | | truth = pop_column(&test, 0); |
| | | for(i = 0; i < test.rows; ++i){ |
| | | forward_network(net, test.vals[i]); |
| | | double *out = get_network_output(net); |
| | | float *out = get_network_output(net); |
| | | if(fabs(out[0]) < .5) fprintf(fp, "0\n"); |
| | | else fprintf(fp, "1\n"); |
| | | } |
| | | fclose(fp); |
| | | printf("Neural Net Learning: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC); |
| | | printf("Neural Net Learning: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC); |
| | | } |
| | | |
| | | void test_split() |
| | |
| | | printf("%d, %d, %d\n", train.X.rows, split[0].X.rows, split[1].X.rows); |
| | | } |
| | | |
| | | double *random_matrix(int rows, int cols) |
| | | { |
| | | int i, j; |
| | | double *m = calloc(rows*cols, sizeof(double)); |
| | | for(i = 0; i < rows; ++i){ |
| | | for(j = 0; j < cols; ++j){ |
| | | m[i*cols+j] = (double)rand()/RAND_MAX; |
| | | } |
| | | } |
| | | return m; |
| | | } |
| | | |
| | | void test_blas() |
| | | { |
| | | int m = 1000, n = 1000, k = 1000; |
| | | double *a = random_matrix(m,k); |
| | | double *b = random_matrix(k,n); |
| | | double *c = random_matrix(m,n); |
| | | int i; |
| | | for(i = 0; i<1000; ++i){ |
| | | gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); |
| | | } |
| | | } |
| | | |
| | | void test_im2row() |
| | | { |
| | | int h = 20; |
| | |
| | | int mw = ((h-size)/stride+1)*((w-size)/stride+1); |
| | | int mh = (size*size*c); |
| | | int msize = mc*mw*mh; |
| | | double *matrix = calloc(msize, sizeof(double)); |
| | | float *matrix = calloc(msize, sizeof(float)); |
| | | int i; |
| | | for(i = 0; i < 1000; ++i){ |
| | | im2col_cpu(test.data, c, h, w, size, stride, matrix); |
| | | image render = double_to_image(mh, mw, mc, matrix); |
| | | image render = float_to_image(mh, mw, mc, matrix); |
| | | } |
| | | } |
| | | |
| | | int main() |
| | | { |
| | | //feenableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW); |
| | | |
| | | //test_blas(); |
| | | //test_convolve_matrix(); |
| | | // test_im2row(); |
| | |
| | | return count; |
| | | } |
| | | |
| | | double *parse_fields(char *line, int n) |
| | | float *parse_fields(char *line, int n) |
| | | { |
| | | double *field = calloc(n, sizeof(double)); |
| | | float *field = calloc(n, sizeof(float)); |
| | | char *c, *p, *end; |
| | | int count = 0; |
| | | int done = 0; |
| | |
| | | return field; |
| | | } |
| | | |
| | | double mean_array(double *a, int n) |
| | | float mean_array(float *a, int n) |
| | | { |
| | | int i; |
| | | double sum = 0; |
| | | float sum = 0; |
| | | for(i = 0; i < n; ++i) sum += a[i]; |
| | | return sum/n; |
| | | } |
| | | |
| | | double variance_array(double *a, int n) |
| | | float variance_array(float *a, int n) |
| | | { |
| | | int i; |
| | | double sum = 0; |
| | | double mean = mean_array(a, n); |
| | | float sum = 0; |
| | | float mean = mean_array(a, n); |
| | | for(i = 0; i < n; ++i) sum += (a[i] - mean)*(a[i]-mean); |
| | | double variance = sum/n; |
| | | float variance = sum/n; |
| | | return variance; |
| | | } |
| | | |
| | | double constrain(double a, double max) |
| | | float constrain(float a, float max) |
| | | { |
| | | if(a > abs(max)) return abs(max); |
| | | if(a < -abs(max)) return -abs(max); |
| | | return a; |
| | | } |
| | | |
| | | void normalize_array(double *a, int n) |
| | | void normalize_array(float *a, int n) |
| | | { |
| | | int i; |
| | | double mu = mean_array(a,n); |
| | | double sigma = sqrt(variance_array(a,n)); |
| | | float mu = mean_array(a,n); |
| | | float sigma = sqrt(variance_array(a,n)); |
| | | for(i = 0; i < n; ++i){ |
| | | a[i] = (a[i] - mu)/sigma; |
| | | } |
| | |
| | | sigma = sqrt(variance_array(a,n)); |
| | | } |
| | | |
| | | void translate_array(double *a, int n, double s) |
| | | void translate_array(float *a, int n, float s) |
| | | { |
| | | int i; |
| | | for(i = 0; i < n; ++i){ |
| | |
| | | } |
| | | } |
| | | |
| | | void scale_array(double *a, int n, double s) |
| | | void scale_array(float *a, int n, float s) |
| | | { |
| | | int i; |
| | | for(i = 0; i < n; ++i){ |
| | | a[i] *= s; |
| | | } |
| | | } |
| | | int max_index(double *a, int n) |
| | | int max_index(float *a, int n) |
| | | { |
| | | if(n <= 0) return -1; |
| | | int i, max_i = 0; |
| | | double max = a[0]; |
| | | float max = a[0]; |
| | | for(i = 1; i < n; ++i){ |
| | | if(a[i] > max){ |
| | | max = a[i]; |
| | |
| | | return max_i; |
| | | } |
| | | |
| | | double rand_normal() |
| | | float rand_normal() |
| | | { |
| | | int i; |
| | | double sum= 0; |
| | | for(i = 0; i < 12; ++i) sum += (double)rand()/RAND_MAX; |
| | | float sum= 0; |
| | | for(i = 0; i < 12; ++i) sum += (float)rand()/RAND_MAX; |
| | | return sum-6.; |
| | | } |
| | | |
| | | double **one_hot_encode(double *a, int n, int k) |
| | | float **one_hot_encode(float *a, int n, int k) |
| | | { |
| | | int i; |
| | | double **t = calloc(n, sizeof(double*)); |
| | | float **t = calloc(n, sizeof(float*)); |
| | | for(i = 0; i < n; ++i){ |
| | | t[i] = calloc(k, sizeof(double)); |
| | | t[i] = calloc(k, sizeof(float)); |
| | | int index = (int)a[i]; |
| | | t[i][index] = 1; |
| | | } |
| | |
| | | list *parse_csv_line(char *line); |
| | | char *copy_string(char *s); |
| | | int count_fields(char *line); |
| | | double *parse_fields(char *line, int n); |
| | | void normalize_array(double *a, int n); |
| | | void scale_array(double *a, int n, double s); |
| | | void translate_array(double *a, int n, double s); |
| | | int max_index(double *a, int n); |
| | | double constrain(double a, double max); |
| | | double rand_normal(); |
| | | double mean_array(double *a, int n); |
| | | double variance_array(double *a, int n); |
| | | double **one_hot_encode(double *a, int n, int k); |
| | | float *parse_fields(char *line, int n); |
| | | void normalize_array(float *a, int n); |
| | | void scale_array(float *a, int n, float s); |
| | | void translate_array(float *a, int n, float s); |
| | | int max_index(float *a, int n); |
| | | float constrain(float a, float max); |
| | | float rand_normal(); |
| | | float mean_array(float *a, int n); |
| | | float variance_array(float *a, int n); |
| | | float **one_hot_encode(float *a, int n, int k); |
| | | #endif |
| | | |